Isomorphisms

• **Q:** When are two groups the “same” up to the names of elements?

• **Examples:**
 - \mathbb{Z}_2 and the group $G = \{x, y\}$ with the following Cayley table:

<table>
<thead>
<tr>
<th>\circ</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>x</td>
</tr>
<tr>
<td>y</td>
<td>x</td>
<td>y</td>
</tr>
</tbody>
</table>

 - Any infinite cyclic group and \mathbb{Z}.

 - Any cyclic group of order n and \mathbb{Z}_n.

 - n-dimensional real vector space and \mathbb{R}^n.

• **Def:** For groups G and H, an isomorphism from G to H is a mapping $\varphi : G \to H$ such that

 1. φ is a bijection (i.e. one-to-one and onto).
 2. for every $a, b \in G$, $\varphi(ab) = \varphi(a)\varphi(b)$. (Note that ab is computed using the operation of G, and $\varphi(a)\varphi(b)$ using the operation of H.)

If there exists an isomorphism from G to H, we say that G and H are isomorphic and write $G \cong H$.

• **Comments**

 - Gallian writes $G \approx H$, but $G \cong H$ is more standard notation than $G \approx H$.

 - Isomorphism is an equivalence relation on groups.

• **More Examples**

1 These notes are copied mostly verbatim from the lecture notes from the Fall 2010 offering, authored by Prof. Salil Vadhan. I will attempt to update them, but apologies if some references to old dates and contents remain.
- $S_4 \cong D_8$?
- $S_4 \cong \mathbb{Z}_{24}$?
- $(\mathbb{R}, +) \cong (\mathbb{R}^+, \cdot)$?

Thm: If A and B are the same size (i.e. there is a bijection $\pi : A \to B$), then $\text{Sym}(A) \cong \text{Sym}(B)$.

Proof: Consider the map $\varphi : \text{Sym}(A) \to \text{Sym}(B)$ given by $\sigma \mapsto \pi \circ \sigma \circ \pi^{-1}$.

- Example: $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{a, b, c, d, e, f, g\}$, $\sigma = (15)(236)(47)$.

Examples (from Thms 6.2, 6.3): If $\varphi : G \to H$ is an isomorphism, then

1. $\varphi(e) = e$.
2. for all $g \in G$, $\varphi(g^{-1}) = \varphi(g)^{-1}$.
3. $\text{order}(\varphi(g)) = \text{order}(g)$.
4. if G is abelian, then H is abelian
5. if G is cyclic, then H is cyclic
6. if $G' \leq G$, then $\varphi(G') \overset{\text{def}}{=} \{\varphi(g) : g \in G'\} \leq H$.

:

2 Cayley’s Theorem

Def: We write $G \lesssim H$ if G is isomorphic to a subgroup of H. (Equivalently, there is a function $\varphi : G \to H$ satisfying all of the properties of an isomorphism except for being onto.)

Example: $D_n \lesssim S_n$.

Cayley’s Theorem: For every group G, $G \lesssim \text{Sym}(G)$.

2
Every group is (isomorphic to) a permutation group!
The subgroups of S_n include all finite groups.

- **Proof of Cayley’s Thm:**

 - **Example:** $\mathbb{Z}_5 \leq \text{Sym}(\{0, 1, 2, 3, 4\})$.

3 Automorphisms

- **Def:** An *automorphism* of a group G is an isomorphism from G to itself.
- **Prop:** The set $\text{Aut}(G)$ of automorphisms of G form a group under composition.

 - “group-theoretic symmetries” of G
- **Example:** $\text{Aut}(\mathbb{Z}_n)$.

- **Def:** $x, y \in G$ are *conjugates* if $y = axa^{-1}$ for some $a \in G$. (This is an equivalence relation on elements of G.)
- **Def:** For $a \in G$, the *inner automorphism* of G corresponding to a is the automorphism ϕ_a given by $\phi_a(x) = axa^{-1}$, aka “conjugation by a”.
- **Prop:** The set $\text{Inn}(G)$ of inner automorphisms of G form a group under composition.
- **Examples:**

 - $\text{Inn}(\mathbb{Z}_n)$
 - $\text{Inn}(\text{GL}_n(\mathbb{R}))$
 - $\text{Inn}(S_n)$

- **Note:** For every group G, $\text{Inn}(G) \leq \text{Aut}(G) \leq \text{Sym}(G)$.
• **Fact:** $\text{Inn}(S_n) \cong S_n$ when $n \geq 3$.

• **Fact:** $\text{Inn}(S_n) = \text{Aut}(S_n)$ when $n \neq 6$.

4 Cosets

• **Def:** For a group G, $H \leq G$, and $a \in G$, the left coset of H containing a is the set $aH = \{ah : h \in H\}$. Similarly, the right coset of H containing a is $Ha = \{ha : h \in H\}$.

• **Examples:**
 1. $G = \mathbb{Z}$, $H = 3\mathbb{Z} = \{\ldots, -6, -3, 0, 3, 6, \ldots\}$. (Note: $3\mathbb{Z}$ is *not* the left coset of \mathbb{Z} containing 3. Why not?)

 2. $G = S_3$, $H = \{\varepsilon, (23)\}$.

 3. $G = \mathbb{R}^3$, $H = \{(x, y, z) : z = 0\}$.

• **Thm:** If $H \leq G$, then the cosets of H form a partition of G into disjoint subsets, each of size $|H|$.
 Proof:
 1. Every element $a \in G$ is contained in at least one coset:

 2. Every element $a \in G$ is contained in only one coset, i.e. if $a \in bH$, then $aH = bH$.

 3. The size of each coset aH is the same as the size of H.

• A picture:
Another View: define a relation \(R_H \) on \(G \) by \(a \sim b \) iff \(a^{-1}b \in H \) (\(\Leftrightarrow b \in aH \Leftrightarrow aH = bH \)). This is an equivalence relation, whose equivalence classes are exactly the cosets of \(H \). That is, \([a]_{R_H} = aH\).

- Example: On \(\mathbb{Z} \), \(a \equiv b \pmod{n} \) iff \(a - b \in n\mathbb{Z} \). The congruence classes modulo \(n \) are exactly the cosets of \(n\mathbb{Z} \): \([a]_n = a + n\mathbb{Z}\).

5 Lagrange’s Theorem and Related Results

- **Def:** For a group \(G \) and \(H \leq G \), the *index of \(H \) in \(G \)* \([G : H]\) is the number of distinct left cosets of \(H \) in \(G \).

- **Corollaries of Theorem above:** For a finite group \(G \):
 - If \(H \leq G \), then \([G : H] = |G|/|H|\).
 - (Lagrange’s Thm) The order of a subgroup divides the order of the group. That is, if \(H \leq G \), then \(|H| \) divides \(|G|\).
 - The order of an element divides the order of the group. That is, if \(a \in G \), then the order of \(a \) divides \(|G|\).
 - Every group of prime order is cyclic. That is, if \(|G| \) is prime, then \(G \) is cyclic.
 - \(a^{[G]} = e \) for every \(a \in G \).
 - (Fermat’s Little Thm) \(a^p \equiv a \pmod{p} \) for every \(a \in \mathbb{Z} \) and prime \(p \).

\(\ast \) Starting point for all (randomized and deterministic) polynomial-time primality testing algorithms!
6 Orbits and Stabilizers

- **Def:** For a permutation group \(G \leq \text{Sym}(S) \) and a point \(s \in S \),
 - The orbit of \(s \) under \(G \) is \(\text{orb}_G(s) = \{ \varphi(s) : \varphi \in G \} \),
 - The stabilizer of \(s \) in \(G \) is \(\text{stab}_G(s) = \{ \varphi \in G : \varphi(s) = s \} \).

- **Examples:** \(G = D_5 \leq \text{Sym}(\mathbb{R}^2) \).
 - \(s = \) center of pentagon.
 - \(s = \) non-center point on vertical axis.
 - \(s = \) point 5° clockwise from vertical axis.

- **Defs of** \(\text{stab}_G(s) \), \(\text{orb}_G(s) \) **for** \(G \leq \text{Sym}(S) \) **and** \(s \in S \).

- **Orbit-Stabilizer Theorem (Thm. 7.3):** \(|\text{orb}_G(s)| = [G : \text{stab}_G(s)] \).

- **Orbit–Stabilizer Thm follows from:**
 - **Lemma:** For \(\varphi, \psi \in G, \varphi(s) = \psi(s) \) iff \(\varphi\text{stab}_G(s) = \psi\text{stab}_G(s) \).
 Thus distinct points \(\varphi(s) \) in the orbit are in one-to-one correspondence with distinct cosets \(\varphi\text{stab}_G(s) \).

 Proof: