CS 127 Lecture 17
Efficient Computation: P

Madhu Sudan

https://madhu.seas.Harvard.edu/courses/Fall2020
Book: https://introtcs.org

The whole staff (faster response):. CS 121 Piazza
OnIy the course heads (S|OW€F): cs121.fall2020.course.heads@gmail.com

How to contact us {

Announcements:

* 121.5: Bjorn Poonen: Uncomputability in Number Theory
Why is x> + y3 + z3 = 33 an unsolved equation (over Z)?

» Sections: Week 8 cycle start, material on canvas (as usual).

 Homework 4 due today.

 Homework 5 out. Due in 14 days. -\
\
Ao A 2 ARCAA
T \3/-
N I
Ra

« Make sure to vote. (Lecture absence excused — but must catch up !!)

Where we are:

Part I: Circuits:
Finite computation,
quantitative study

Part Il: Automata:
Infinite restricted computation,
quantitative study

Part lll: Turing Machines:
Infinite computation, qualitative study

Part IV: Efficient Computation:
Infinite computation, quantitative study

Part V: Randomized computation:
Extending studies to non-classical algorithms

Review of course so far

 Circuits:

27’1

-) Some functions require this (by

« Compute every finite function, with size O (
counting). Compute no infinite function.

* Finite Automata:
» Compute some infinite functions. Do not compute a lot. “Pumping Lemma”
(Pigeonhole Principle.)
* Turing Machines:

« Compute everything computable! (By definition? By thesis? By lack of evidence
to the contrary)

« There exist uncomputable functions: HALT ... Rice ...

Today

e Defining Running Time

* Time Complexity Classes: P and EXP

« TM < RAM time

* Time efficient Universal Simulation + Time Hierarchy Theorem

« Extended Turing-Church Thesis

» Efficiency for Circuits: P/q1y

Running time

Time = #TM State Transitions.

Defn: F:{0,1}* — {0,1}* is computable in time T (n) if there exists a TM
Mg that on every input x € {0,1}*, halts after at most T(|x|) transitions
and with output F(x) on tape.

“Best algorithm” + “Worst input” (W) \j
Sk

Running time

« Time = #TM State Transitions.

« Defn: F:{0,1}* — {0,1}* is computable in time T'(n) if there exists a TM M
that on every input x € {0,1}*, halts after at most T(|x|) transitions and with
output F(x) on tape.

« "Best algorithm” + “Worst input”

e Do conventions matter?

* YES: E.g. F(x) = 0: Time complexity depends on output convention
« NO: Same up to additive factor of O(|x| + |F(x)|)

* Does TM type matter? #tapes? #heads?
* YES: E.g., Palindrome?

« NO: But only up to polynomial factors. F computable in time T (n) with k-tape machine
= F computable in time 0(T(n)?%) with our (standard) model.

RAM Model + Time Yoo Access Mimory

« Common model for algorithm analysis: RAM model + Time.

—)
-(RAI\/I Model: @) T e
* Deals with “word”-sized integers in 1 step. (i +j, i * j, A[i])
ey - . '\”./ —
 Has built in arrays and allows “random access”. N —|
* Runtime Ty (n)“ measures # RAM operations @

T

* Usual algorithm run times stated in this model)
e
« "Sorting n words takes O(nlogn) time” @ 7 +/
« "Palindrome detection takes O(n) time”

» Theorem: TIME(T(n)) € TIMEgay(0(T(n)) € TIME(O(T(n)*))
* Food for thought: Is P = Pram? IS EXP = EXPray?

Time Hierarchy Theorem

« Recall Size Hierarchy Theorem for circuits.
If s;(n) sufficiently smaller than s, (n) sufficiently smaller than 2" /n ...

Then SIZE(s;(n)) & SIZE(s,(n))
“More is more”) (

 Theorem (13.9): For nice functions T(n), - |
TIMEgam(T(n)) & TIMEgam (T (n) logn)

 Corollaries:
TIME(T(n)) € TIME((T(n) logn)*)

pep

Proof of Time Hierarchy Theorem

« Two ingredients: \g//\u\L
(- Timed Universal Turing Machine (Timed RAM Algori : (ﬂ"ﬂ\?\’é‘e)}

Diagonalization L e\ WN\rolnn) ‘\g)
E\/L\L(M,ﬂ = nx e\
* Timed Universal Turing Machine: — oL

Let TIMEDEVAL(M, x,17) = 1 & M halts in < T steps on x and outputs 1

TheMmputable In time 0(|M|C - T) on RAM. 'W\\ _ Qw\%&\:

Proof omitted.

Corollary: TIMEDEVAL computable in time O(T*) on some TM! Dg Ww&

This is the “Timed Universal TM". b

O Gy T4 D M.

Proof of Time Hierarchy Theorem

* Timed Universal Turing Machine:
+ Let TIMEDEVAL(M,x,17) =1 &
M halts in <

¢ TWO |ng redlentS T steps on x and outputs 1

* Theorem: TIMEDEVAL computable

« Timed Universal Turing Machine (Timed RAM Algorithm): in time O(M® - T) on RAM.
* Corollary: TIMEDEVAL computable

o Diagona“zation in time O(T*) on some TM!

» Diagonalization:
« CANTOR;(M,x) = TIMEDEVAL(M, (M, x), 1Tloglogx) if |M| < logloglog |x]|
« Claim 1: CANTOR computable in time O(T log|x|) on RAM
e Claim 2: CANTOR not computable in time O(T) on RAM

* Proof: Suppose Mqanror cOmputes it in O(T) time. Then for sufficiently long |x|
Mcantor Mcantor, x) = TIMEDEVAL(M¢antor, (Mcantor, X), 17108108 %) = My nror (Mcantor, X)

 |In the text: HALT;(M,x) = 1 iff M halts in T steps on input x

Break: Think apout CANTOR

CANTOR (M, x) = TIMEDEVAL(M, (M, x), 1T-loglogx) if |M| < logloglog|x|
Claim 1: CANTOR; computable in time O(T log|x|) on RAM

Claim 2: CANTOR; not computable in time O(T) on RAM

Proof: Suppose M ,nTor COMputes it in O(T) time. Then for sufficiently long | x|

Mcantor Mcantor, x) = TIMEDEVAL(Mcantor, (Mcantor, X), 17108108 X) = My nror (MeanTor, X)

* Whatis x doing?
 Why do we have the T.log log x?
« Why |M| <logloglogx ?

Solution to “Break: Think apout CANTOR”

« CANTOR;(M,x) = TIMEDEVAL(M, (M, x), 1T-loglogx) if |M| < logloglog|x]|
* Claim 1: CANTOR; computable in time O(T log|x|) on RAM

* Claim 2: CANTOR; not computable in time O(T) on RAM

* Proof: Suppose M 4ntor cOmputes it in O(T) time. Then for sufficiently long | x|

Mcantor Mcantor, x) = TIMEDEVAL(Mcantor, (Mcantor, X), 17108108 X) = My nror (MeanTor, X)

« Whatis x doing? (Need long inputs to make algorithms fail!)

 Why do we have the T.log log x?

* Need to give TIMEDEVAL C.T time for arbitrarily large C. (or else final equality need not
hold).

« Do it by giving it T.log log x time!
 Why |M| <logloglogx ?

« May need O(|M|¢ - T) time to universally simulate M for T steps — so needed for Claim 1.

Complexity Classes: P and EXP |
e v

Important: Classes always focus on Boolean Problems!!!! N — 9%

e Definition: BF:{0,1}* — {0,1} is in P if BF computable in time 0(n°) for
some constant c.

« Definition: BF:{0,1}* — {0,1} is in EXP if BF computable in time 20"
for some constant c

- Definition: TIME(T(n)) =
{BF:{0,1}* —» {0,1} | BF computable in time T'(n)}

 Note: Conventions+Models don’t matter for P, EXP!
* P # EXP (why?)

Boolean Problems

* Recall: May want to compute F:{0,1}* - {0,1}"
« But complexity captured by BF:{0,1}* x {0,1}* = {0,1}
* BF(x,i) ¥ F(x);
- F computable in time T(n) = BF computable in time 0(T(n))
 BF computable in time T'(n)
= F computable in time O(m - T(n)) (m = output length)
= F computable in time 0(T(n)?%)

F polynomial time computable & BF € P
F exponential time computable & BF € EXP

 Exercise: Define the Factoring problem. What does BFactoring look like?

Time Hierarchy Theorem

« Recall Size Hierarchy Theorem for circuits.
If s;(n) sufficiently smaller than s, (n) sufficiently smaller than 2" /n ...
Then SIZE(s;(n)) & SIZE(s,(n))
"More is more”

 Theorem (13.9): For nice functions T(n),
TIMEgam(T(n)) & TIMEgam (T (n) logn)

 Corollaries:
TIME(T(n)) € TIME((T(n) logn)*)
P + EXP

Proof of Time Hierarchy Theorem

« Two ingredients:

« Timed Universal Turing Machine (Timed RAM Algorithm):
« Diagonalization

* Timed Universal Turing Machine:

e Let TIMEDEVAL(M,x,1") = 1 © M halts in < T steps on x and outputs 1
« Theorem: TIMEDEVAL computable in time O(|M|° - T) on RAM.

Proof omitted.

« Corollary: TIMEDEVAL computable in time 0(T*) on some TM!
This is the “Timed Universal TM".

Proof of Time Hierarchy Theorem

* Timed Universal Turing Machine:
+ Let TIMEDEVAL(M,x,17) =1 &
M halts in <

¢ TWO |ng redlentS T steps on x and outputs 1

* Theorem: TIMEDEVAL computable

« Timed Universal Turing Machine (Timed RAM Algorithm): in time O(M® - T) on RAM.
* Corollary: TIMEDEVAL computable

o Diagona“zation in time O(T*) on some TM!

» Diagonalization:
« CANTOR;(M,x) = TIMEDEVAL(M, (M, x), 1Tloglogx) if |M| < logloglog |x]|
« Claim 1: CANTOR computable in time O(T log|x|) on RAM
e Claim 1: CANTOR not computable in time O(T) on RAM

* Proof: Suppose Mqanror cOmputes it in O(T) time. Then for sufficiently long |x|
Mcantor Mcantor, x) = TIMEDEVAL(M¢antor, (Mcantor, X), 17108108 %) = My nror (Mcantor, X)

 |In the text: HALT;(M,x) = 1 iff M halts in T steps on input x

Gt
M. &V\"U‘([m(x\—_

@M.x) — bl b =

Chobor (M) = LICRY 3w Wi » €T
sleed

O O .o -

t

TIME vs. SIZE

* Given F:{0,1}* —» {0,1} can get

{E,:{0,1}" > {o,1}}nEN, where E,(x) = F(x) Vx € {0,1}"
* Detinition: F € P/,qy if Acst. Vn FE, € SIZE(cn)
* Theorem (13.12): P € P/ 01y

Fast algorithms = small circuits.

"

0\

\

™

Extended Turing-Church Thesis

» Vanilla Thesis: Everything computable by physical means is computable
by Turing Machine.

« Extended Thesis: Everything computable by physical means in T time is
computable by Turing Machine in O(T¢) time

« Mostly uncontested: Two live challengers:

Randomized computation (believed not stronger)
Quantum computation (believed stronger?)

Philosophical aside: Importance of P

« Mathematically nice: Robust to models.

« Captures “intuitive” sense of “solving by understanding” (as opposed to

“brute force”)
* Problem is in P iff we understand the problem?
« Seems to hold for most problems we study

« Captures “feasibility” fairly well in practice

« Is n'Y% practical?
 But are there practical problems for which we have an n'%° solution!

Summary of Lecture:

* Introduced time complexity (RAM and TM).
« Should know both exist and are closely related. No need to know proofs.

* TIME Hierarchy theorem:
 Uses Universal TM. (No need to know construction)
e Diagonalization (Must know proof!)

« Complexity classes P and EXP

« Mentions: No (need to know) proofs

* SIZE vs TIME: P/ 01y
« Extended Turing-Church Thesis
* Importance of P

