CS 121: Lecture 14 Uncomputability

Madhu Sudan

https://madhu.seas.Harvard.edu/courses/Fall2020

Book: https://introtcs.org

How to contact us The whole staff (faster response): <u>CS 121 Piazza</u> Only the course heads (slower): <u>cs121.fall2020.course.heads@gmail.com</u>

Announcements:

- Midterm 1 graded. Solutions to be posted today-ish.
- Homework 4 due in 9 days.
- Thanks for participating in Midterm Feedback Survey.

Where we are:

- Finiteness and Infinities
- Cantor: #Reals > #Rationals (Uncountable vs. Countable sets)
- Uncomputable function by counting
- Explicit Uncomputable function: HALT CANTOR

Background: Finiteness & Infinities $\exists E: \mathbb{Z} \to \mathbb{Z}^2$; $\mathcal{P}_{\text{rod}}: \mathbb{Z} \to \mathbb{Z}_{2^{\circ}}$ • Back prior to 1800s: Think '

- - Understood finite vs. infinite •
 - Set S is finite if $\exists n \in \mathbb{N}$ s.t. $\exists 1-1$ function $E: S \rightarrow [n]$
 - Infinite otherwise. •
 - Example infinite sets: $\mathbb{N}, \mathbb{Z}, \mathbb{Z}^2, \mathbb{R}, \mathbb{R}^{10}$
 - Thinking then: All of same size? No point comparing? ٠
- ..., Cantor '1800s:
 - $|S| \leq |T| \Leftrightarrow \exists 1 1 E: S \rightarrow T$: Applies also to infinite sets.
 - Examples: $|\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}| = |\mathbb{Z}^2| = |\{0,1\}^*|$ ullet
 - Thm: No 1-1 function $E: \mathbb{R} \to \mathbb{Z}$ exists. ($|\mathbb{Q}| < |\mathbb{R}|$) ullet

Glossary of terms:

F:Z

- $\mathbb{N} =$ Natural numbers
- $\mathbb{Z} =$ Integers
- $\mathbb{Q} = \text{Rationals}$
- \mathbb{R} = Reals
- $[0,1] = \{ x \in \mathbb{R} | 0 \le x \le 1 \}$
- $E: A \rightarrow B$ 1-1 (aka injective): $E(a) = E(a') \Rightarrow a = a'$
- $F: B \rightarrow A$ onto (aka surjective): $\forall a \in A \exists b \in B \ s.t.F(b) = a$

• Doesn't! Hence *F* can't exist!

Uncomputable functions by counting

- Q1: How many computable functions are there?
 - Claim: At most $|\{0,1\}^*| \in Since Thring muchines Can be$ $Why? described with finite # of bits <math>\{$ ullet
- Q2: How many functions $f: \{0,1\}^* \rightarrow \{0,1\}$ Claim: |[0,1]|
- Put together: |R| < |ALL|, where

 $R = \{F: \{0,1\}^* \rightarrow \{0,1\} | F \text{ is computable}\};$ $ALL = \{F: \{0,1\}^* \to \{0,1\}\}$

• $\Rightarrow \exists F \in ALL \setminus R$

Exercise Break 1

Give direct proof a la Cantor that $|\{0,1\}^*| < ALL \stackrel{\text{def}}{=} \{f: \{0,1\}^* \rightarrow \{0,1\}\}$ 00 001 00 Rows = computable functions Row = description of Thring machines 50 -) numero

Rows of matrix are
$$50,13^{*} \leftarrow y \rightarrow 12^{*}$$

Columno of matrix are $50,13^{*} \leftarrow y \rightarrow 12^{*}$
Entry of matrix at row y column x Diag: $20,13^{*} \rightarrow 50,13^{*}$
: if $y = 0,000 \text{ matrix}$ of Turing Machine M
: if $y = 0,000 \text{ matrix}$ of Turing Machine M
: if $y = 0,000 \text{ matrix}$ of Turing Machine M
: if $y = 0,000 \text{ matrix}$ of 1000 matrix M
: if $y = 0,000 \text{ matrix}$ of 1000 matrix M
: if $y = 0,000 \text{ matrix}$ of 1000 matrix M
: if $y = 0,000 \text{ matrix}$ of 1000 matrix M
: if $y = 0,000 \text{ matrix}$ of 1000 matrix M
: if $y = 0,000 \text{ matrix}$ of 1000 matrix m
: if 1000 matrix of 1000 matrix m
: if 1000 matrix of 1000 matrix m
: if 1000 matrix of 1000 matrix m
: if 1000 matrix of 1000 matrix m
: if 1000 matrix of 1000 matrix m
: if 1000 matrix of 1000 matrix m
: if 1000 matrix of 1000 matrix m
: if 1000 matrix of 1000 matrix m
: if 1000 matrix of 1000 matrix m
: if 1000 matrix of 1000 m m
: if 1000 matrix of 1000 m m
: if 1000 m m

Explicit Uncomputable Functions?

- Motivation: Are "uncomputable" functions of interest to us?
 - Maybe they exist but can't even be described.
 - (#describable functions = countable! By definition!)
 - If they can't be described why would we be interested in computing them?
 - Turns out: Many natural problems uncomputable.
 - As we will see, the following (very describable!) problem is uncomputable.
- HALT(M, x) = 1 if M halts on input x

= 0 otherwise

• Will see in next lecture: HALT is uncomputable

An Explicit Uncomputable Function

000

 \mathcal{O}

Kovideo

0

(00)

1)

00

h 11

 \bigcirc

DO

Y

2

- Cantor inspired by the diagonalization proof
- Idea:
 - columns = $\{0,1\}^*$ = inputs
 - rows = $\{0,1\}^* \supseteq$ Turing machines
 - *M*th row, *x*th column = (M, x)
 - If row not TM fill with 0s.
 - If *M* does not halt on *x* enter 0. $\gamma \rightarrow \bigcirc^{\vee}$
 - Consider function that computes diagonal entries and flips them.
- Cantor $(M) = \overline{M(M)}$

Exercise Break 2

• Prove Cantor is uncomputable, where $Cantor(M) = \overline{M(M)}$

- Say
$$\exists$$
 turing machine that computes Cantor
- Say χ is oncoding of this Turing Machine
 $\forall m \qquad \chi(m) = Gantor(m)$
What is $\chi(\chi)$?
 $\chi(\chi) = Gantor(\chi) = \overline{M(m)} = \chi(\chi)$

Proof:

- Assume for contradiction that Turing Machine A computes Cantor
- Then we have $\forall M \ A(M) = \overline{M(M)}$
- So $A(A) = \overline{M(M)}|_{M=A} = \overline{A(A)}$ Contradiction!!

Next Lecture: More Uncomputability

- Uncomputability of new problems
 - HALT, HALT_ON_ZERO
- Two proof techniques
 - Using presumed (non-existent) Turing Machine
 - REDUCTIONS!!!
 - Using a hard problem to show other problems are also hard.