CS 121: Lecture 13
Turing Equivalence & Universality

Madhu Sudan

https://madhu.seas.Harvard.edu/courses/Fall2020
Book: https://introtcs.org

The whole staff (faster response):. CS 121 Piazza
OnIy the course heads (S|OW€F): cs121.fall2020.course.heads@gmail.com

How to contact us {

Announcements:

« Advanced Sections: Josh Alman on Matrix Multiplication

* Midterms yet to be graded. Will post details on Piazza when read
 Homework 4 out today. Due in two weeks.

« Participation Survey done?
« Sign up for active participation here!

« Midterm Feedback Survey coming soon!
* Mandatory (5 points on homework 4.). Anonymous!
 Staff takes it seriously! (Be open — call out specific people, actions).

« Section 6 cycle starts today. Material in usual place!

Where we are:

Part I: Circuits:
Finite computation,
quantitative study

Part Il: Automata:
Infinite restricted computation,
quantitative study

Part lll: Turing Machines:
Infinite computation, qualitative study

Part IV: Efficient Computation:
Infinite computation, quantitative study

Part V: Randomized computation:
Extending studies to non-classical algorithms

Today:

« Two results to be aware of, and to use (heavily)?

* No proofs to know/remember.
« Proofs/sketches available in book.
« We will discuss. But suffices to know they exist!

« Result 1: Turing-Church Thesis
* Provable part: TMs as powerful as any high-level programming language.
« Usable part: To prove computability, suffices to give program in high-level lang.

* Result 2: 3 a Universal Turing Machine
« Takes as input description E(M) € {0,1}* of any Turing Machine, and x € {0,1}"
« OQOutputs M(x), the result computed by M on x (if M halts) — no output otherwise.

Recall Turing Machines

« (Barak, Definition 7.1):
« TM on k states and alphabet X 2 {0,1,>, ¢}

s given by 6: [k] X £ — [k] X 2 X Action,
where Action = {L,R,S,H}

L=Left, R=Right, S=Stay (don't move), H=Halt (done!!)

« QOperation:

Startin state 0, Tape T = Blxy ... x,,—1 PP ..., Head (i) at x,
General step: current state q ; input symbol o

Let 6(q,0) = (r,t,X) = Write t on tape (overwriting o) ; Move to state r;
Move Head left (i «< i — 1) if X = L; right if X = R; don't move if X = S.

Repeat General step until X = H

Exercise Break 1 Twrivg M =/ Nr vandom
At
* Pick a high-level language

 |dentify features that are very different from Turing Machines. L

 Discuss differenf&z’?
- Ooom! R =

My list of differences:

* General programming languages allow multiple, multidimensional
arrays!
* TMs have one array : Tape[0, =]

« Allow random” (arbitrary) access into arrays/memory.
- Can look at A[i] in one step and then A[i? + 10i + 5] or even A|A[i]] in next step
« TMs: If this step involves Tape[i]
then next can only involve {Tape|i — 1], Tape|i], Tape[i + 1]}

» Rest? Syntactic Sugar
« Sophisticated constructs: loops, cases, recursion
 Data structures: Lists, Queues, Stacks ...

Dealing with the differences - 1

. | A %@L}D

Deal with by brute force.
Store index on Tape. Compute new index and overwrite on tape.

Make a linear pass of tape to recover A[i] \ \Aﬂ N Jf\&]\j
(Quadratic slowdown in run time immediately) | - e e e e
—— = — ., \\/ o J
] el [- Aw)] O T
—> A A \E /) 1 >
N SR = ABI=C

;\ Q'>

Dealing with the differences - 2
° D

0.2)

« Multiple Arrays+Indices
Same solution.

« Multi-dimensional Arrays
(Draw this out)

« Consequence: If algorithm A runs in time T with high-level program, can be
implemented to run in time 0(T#) on Turing Machine.

« Details in Barak: Chapter 8

Road Map of details

e TMs

* Define NAND-TMs. Show equivalent to TMs.
« Just a program version of TMs. Like NAND circuits vs. NAND-CIRC programs.

« Define NAND-RAMs. Show equivalent to NAND-TMs.

» Allows loops and general indices.
« This is the crucial step.

* Define RAM machines. Show equivalent to NAND-RAMs
« This what most compilers use to compile “"down” from the high-level spec.
« Equivalence straightforward.

"HOCAEIT" Theorem

Have Our Cake And Eat It Too

« Recall definition of Computable.
F:{0,1}* - {0,1}" is computable iff it is computable by TM.

* Equivalence (HOCAEIT) Theorem: TMs are equivalent to High-Level
Languages.

* Having our cake: To prove F is computable only need to exhibit
algorithm in high-level language.

» Eating it: To prove F is not computable only need to rule out TMs.

Church-Turing Thesis

« “Every function that is computable by physical means is (Turing
Machine) computable.”

« Some (made-up?) history:

Church defined computability with A-calculus

Turing + Church compared notes and agreed their models were equivalent.
Many other models were shown to be equivalent.

Turing went on to do a postdoc under von Neumann.

Von Neumann later introduced the “stored program architecture” of computer to
the computer architects of the time. Led to the first physical computers.

Conway invented Game of Life ... simplest Turing Equivalent model?

Universality

e “One machine to rule them all”

* “There exists a single program/algorithm/TM that can run all other
programs/algorithms/TMs”

* Formally:

1. There exists a way to encode Turing Machines so that they can be (part of) input
to other Turing Machines.

\

2. The exists a universal machine U that takes as input a pair (M, x) and outputs
UM, x) = M(x) (if M halts on x)

Part 1. Encoding Turing Machines

* Should be familiar to us:

* Recall M specified by Z 2 {>,0,1,¢}, k, §: |k] XZ - |k] X2 X {L,R,S,H}
First encode Es: X — {0,1}¢; E.: {L,R,S,H} = {0,1}?, E,: [k] - {0,1}l08k
SO J: {0’1}log k+c _, {O’l}log k+ c+2

- Encoding of M = Enc(c, k, §(0,000),5(0,001) ...5(k — 1,111))

 Where Enc: N x N x ({0,1}l0g k+c+2)kz — {0,1}* is some 1-1 function.

e Encoding of M = Enc(c, k, §)

Part 2: Interpreting the Encoding

 Definition: Configuration of a machine M on input x after t steps of
computation, denoted C;, is the “full state of the computation”:

- Current state of Turing Machine ToT W m o il 01 | \@
- Current contents of the Tape -

e Current location i of Tape head N

 Core of Universal TM U
» "Universal-Stepper”: (M, C;) » (M, C¢41)

Definition: Configuration of a machine M on input x

Exe rC | S e B re a |< 2 after t steps of computation, denoted C;, is the “full

state of the computation”:
. Current state of Turing Machine

. Current contents of the Tape
. Current location i of Tape head

» Discuss how to organize the information (M, C;) on U's tape:

* Describe (in English) steps needed to compute (M, C;) = (M, C¢4)

Initially: Make space for (current state, head location, current symbol) SM@ i) Y
C/)

In each round:

« fetch contents of Tape[head location] and update

« Look at the code of the TM to determine next state, next location, symbol to write.
* Write the “symbol to write” at current location.

« Update "head location”

Conclusion: Lots of string manipulation (string copy), adjust ... nothing profound.

Summary of Lecture:

* Turing Equivalence and Turing-Church Thesis:
« No proofs to remember. But encouraged to read the text (Chapter 8)
* Do remember the HOCAEIT theorem! “Do not leave home without it

« To prove computability, give algorithm in high-level language.
« To prove non-computability, rule out TMs.

. WTuring machines: |

* Single machine to simulate all others:

« Similar to circuits.
« Big difference: Simulates larger machines over larger alphabets!!!!

Next Lecture

* Uncomputabllity.

« Some functions are not computable no matter how much time we are willing to
take!

