CS 121: Lecture 17 Efficient Computation: P

Madhu Sudan

https://madhu.seas.Harvard.edu/courses/Fall2020

Book: https://introtcs.org

How to contact us The whole staff (faster response): <u>CS 121 Piazza</u> Only the course heads (slower): <u>cs121.fall2020.course.heads@gmail.com</u>

Announcements:

- 121.5: Bjorn Poonen: Uncomputability in Number Theory
 - Why is $x^3 + y^3 + z^3 = 33$ an unsolved equation (over \mathbb{Z})?
- Sections: Week 8 cycle start, material on canvas (as usual).⁷
- Homework 4 due today.
- Homework 5 out. Due in 14 days. $AB \overline{A'B'} AB \overline{A'B'} AB \overline{A'A'}$

BA

Where we are:

Review of course so far

- Circuits:
 - Compute every finite function, with size $O\left(\frac{2^n}{n}\right)$. Some functions require this (by counting). Compute no infinite function.
- Finite Automata:
 - Compute some infinite functions. Do not compute a lot. "Pumping Lemma" (Pigeonhole Principle.)
- Turing Machines:
 - Compute everything computable! (By definition? By thesis? By lack of evidence to the contrary)
 - There exist uncomputable functions: HALT ... Rice ...

- Defining Running Time
- Time Complexity Classes: P and EXP
- TM ⇔ RAM time
- Time efficient Universal Simulation + Time Hierarchy Theorem
- Extended Turing-Church Thesis
- Efficiency for Circuits: P/_{poly}

Running time

- Time = #TM State Transitions.
- Defn: $F: \{0,1\}^* \rightarrow \{0,1\}^*$ is computable in time T(n) if there exists a TM M_F that on every input $x \in \{0,1\}^*$, halts after at most T(|x|) transitions and with output F(x) on tape.
- "Best algorithm" + "Worst input"

Running time

- Time = #TM State Transitions.
- Defn: $F: \{0,1\}^* \to \{0,1\}^*$ is computable in time T(n) if there exists a TM M_F that on every input $x \in \{0,1\}^*$, halts after at most T(|x|) transitions and with output F(x) on tape.
- "Best algorithm" + "Worst input"
- Do conventions matter?
 - YES: E.g., F(x) = 0: Time complexity depends on output convention
 - NO: Same up to additive factor of O(|x| + |F(x)|)
- Does TM type matter? #tapes? #heads?
 - YES: E.g., Palindrome?
 - NO: But only up to polynomial factors. *F* computable in time T(n) with k-tape machine \Rightarrow *F* computable in time $O(T(n)^2)$ with our (standard) model.

RAM Model + Time

Common model for algorithm analysis: RAM model + Time.

KANDOM

- (RAM Model:)
 - Deals with "word"-sized integers in 1 step. (i + j, i * j, A[i])
 - Has built in arrays and allows "random access".
 - Run time " $T_{RAM}(n)$ " measures # RAM operations
- Usual algorithm run times stated in this model
 - "Sorting n words takes O(n log n) time"
 - "Palindrome detection takes O(n) time"
- Theorem: $\operatorname{TIME}(T(n)) \subseteq \operatorname{TIME}_{\operatorname{RAM}}(O(T(n))) \subseteq \operatorname{TIME}(O(T(n)^4))$
- Food for thought: Is $\mathbf{P} = \mathbf{P}_{RAM}$? Is $\mathbf{EXP} = \mathbf{EXP}_{RAM}$?

ACCESS MEMORY

Time Hierarchy Theorem

- Recall Size Hierarchy Theorem for circuits.
 - If $s_1(n)$ sufficiently smaller than $s_2(n)$ sufficiently smaller than $2^n/n$...
 - Then $SIZE(s_1(n)) \subseteq SIZE(s_2(n))$
 - "More is more"

- Corollaries:
 - $\operatorname{TIME}(T(n)) \subseteq \operatorname{TIME}((T(n)\log n)^4)$
 - $P \neq EXP$

Proof of Time Hierarchy Theorem

- Two ingredients:
- Universal Machine Computes EVALEVAL(M, X) = M(X) if M Timed Universal Turing Machine (Timed RAM Algorithm):
 - Diagonalization
- **Timed Universal Turing Machine:**
 - Let TIMEDEVAL($M, x, 1^T$) = 1 \Leftrightarrow M halts in $\leq T$ steps on x and outputs 1
 - Theorem: TIMEDEVAL computable in time $O(|M|^c \cdot T)$ on RAM. ulletIMI = longth
 - Proof omitted. ٠
 - Corollary: TIMEDEVAL computable in time $O(T^4)$ on some TM! ٠
 - This is the "Timed Universal TM".

$$O(100)^{42} T^{4})$$

Proof of Time Hierarchy Theorem

- Two ingredients:
 - Timed Universal Turing Machine (Timed RAM Algorithm):
 - Diagonalization
- Diagonalization:
 - CANTOR_T(M, x) = $\overline{\text{TIMEDEVAL}(M, (M, x), 1^{T \cdot \log \log x})}$ if $|M| \le \log \log \log |x|$
 - Claim 1: CANTOR_T computable in time $O(T \log |x|)$ on RAM
 - Claim 2: CANTOR_T not computable in time O(T) on RAM
 - Proof: Suppose M_{CANTOR} computes it in O(T) time. Then for sufficiently long |x| $M_{CANTOR}(M_{CANTOR}, x) = \overline{\text{TIMEDEVAL}(M_{CANTOR}, (M_{CANTOR}, x), 1^{T \cdot \log \log x})} = \overline{M_{CANTOR}(M_{CANTOR}, x)}$
- In the text: $HALT_T(M, x) = 1$ iff M halts in T steps on input x

- Timed Universal Turing Machine:
- Let TIMEDEVAL $(M, x, 1^T) = 1 \Leftrightarrow$ *M* halts in \leq *T* steps on *x* and outputs 1
- Theorem: TIMEDEVAL computable in time $O(M^c \cdot T)$ on RAM.
- Corollary: TIMEDEVAL computable in time $O(T^4)$ on some TM!

Break: Think about CANTOR

- CANTOR_T(M, x) = $\overline{\text{TIMEDEVAL}(M, (M, x), 1^{T \cdot \log \log x})}$ if $|M| \le \log \log \log |x|$
- Claim 1: CANTOR_T computable in time $O(T \log |x|)$ on RAM
- Claim 2: CANTOR_T not computable in time O(T) on RAM
- Proof: Suppose M_{CANTOR} computes it in O(T) time. Then for sufficiently long |x|

 $M_{CANTOR}(M_{CANTOR}, x) = \overline{\text{TIMEDEVAL}(M_{CANTOR}, (M_{CANTOR}, x), 1^{T \cdot \log \log x})} = \overline{M_{CANTOR}(M_{CANTOR}, x)}$

- What is *x* doing?
- Why do we have the T.log log x?
- Why $|M| \le \log \log \log x$?

Solution to "Break: Think about CANTOR"

- CANTOR_T(M, x) = $\overline{\text{TIMEDEVAL}(M, (M, x), 1^{T \cdot \log \log x})}$ if $|M| \le \log \log \log |x|$
- Claim 1: CANTOR_T computable in time $O(T \log |x|)$ on RAM
- Claim 2: CANTOR_T not computable in time O(T) on RAM
- Proof: Suppose M_{CANTOR} computes it in O(T) time. Then for sufficiently long |x|

 $M_{CANTOR}(M_{CANTOR}, x) = \overline{\text{TIMEDEVAL}(M_{CANTOR}, (M_{CANTOR}, x), 1^{T \cdot \log \log x})} = \overline{M_{CANTOR}(M_{CANTOR}, x)}$

- What is x doing? (Need long inputs to make algorithms fail!)
- Why do we have the T.log log x?
 - Need to give TIMEDEVAL C.T time for arbitrarily large C. (or else final equality need not hold).
 - Do it by giving it T.log log x time!
- Why $|M| \le \log \log \log x$?
 - May need $O(|M|^c \cdot T)$ time to universally simulate M for T steps so needed for Claim 1.

Complexity Classes: P and EXP Are all functions BF in EXP? No! Time Horiarchy Iteorem n

- Important: Classes always focus on Boolean Problems!!!! $T(n) = 2^2$
- **Definition:** $BF: \{0,1\}^* \rightarrow \{0,1\}$ is in **P** if BF computable in time $O(n^c)$ for some constant c.
- **Definition:** $BF: \{0,1\}^* \rightarrow \{0,1\}$ is in **EXP** if BF computable in time $2^{O(n^c)}$ for some constant c
- **Definition:** $TIME(T(n)) = {BF: {0,1}^* \rightarrow {0,1} | BF computable in time <math>T(n)}$

- Note: Conventions+Models don't matter for **P**, **EXP**!
- $\mathbf{P} \neq \mathbf{EXP}$ (why?)

Boolean Problems

- Recall: May want to compute $F: \{0,1\}^* \rightarrow \{0,1\}^*$
- But complexity captured by $BF: \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$
 - $BF(x,i) \stackrel{\text{\tiny def}}{=} F(x)_i$
 - F computable in time $T(n) \Rightarrow BF$ computable in time O(T(n))
 - BF computable in time T'(n)
 - \Rightarrow F computable in time $O(m \cdot T(n))$ (m = output length)
 - \Rightarrow *F* computable in time $O(T(n)^2)$
 - F polynomial time computable $\Leftrightarrow BF \in \mathbf{P}$
 - F exponential time computable $\Leftrightarrow BF \in \mathbf{EXP}$
- Exercise: Define the Factoring problem. What does BFactoring look like?

Time Hierarchy Theorem

- Recall Size Hierarchy Theorem for circuits.
 - If $s_1(n)$ sufficiently smaller than $s_2(n)$ sufficiently smaller than $2^n/n$...
 - Then **SIZE** $(s_1(n)) \subseteq$ **SIZE** $(s_2(n))$
 - "More is more"
- Theorem (13.9): For nice functions T(n), $TIME_{RAM}(T(n)) \subsetneq TIME_{RAM}(T(n) \log n)$
- Corollaries:
 - $\operatorname{TIME}(T(n)) \subseteq \operatorname{TIME}((T(n)\log n)^4)$
 - $\mathbf{P} \neq \mathbf{EXP}$

Proof of Time Hierarchy Theorem

- Two ingredients:
 - Timed Universal Turing Machine (Timed RAM Algorithm):
 - Diagonalization
- Timed Universal Turing Machine:
 - Let TIMEDEVAL($M, x, 1^T$) = 1 \Leftrightarrow M halts in $\leq T$ steps on x and outputs 1
 - Theorem: TIMEDEVAL computable in time $O(|M|^c \cdot T)$ on RAM.
 - Proof omitted.
 - Corollary: TIMEDEVAL computable in time $O(T^4)$ on some TM!
 - This is the "Timed Universal TM".

Proof of Time Hierarchy Theorem

- Two ingredients:
 - Timed Universal Turing Machine (Timed RAM Algorithm):
 - Diagonalization
- Diagonalization:
 - CANTOR_T(M, x) = $\overline{\text{TIMEDEVAL}(M, (M, x), 1^{T \cdot \log \log x})}$ if $|M| \le \log \log \log |x|$
 - Claim 1: CANTOR_T computable in time $O(T \log |x|)$ on RAM
 - Claim 1: CANTOR_T not computable in time O(T) on RAM
 - Proof: Suppose M_{CANTOR} computes it in O(T) time. Then for sufficiently long |x| $M_{CANTOR}(M_{CANTOR}, x) = \overline{\text{TIMEDEVAL}(M_{CANTOR}, (M_{CANTOR}, x), 1^{T \cdot \log \log x})} = \overline{M_{CANTOR}(M_{CANTOR}, x)}$
- In the text: $HALT_T(M, x) = 1$ iff M halts in T steps on input x

- Timed Universal Turing Machine:
- Let TIMEDEVAL $(M, x, 1^T) = 1 \Leftrightarrow$ *M* halts in \leq *T* steps on *x* and outputs 1
- Theorem: TIMEDEVAL computable in time $O(M^c \cdot T)$ on RAM.
- Corollary: TIMEDEVAL computable in time $O(T^4)$ on some TM!

TIME vs. SIZE

Given $F: \{0,1\}^* \rightarrow \{0,1\}$ can get

- $\{F_n: \{0,1\}^n \to \{0,1\}\}_{n \in \mathbb{N}'}$ where $F_n(x) = F(x) \quad \forall x \in \{0,1\}^n$ Definition: $F \in \mathbf{P}_{poly}$ if $\exists c \text{ s.t. } \forall n \quad F_n \in SIZE(cn^c)$
- Theorem (13.12): $\mathbf{P} \subseteq \mathbf{P}/_{\text{poly}}$
 - Fast algorithms \Rightarrow small circuits.

P/ = Poly sized circuits

Extended Turing-Church Thesis

- Vanilla Thesis: Everything computable by physical means is computable by Turing Machine.
- Extended Thesis: Everything computable by physical means in T time is computable by Turing Machine in $O(T^c)$ time

- Mostly uncontested: Two live challengers:
 - Randomized computation (believed not stronger)
 - Quantum computation (believed stronger?)

Philosophical aside: Importance of P

- Mathematically nice: Robust to models.
- Captures "intuitive" sense of "solving by understanding" (as opposed to "brute force")
 - Problem is in *P* iff we understand the problem?
 - Seems to hold for most problems we study
- Captures "feasibility" fairly well in practice
 - Is n^{100} practical?
 - But are there practical problems for which we have an n^{100} solution!

Summary of Lecture:

- Introduced time complexity (RAM and TM).
 - Should know both exist and are closely related. No need to know proofs.
- TIME Hierarchy theorem:
 - Uses Universal TM. (No need to know construction)
 - Diagonalization (Must know proof!)
- Complexity classes P and EXP
- Mentions: No (need to know) proofs
 - SIZE vs TIME: P/poly
 - Extended Turing-Church Thesis
 - Importance of **P**