
CS 121: Lecture 13
Turing Equivalence & Universality

Madhu Sudan

https://madhu.seas.Harvard.edu/courses/Fall2020

Book: https://introtcs.org

Only the course heads (slower):  cs121.fall2020.course.heads@gmail.com{How to contact us
The whole staff (faster response): CS 121 Piazza



Announcements:
• Advanced Sections: Josh Alman on Matrix Multiplication
• Midterms yet to be graded. Will post details on Piazza when ready 
• Homework 4 out today. Due in two weeks.
• Participation Survey done? 
• Sign up for active participation here!

• Midterm Feedback Survey coming soon!
• Mandatory (5 points on homework 4.). Anonymous! 
• Staff takes it seriously! (Be open – call out specific people, actions).

• Section 6 cycle starts today. Material in usual place!



Where we are:
Part I: Circuits: 
Finite computation, 
quantitative study

Part II: Automata: 
Infinite restricted computation, 
quantitative study

Part III: Turing Machines: 
Infinite computation, qualitative study

Part IV: Efficient Computation: 
Infinite computation, quantitative study

Part V: Randomized computation: 
Extending studies to non-classical algorithms

9
9



Today:

• Two results to be aware of, and to use (heavily)?
• No proofs to know/remember. 
• Proofs/sketches available in book. 
• We will discuss. But suffices to know they exist!

• Result 1: Turing-Church Thesis
• Provable part: TMs as powerful as any high-level programming language.
• Usable part: To prove computability, suffices to give program in high-level lang.

• Result 2: ׌ a Universal Turing Machine
• Takes as input description ܧ ܯ א 0,1 כ of any Turing Machine, and ݔ א 0,1 כ

• Outputs ܯ ݔ , the result computed by ܯ on ݔ (if ܯ halts) – no output otherwise.



Recall Turing Machines
• (Barak, Definition 7.1): 
• TM on ݇ states and alphabet ȭ ل 0,1,Z,߶

is given by ߜ: ݇ × ȭ ՜ ݇ × ȭ × Action, 
where Action = ,ܴ,ܮ ܪ,ܵ
• Halt (done!!)=ܪ ,Left, ܴ=Right, ܵ=Stay (don’t move)=ܮ

• Operation: 
• Start in state 0, Tape ܶ = …߶߶߶௡ିଵݔ…଴ݔ� , Head (݅) at ݔ଴
• General step: current state ݍ ; input symbol ߪ:

Let ߜ ߪ,ݍ = ,ݎ ߬,ܺ ֜ Write ߬ on tape (overwriting ߪ) ; Move to state ݎ; 
Move Head left (݅ ՚ ݅ െ 1) if ܺ = ܺ right if ;ܮ = ܴ; don’t move if ܺ = ܵ.

• Repeat General step until ܺ = ܪ



Exercise Break 1

• Pick a high-level language
• Identify features that are very different from Turing Machines.
• Discuss differences after the break.

Turin M →N'arffd0④
t

Ocaml →ReursqfAr①
-

'

Python → Classes
,
Obzcits (Type cheeking)

- Python → Dictionaries
sinners



My list of differences:

• General programming languages allow multiple, multidimensional 
arrays!
• TMs have one array : Tape[0,λ]

• Allow ``random’’ (arbitrary) access into arrays/memory.
• Can look at ܣ[݅] in one step and then ܣ ݅ଶ + ͳͲ݅ + 5 or even ܣ ܣ ݅ in next step
• TMs: If this step involves Tape[݅]

then next can only involve Tape ݅ െ 1 , Tape ݅ , Tape[݅ + 1]

• Rest? Syntactic Sugar
• Sophisticated constructs: loops, cases, recursion
• Data structures: Lists, Queues, Stacks …

I



Dealing with the differences - 1

• Random access:
• Deal with by brute force. 
• Store index on Tape. Compute new index and overwrite on tape.
• Make a linear pass of tape to recover ܣ[݅]
• (Quadratic slowdown in run time immediately)

A G-EID)

i¥¥
in
.

¥t¥I

AEd = ?



Dealing with the differences - 2

• Multiple Arrays+Indices
• Same solution.

• Multi-dimensional Arrays
• (Draw this out)

• Consequence: If algorithm A runs in time T with high-level program, can be 
implemented to run in time ܱ ܶଶ on Turing Machine. 

• Details in Barak: Chapter 8

i



Road Map of details

• TMs
• Define NAND-TMs. Show equivalent to TMs.
• Just a program version of TMs. Like NAND circuits vs. NAND-CIRC programs.

• Define NAND-RAMs. Show equivalent to NAND-TMs.
• Allows loops and general indices.
• This is the crucial step.

• Define RAM machines. Show equivalent to NAND-RAMs
• This what most compilers use to compile “down” from the high-level spec.
• Equivalence straightforward.



“HOCAEIT” Theorem

• Recall definition of Computable.
• :ܨ 0,1 כ ՜ 0,1 כ is computable iff it is computable by TM.

• Equivalence (HOCAEIT) Theorem: TMs are equivalent to High-Level 
Languages.

• Having our cake: To prove ܨ is computable only need to exhibit 
algorithm in high-level language.

• Eating it: To prove ܨ is not computable only need to rule out TMs.

Have Our Cake And Eat It Too



Church-Turing Thesis

• “Every function that is computable by physical means is (Turing 
Machine) computable.”

• Some (made-up?) history:
• Church defined computability with ߣ-calculus
• Turing + Church compared notes and agreed their models were equivalent.
• Many other models were shown to be equivalent.
• Turing went on to do a postdoc under von Neumann.
• Von Neumann later introduced the “stored program architecture” of computer to 

the computer architects of the time. Led to the first physical computers.
• Conway invented Game of Life … simplest Turing Equivalent model?



Universality

• “One machine to rule them all”
• “There exists a single program/algorithm/TM that can run all other 

programs/algorithms/TMs.”

• Formally:
1. There exists a way to encode Turing Machines so that they can be (part of) input 

to other Turing Machines. 
2. The exists a universal machine ܷ that takes as input a pair (ܯ, (ݔ and outputs 

ܷ ,ܯ ݔ = (ݔ)ܯ (if ܯ halts on ݔ)

l



Part 1: Encoding Turing Machines

• Should be familiar to us:
• Recall ܯ specified by ȭ ل >, 0,1,߶ :ߜ ,݇ , ݇ × ȭ ՜ ݇ × ȭ × ,ܴ,ܮ} {ܪ,ܵ
• First encode ܧஊ: ȭ ՜ 0,1 ௖ :஺ܧ ; ,ܴ,ܮ ܪ,ܵ ՜ 0,1 ଶ, ܧ௞: ݇ ՜ 0,1 ୪୭୥ ௞

so ߜ: 0,1 ୪୭୥ ௞ା ௖ ՜ 0,1 ୪୭୥ ௞ା ௖ାଶ

• Encoding of ܯ = Enc ܿ,݇, ߜ 0,000 ߜ, 0,001 … ߜ ݇ െ 1,111

• Where Enc:Գ × Գ × 0,1 ୪୭୥ ௞ା௖ାଶ ௞ଶ೎ ՜ 0,1 כ is some 1-1 function.
• Encoding of ܯ = Enc(ܿ,݇, (ߜ



Part 2: Interpreting the Encoding

• Definition: Configuration of a machine ܯ on input ݔ after ݐ steps of 
computation, denoted ܥ௧ ,  is the “full state of the computation”:
• Current state of Turing Machine
• Current contents of the Tape
• Current location ݅ of Tape head

• Core of Universal TM ܷ
• “Universal-Stepper”: ܥ,ܯ௧ հ ௧ାଵܥ,ܯ

1t#H

.•



Exercise Break 2

• Discuss how to organize the information (ܥ,ܯ௧) on ܷ’s tape:

• Describe (in English) steps needed to compute ܥ,ܯ௧ հ ௧ାଵܥ,ܯ

Definition: Configuration of a machine ܯ on input ݔ
after ݐ steps of computation, denoted ܥ௧,  is the “full 
state of the computation”:

• Current state of Turing Machine
• Current contents of the Tape
• Current location ݅ of Tape head



'¥i

-

at -
→q.

I -10¥
→ 9g 2

y
- l

;
I

t⑨Hlb#l



|9tIYo----§T

a*÷go--a¥a+Skit
,
Yi ) -- ( htt, ,5¥s )



Computing ܥ,ܯ௧ հ ௧ାଵܥ,ܯ

• Initially: Make space for (current state, head location, current symbol)
• In each round: 

• fetch contents of Tape[head location] and update
• Look at the code of the TM to determine next state, next location, symbol to write.
• Write the “symbol to write” at current location.
• Update “head location”

• Conclusion: Lots of string manipulation (string copy), adjust … nothing profound.

>turnip
E

b'i

qq.it ?



Summary of Lecture:

• Turing Equivalence and Turing-Church Thesis:
• No proofs to remember. But encouraged to read the text (Chapter 8)
• Do remember the HOCAEIT theorem! “Do not leave home without it.”

• To prove computability, give algorithm in high-level language.
• To prove non-computability, rule out TMs.

• Universal Turing machines:
• Single machine to simulate all others:

• Similar to circuits.
• Big difference: Simulates larger machines over larger alphabets!!!!

-



Next Lecture

• Uncomputability.
• Some functions are not computable no matter how much time we are willing to 

take!


