Algebra And Algorithms

- Factorization Of Polynomials
- Primality Testing
- Graph Isomorphism
- Matrix Multiplication
- Course Wrap-up

1. History: "Algebra" (Al Jabr) comes from a text by Al Khwarizmi ("Algorithm")
 - Names intertwined!!

- Remarkable Algorithms (to me most surprising) are algebraic
 - Greatest Common Divisor (Euclid)
 - Determinant (Gauss)
Aside: Determinant

- Formal Definition:
 1. \(\text{Sign}(\pi) = +1 \) if \(\pi \in S_n \) is even
 \[= -1 \] if \(\pi \in S_n \) is odd
 2. \(\text{Det}(M) = \sum_{\pi \in S_n} (-1)^{\text{Sign}(\pi)} \prod_{i=1}^{n} M_{i\pi(i)} \)

- \(M \in \mathbb{F}^{n \times n} \) is an n x n matrix over field \(\mathbb{F} \).

- Definition involves \(n! \approx (\frac{n}{e})^n \) summands.

- But can be computed in polynomial time.

- Contrast
 \(\text{Perm}(M) = \sum_{\pi \in S_n} \prod_{i=1}^{n} M_{i\pi(i)} \)
 for permanent
 \(\uparrow \)
 \(\uparrow \)
 No signs!

- Belief: \(\text{Perm}(M) \) requires \(\exp(n) \) time to compute
 \(\mathbb{P} \neq \mathbb{NP} \Rightarrow \text{Belief} \)
Polynomials + Algorithms

1. Addition: Takes $\Theta(n)$ time for adding two degree n polynomials.

2. Multiplication: Naively $O(n^2)$.
 - But slightly can do better: Karatsuba $O(n^{1.5})$.
 - Even better: $O(n \log n \log \log n)$ field operations over any field.

Essence of idea (over \mathbb{C})

Let w be 2^{2^n} root of unity.

Given $f, g \in \mathbb{F}[x] \Rightarrow \left< f(w^i) \right>_{i=1}^{2^n}$

$\text{FFT} \Rightarrow \left< g(w^i) \right>_{i=1}^{2^n}$

$O(n \log n)$ time $\downarrow \leftarrow O(n)$ time

$(f \cdot g) \in \mathbb{F}[x] \Leftarrow \left< (f \cdot g)(w^i) \right>_{i=1}^{2^n}$

FFT
Polynomials + Algorithms - 2

3) Interpolation: Given a_0, \ldots, a_n compute coeff. of
$f(a_0), \ldots, f(a_n)$ (deg $f < n$)

$O(n \log^c n)$ for some $c \leq 3$.

4) Multipoint Evaluation: Given coeff. of f & a_0, \ldots, a_n
compute $f(a_0), \ldots, f(a_n)$

$O(n \log^c n)$ for some $c \leq 3$

5) Division with Remainder: Given f, g compute
q, r with $\deg r < \deg g$ s.t.

$f(x) = q(x) \cdot g(x) + r(x)$

$O(n \log^c n)$

6) GCD: $O(n \log^c n)$

7) Factorization: $O(n^{1.5})$ roughly.

(\# Even polytime is non-trivial!)

(Field specific).
Factorization Over Finite Fields

Key Idea:

\[X^2 - X = \prod_{\alpha \in \mathbb{F}_2} (X - \alpha) \]

So if \(x^2 - ax + b = (x - \alpha)(x - \beta) \)

then \(\gcd(x^2 - ax + b, x^2 - x) = x^2 - ax + b \)

- But \((x^2 - x) = x(x^{\frac{q-1}{2}} - 1)(x^{\frac{q-1}{2}} + 1) \) \([q \text{ odd}] \)

- **Hopefully:**

\[\gcd(x^2 - ax + b, x^{\frac{q-1}{2}} - 1) \neq 1, x^2 - ax + b \]

- for typical polynomials w.p. \(\frac{1}{2} \) \(x^{\frac{q-1}{2}} - 1 \)

\(a \neq \frac{1}{2} (x - \beta) \) does not.

- To get all poly, factor

\((x - y)^2 + a(x - \delta) + b \) for random \(y \) of our choice

\[x^2 + a'x + b' \] roots \(\delta + \alpha, \delta + \beta \)

w.p. \(\geq \frac{1}{2} \) \((x - (\delta + \xi)) \mid x^{\frac{q-1}{2}} - 1 \) over \(\mathbb{F}_2 \)
Basis of factoring all kinds of polynomials

- Over rationals,
- Multivariate,
- Function fields.

One key notion:

\[F \xrightarrow{\text{field}} F[x]/\langle p(x) \rangle \text{ field} \]

\[\text{field} \xrightarrow{\text{field}} \left(\frac{F[x]}{\langle p(x) \rangle} \right)_{\text{field}} \]

Given factorization alg. for \(F[x] \) => Can get factorization alg. for \(K[x] \)

for either way to get \(K \)
Primality Testing

- Given $0 \leq N \leq 2^n$, compute determine if N is prime.

- 70's: [Rubin, Miller, Solovay-Strassen]:
 - Randomized poly(n) time algorithm to test primality.
 - But no "proof" of primality.

- 2003: [Agarwal, Kayal, Saxena]:
 - Deterministic algorithm for primality
 - Via Algebra!!

- Key Idea:

 \[
 \text{for } a \neq 0 \quad (x + a)^N \equiv x^N + a \pmod{N}
 \]

 \[
 \implies N \text{ is prime.}
 \]
* But how to check identity? taken \(\sim N = \exp(n) \) time

* Idea 1: Pick \(Q(x) \) of degree \(\sim (\log N)^2 \) at random. Verify

\[
(X + a)^N \equiv X^N + a \pmod{N, Q(x)}
\]

[Still randomized. No proofs of primality.]

* Idea 2: Pick \(Q(x) = x^r - 1 \) for \(r \approx (\log N)^3 \)

Final Algorithm:

```plaintext
for \( a = 1 \ldots (\log N)^2 \) do
    for \( y = 1 \ldots (\log N)^5 \) do
        Verify \( Q(x)\pmod{x^N + a} = (x+a)^N \pmod{N, x^r - 1} \)
    end
end

Accept if all tests accept.
```

* Key ingredient in analysis: \(Q[x] / (N, x^r - 1) \)
Graph Isomorphism

Given: \(G = (V, E) \quad E \subseteq V \times V \)

\(H = (W, F) \quad F \subseteq W \times W \)

are \(G \) and \(H \) isomorphic?

i.e. \(\exists \phi : V \rightarrow W \) 1-1

\(\text{s.t.} \quad (\phi(v), \phi(u)) \in F \iff (u,v) \in E \)

History: Long known to be in "NP"

- Not believed to be "NP-hard"
- But no polytime algorithms known.
 - Best till 2015: \(\sim 2^{\sqrt{n}} \)

- [Babai 2015]:\(O(n^{\text{log}^*n}) \) time algorithm
 - [Not poly but almost!]

Key Idea: Solve "String Isomorphism"
String Isomorphism:
- Given \(a, b \in \Sigma^n \) for finite \(\Sigma \),
 \(\exists \Pi_1, \ldots, \Pi_k \subseteq \Sigma_n \) generating group \(G \).
- Determine if \(\exists \Pi \subseteq G \) s.t.
 \[a \cdot \Pi = b \quad \forall i \in n \quad a_{\Pi(i)} = b_i \]

Easy: Graph Isomorphism \(\leq \) String Isomorphism.

Hard part: String Isomorphism in time \(O(n^{100n}) \).

- Lots of Group Theory

- New Algorithms in Group Theory

\[\text{Membership in Permutation Groups used heavily.} \]