
CS 121: Lecture 15
More Uncomputability

Madhu Sudan

https://madhu.seas.Harvard.edu/courses/Fall2020

Book: https://introtcs.org

Only the course heads (slower): cs121.fall2020.course.heads@gmail.com{How to contact us
The whole staff (faster response): CS 121 Piazza

Announcements:
• Advanced Section: Nada Amin: Uncomputability & PL Design
• Thanks for feedback.
• Confirm – are breakouts no good?
• TFs scouring the feedback also!

• Sections: Week 7 cycle start, material on canvas (as usual).

Where we are:
Part I: Circuits:
Finite computation,
quantitative study

Part II: Automata:
Infinite restricted computation,
quantitative study

Part III: Turing Machines:
Infinite computation, qualitative study

Part IV: Efficient Computation:
Infinite computation, quantitative study

Part V: Randomized computation:
Extending studies to non-classical algorithms

9
9

Review of last lecture

• # of functions = uncountable
• # of computable functions = countable.
• So … ׌ an uncomputable function
• Further Cantor ܯ = (ܯ)ܯ uncomputable

= 11121 -

= 180,13*1 = INI

f : so ,
13% So , B

This lecture (& next)

• Uncomputability much more pervasive
• “Intent of a program” uncomputable

Today: HALT is uncomputable

• Definition: HALT(M,x) = 1 if M halts on input x; 0 otherwise.

• 2 Proofs:
• Diagonalization
• Reduction from CANTOR

-

Hatt :{0,13*+80,13*-720,13
T T

M X

F "" E :{o ,B*xEo ,
13%90,13%8,18

use
"

prefix - free
encodings

"

Proof 1 (Direct Diagonalization):

• Let ܣ be a TM that solves HALT, i.e., ܯ׊, ,ݔ ܣ ,ܯ ݔ = HALT ,ܯ ݔ

• Consider the following Algorithm (which has equivalent TM – HOCAEIT)

• Note: We are defining ܤ but not running it! It does not have to halt (in
fact crucial that it does not on some inputs.

• Key point: ܤ is a TM.

ܤ ݖ :
Compute ݖ)ܣ, (ݖ
If ܣ ,ݖ ݖ = 1 then loop forever
Else Halt and output 1.

Proof 1 (Direct Diagonalization):

• Let ܣ be a TM that solves HALT, i.e., ܯ׊, ,ݔ ܣ ,ܯ ݔ = HALT ,ܯ ݔ

• Consider ܤ

• What is ܣ ܤ,ܤ ?
• Case 1: ܣ ܤ,ܤ = 1 ֜ (by correctness of ܣ) ܤ halts on input ܤ

֜ (by construction of ܤ) ܤ loops forever ֜ Contradiction.

ܤ ݖ :
Compute ݖ)ܣ, (ݖ
If ܣ ,ݖ ݖ = 1 then loop forever
Else halt and output 1.

€
BCB) ? 154379

Proof 1 (Direct Diagonalization):

• Let ܣ be a TM that solves HALT, i.e., ܯ׊, ,ݔ ܣ ,ܯ ݔ = HALT ,ܯ ݔ

• Consider ܤ

• What is ܣ ܤ,ܤ ?
• Case 1: ܣ ܤ,ܤ = 1 ֜ (by correctness of ܣ) ܤ halts on input ܤ

֜ (by construction of ܤ) ܤ loops forever ֜ Contradiction.
• Case 2: ܣ ܤ,ܤ = 0 ֜ (by correctness of ܣ) ܤ does not halt on input ܤ

֜ (by construction of ܤ) ܤ halts on ܤ (outputs 1) ֜ Contradiction!

ܤ ݖ :
Compute ݖ)ܣ, (ݖ
If ܣ ,ݖ ݖ = 1 then loop forever
Else halt and output 1.

113437

A
BIB)

Thoughts:

• Very slick!
• But just an implementation of Diagonalization. (Note ܤ ܤ ܣ; ,ݖ ݖ …)
• Food for thought: What happens if ܣ does not always halt but correctly

determines HALT(ܯ, (ݔ on inputs where it halts?

Godel 's Incompleteness
-

Either PL is not capable of executing every

computable function or ,
it can not be cheeked for

HALT .

Proof 2: (General) Reduction
• Reductions: Key theme in Computer Science

• Function ܨ reduces to ܩ ܨ) ൑ (ܩ if algorithm for ܩ implies algorithm for ܨ
• How to prove it?

• Build algorithm for ܨ using Alg-G as subroutine.
• Alg-F correctly computes ܨ if Alg-G correctly computes ܩ

• Usual Interpretation: Positive:
• Somebody builds tools for mean, median; I just invoke it on my data with wrapper.

• Our Use: Negative:
• Start with ܨ known not to have algorithm. Infer ܩ does not!

• Do you remember any so far in this course?

Alg-ܨ ݔ :
Blah Blah Blah
ݖ = Alg-(ݕ)ܩ

Blah blah blah

" clearly only way to
compute h is by

computing
F
"

M
DO NOT
USE

Example: HALT uncomputable

• Recall CANTOR uncomputable.
• Will use this to prove HALT uncomputable.
• So what do we need to do?

Alg-ܨ ݔ :
Blah Blah Blah
ݖ = Alg-(ݕ)ܩ

Blah blah blah

G -- HALT

F- =
CANTOR

{ Half is nncomph

t.IE?:::m::::*Ieitaitisom9nI#

Example: HALT uncomputable

• Recall CANTOR uncomputable.
• Will use this to prove HALT uncomputable.
• So what do we need to do?

Alg-CANTOR ݔ :
Blah Blah Blah
ݖ = Alg-HALT(ݕ)

Blah blah blah

ALG-CANTOR

• Recall CANTOR ܯ = (ܯ)ܯ

• Claim 1: Alg-CANTOR always halts if Alg-HALT correct.
• Claim 2: Alg-CANTOR correctly computes CANTOR.

• Claim 1+Claim 2: Alg-CANTOR computes (the uncomputable function) CANTOR
if Alg-HALT exists ֜ Alg-HALT does not exist ֞ HALT uncomputable.

Alg-CANTOR ܯ :
ܾ ՚ Alg-HALT(ܯ,ܯ)
If ܾ = 0 output 1
Else run ܯ on ܯ and let output be ܿ

Output ҧܿ

What did we prove?

• CANTOR ൑ HALT ? Or HALT ൑ CANTOR?

Compntableseanr@ICCANl0RfHALTJ-n.com
portable < Half

(Basic) Reduction

• For many problems we will use a very basic reduction (even simpler
than CANTOR ൑ HALT)

Alg-F ݔ :
ݕ = (ݔ)ܴ
݊ݎݑݐܴ݁ Alg-G(ݕ)

Example:

• ܧ ܯ = 1 ֞ ,ݔ׊ ܯ ݔ = 0 or ܯ does not halt on ݔ

• HALT ൑ ܧ

Alg-HALT ,ܯ ݔ :
Define ܯ௫ as follows:

݊ݎݑݐܴ݁ Alg-E(ܯ௫)

௫ܯ ݖ : Ignore ݖ,
output 1 if ܯ halts on ݔ
output 0 o.w.

-

72 . M(2) =/

O

Section + Next Lecture

• More Uncomputability + Reductions
• HALT-ON-ZERO

• H-O-Z(M) = 1 if ܯ accepts “” and 0 otherwise.
• Moral: It is not the infinity of inputs that makes HALT hard!

• Rice’s theorem
• Every non-trivial semantic property of algorithms is uncomputable!

