CS 121: Lecture 18 Polynomial Time Reductions

Madhu Sudan

https://madhu.seas.Harvard.edu/courses/Fall2020
Book: https://introtcs.org
How to contact us $\left\{\begin{array}{l}\text { The whole staff (faster response): CS } 121 \text { Piazza } \\ \text { Only the course heads (slower): } \text { cs121.fall2020.course.heads@gmail.com }\end{array}\right.$

Announcements:

- Election Today!
- Midterm 2 in 2 weeks.
- Same time format.
- No collaboration on cheat sheets. Each person prepares their own.
- Open book (Barak - searchable pdf).
- Sign up for active partupation in Lectures.

Where we are:

Part I: Circuits:
Finite computation, quantitative study

Part IV: Efficient Computation:
Infinite computation, quantitative study

Part V: Randomized computation:
Extending studies to non-classical algorithms

Review of last lecture

- Defined time complexity measure

$$
P \subseteq E X P
$$

- Defined classes: TIME (tn)), P, EXP
- Watch out for category error: All the above are sets of functions, not algorithms!
- Stated+Proved: TIME Hierarchy theorem.
- $\Rightarrow \mathrm{P} \neq \mathrm{EXP}$
- Stated:
- RAM -TIME \approx TM -TIME (up to polynomial factors)
- SIZE $\leq \approx$ TM TIME (up to polynomial factors)
- Extended Turing-Church Thesis

Today

- Some problems in P and EXP
- Polytime Reductions \leq_{P} : Relate problems of unknown complexity
- Specific example: SAT \leq_{P} ISET

Some example problems

- Warning: Will flash lots of slides quickly!
- Don't have to know individual definitions/problems ... just get a flavor of variety.

Solving Linear Equations

Input: n linear equations in n variables: $A x=b$, with $A \in \mathbb{R}^{n \times n}$ and $b \in R^{n}$. Output: "No solution" or assignment satisfying equations.

Notation: Equations are $\left\langle A_{i}, x\right\rangle=b_{i}$ where A_{i} is i-th row of A, and $\langle u, v\rangle \xlongequal{\text { def }} \sum_{i=0}^{n-1} u_{i} v_{i}$

Gaussian elimination Algorithm:

- If $n=1$: trivial
- Rearrange equations, variables, so that $A_{0}^{0} \neq 0$
(first equation involves first variable)
- Change equation from $\left\langle A^{0}, x\right\rangle=b_{0}$ to $\frac{1}{A_{0}^{0}}\left\langle A_{0}^{0}, x\right\rangle=\frac{b_{0}}{A_{0}^{0}}$ to get

$$
\begin{equation*}
x_{0}=\frac{b_{0}}{A_{0}^{0}}-\sum_{j=1}^{n-1} v_{j} x_{j} \quad \text { where } \quad v_{j}=\frac{A_{j}^{0}}{A_{0}^{0}} \tag{*}
\end{equation*}
$$

- Replace x_{0} with RHS of $\left({ }^{*}\right)$ in equations $1, \ldots, n-1$.
- Now have $n-1$ equations with $n-1$ variables! Repeat.

Analysis:

- Let $T(n)$ denotes number of arithmetic operations
- Then $T(n)=T(n-1)+O\left(n^{2}\right)$
- Yields $T(n)=O\left(n^{3}\right)$
- Counts \#arithmetic operations. Should multiply by cost of arithmetic. (poly(\#bits) per number).
- Summary: Linear equations can be solved in polynomial time.

Linear Programming

Compute $\min _{x \in \mathbb{K}} f(x)$ where f is linear and \mathbb{K} is polytope:

$$
\mathbb{K}=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}
$$

Example: Startup resource allocation:

- Business customer: yields r revenue while costing a developer hours and b customer support hours.
- End user: yields r^{\prime} revenue while costing a^{\prime} dev hours and b^{\prime} support hours.
- Maximize revenue subject to A total dev hours and B total support hours:

$\max _{x_{0}, x_{1} \in \mathbb{R}} r \cdot x_{0}$	$+r^{\prime} \cdot x_{1}$	s.t.
$a \cdot x_{0}$	$+a^{\prime} \cdot x_{1}$	$\leq A$
$b \cdot x_{0}$	$+b^{\prime} \cdot x_{1}$	$\leq B$

Thm: (Khachiyan 79, Karmakar 84) There is poly(n) time algorithm for linear programming on n variables.

Integer Programming

Compute $\min _{x \in I} f(x)$ where f linear and $I=\mathbb{K} \cap \mathbb{Z}^{n} ; \mathbb{K}=\{x \mid A x \leq b\}$
(I integer points in polytope \mathbb{K})

Motivation: Can't support half a client

Depressing fact: No known polynomial time algorithm for integer programming.

Minimum s-t Cut Problem

Def: A cut in $G=(V, E)$ is $S \subseteq V$ with $\emptyset \neq S \neq V$.
Notation: Edges cut by $S, E(S, \bar{S})=\{(u, v) \in E \mid u \in S \Leftrightarrow v \notin S\}$

Minimum s-t cut problem:

Minimize $|E(S, \bar{S})|$ over all $S \subseteq V$ s.t. $s \in S$ and $t \notin S$ (sample motivation: image segmentation)

Good News: Can be solved in time $O(V E)$

Maximum Cut Problem

Problem: Find cut S that maximizes $|E(S, \bar{S})|$.
Sample applications:

- Register allocation in compilers,
- Ising model, X-ray crystallography, cryo-electron microscopy, more

Depressing news: Best known algorithms are exponential in the worst case.

3-SAT Problem

Input: A "3CNF formula" $\phi=C_{0} \wedge C_{1} \wedge \cdots \wedge C_{m-1}$ on n variables $x_{0} \ldots x_{n-1}$

$$
\text { 3CNF Formula }=\text { AND of } m \underline{\text { 3-clauses }} \quad\left(\phi=C_{0} \wedge C_{1} \wedge \cdots \wedge C_{m-1}\right)
$$

3 -Clause $=\mathrm{OR}$ of 3 literals $\left(C_{j}=\ell_{1} \vee \ell_{2} \vee \ell_{3}\right)$
literal $=$ variable or its negation $\left(\ell=x_{i}\right.$ or $\left.\ell=\overline{x_{i}}\right)$
Goal: Output 1 if there is assignment $x \in\{0,1\}^{n}$ that makes formula true.
Output 0 otherwise. AND
OR

Example: $\left(x_{7} \vee \bar{x}_{17} \vee x_{29}\right) \wedge\left(\bar{x}_{7} \vee x_{15} \vee x_{22}\right) \wedge\left(x_{22} \vee \bar{x}_{29} \vee x_{55}\right)$

$$
\begin{aligned}
& \left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \\
& \wedge\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right)
\end{aligned}
$$

3-SAT Problem

Input: A "3CNF formula" $\phi=C_{0} \wedge C_{1} \wedge \cdots \wedge C_{m-1}$ on n variables $x_{0} \ldots x_{n-1}$
Goal: Determine if there is assignment $x \in\{0,1\}^{n}$ that makes formula true.

Depressing news: Best known algorithms require exponential time.

Better news: Exponent has improved, decent heuristic "SAT SOLVERS", can solve the 2SAT problem.

Exercise: Show "INTEGER PROGRAMMING can be solved in poly time \Rightarrow 3SAT can be solved in poly time".

Summary of problems:

- The following problems are in \mathbf{P}
- Does the linear system $A x=b$ have a solution?
- Does the linear program $\operatorname{Max}\langle c, x\rangle$ s.t. $A x \leq b$ have a real solution of value $\geq v$
- Given G does G have a cut of value at most k ($\boldsymbol{m i n}$ cut)
- Given a 2CNF formula $\phi=C_{0} \wedge C_{1} \wedge \cdots \wedge C_{m-1}$ is there a satisfying $x \in\{0,1\}^{n}$
- The following problems are in EXP but not known to be in \mathbf{P}
- Does linear program $\operatorname{Max}\langle c, x\rangle$ s.t. $A x \leq b$ have an integer solution of value $\geq v$
- Given G does G have a cut of value at least k (max cut)
- Given a 3CNF formula $\phi=C_{0} \wedge C_{1} \wedge \cdots \wedge C_{m-1}$ is there a satisfying $x \in\{0,1\}^{n}$
- HALT is not in \mathbf{P} or even EXP!
- $\mathrm{HALT}_{2} n$ is in EXP but not \mathbf{P}.

Artwork representing lecture thus far!

Relating problems to each other?

- EXP seems to have many interesting problems we would like to solve.
- Questions: Which ones are in P?
- Answer: "Don't know!"
- If we can't determine the answer to any of these questions, can we at least relate the answers?
- Answer: Yes!
- Tool: (Polynomial time) Reductions!

Maximum Cut as Integer Program

Input: $G=(V, E)$ with n vertices and m edges
Goal: Find cut $\varnothing \neq S \neq V$ maximizing $|E(S, \bar{S})|$.

IP formulation: Find $x \in \mathbb{Z}^{n}, y \in \mathbb{Z}^{m}$ maximizing $\sum_{j=0}^{m-1} y_{j}$ s.t.

$$
\begin{gathered}
0 \leq x_{i} \leq 1 \text { for } i \in[n]\left(\text { i.e., } x \in\{0,1\}^{n}\right) \\
0 \leq y_{j} \leq 1 \text { for } j \in[m]\left(y \in\{0,1\}^{m}\right)
\end{gathered}
$$

For j th edge (u, v):

$$
\begin{aligned}
& y_{j} \leq x_{u}+x_{v} \quad\left(x_{u}=x_{v}=0 \Rightarrow y_{j}=0\right) \\
& y_{j} \leq\left(1-x_{u}\right)+\left(1-x_{v}\right) \quad\left(x_{u}=x_{v}=1 \Rightarrow y_{j}=0\right)
\end{aligned}
$$

Reductions:
Based on what we ie shown \Rightarrow Possible
so far

- Previous page was a reduction from X to Y.
- $X=$?, $Y=$?
- Consequence:

MAXCUT $\leq_{p} \quad$ IP

IP		In P?	Not in P?
max-CUT			
In P?	Possible	(2)	
Not in P?	(1) Not Possible	Possible	

Truth (hough we dent show it): (2) is also not possible Can reduce $I P s_{p}$ MAXCUT

Polynomial Time Reductions
DEFINITON:

- For Boolean functions $F, G:\{0,1\}^{*} \rightarrow\{0,1\}, \quad F \leq_{P} G$ if there is a polynomial time algorithm $R:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ s.t. for every $x \in\{0,1\}^{*}$, function

$$
F(x)=1 \Leftrightarrow G(R(x))=1
$$

- In the example before:

$$
F(x)=G(R(x))
$$

- $F(H, k)=\operatorname{MAXCUT}(H, k)=1 \Leftrightarrow H$ has a cut of size $\geq k$
- $G(A, b, c, v)=I P(A, b, c, v)=1 \Leftrightarrow \exists x \in \mathbb{Z}^{n}$ s.t. $c . x \geq v$ and $A x \leq b$
- Reduction $R(H, k)=(A, b, c, v)$... (all the constraints and objective).
[Worked because:
\& Cannot be Exp. time Computable.
- R polytime computable!
- $\quad \operatorname{IP}(A, b, c, v)=\operatorname{MaxCut}(H, k)$

Example $2.3-S A T \leq_{P} I P:$

Input: A 3CNF formula $C_{0} \wedge C_{1} \wedge \cdots \wedge C_{m-1}$ on n variables (where C_{j} 's are 3-clauses) Goal: Find out if there is assignment $x \in\{0,1\}^{n}$ that makes formula true.

IP formulation: Maximize over $x \in \mathbb{Z}^{n}, y \in \mathbb{Z}^{m}$, the quantity $\sum_{j=0}^{m-1} y_{j}$ subject to:
$0 \leq x_{i} \leq 1,0 \leq y_{j} \leq 1$
For j th clause, say $C_{j}=\left(\bar{x}_{17} \vee x_{55} \vee x_{22}\right)$:

$$
\begin{array}{cc}
\left(x_{17}=1 \text { and } x_{55}=0 \text { and } x_{22}=0 \Rightarrow y_{j}=0\right) & \text { Claim: } \phi \text { satisfiable } \\
y_{j} \leq\left(1-x_{17}\right)+x_{55}+x_{22} & \Leftrightarrow \sum y_{j}=m
\end{array}
$$

Surprising fact: (Converse is also true) If you can solve 3SAT in poly time then you can solve INTEGER PROGRAMMING in poly time!

3 SAT \leqslant_{p} SET

Input: $(G=(V, E), k)$
Question: Does there exists an independent set of size $\geq k$ in G where $S \subseteq V$ is independent if no edges within S

$$
(\forall u, v \in S, \quad(u, v) \notin E)
$$

$3 S A T \leq_{p}$ ISET

Theorem: Suppose that $I S E T \in P$ then $3 S A T \in P$
Corollary: Suppose that 3 SAT $\notin P$ then ISET $\notin P \quad$ Why?
Proof: We will show poly-time $R:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$

$$
R:\{3 \text { CNF formulas }\} \rightarrow\{(\text { graphs }, \text { numbers })\}
$$

s.t. for every $3 \operatorname{CNF} \varphi, 3 \operatorname{SAT}(\varphi)=\operatorname{ISET}(R(\varphi))$

Q: Why is this enough?

Theorem: Suppose that ISET $\in P$ then $3 S A T \in P \quad 3 y A T(\phi)=1$
Proof: We will show poly-time $R:\{3 C N F$ formulas $\} \rightarrow\{$ (graphs ,numbers) $\}$
s.t. for every $3 \operatorname{CNF} \varphi, 3 \operatorname{SAT}(\varphi)=\operatorname{ISET}(R(\varphi)) \Leftarrow G$ has

Example: $\varphi=\left(x_{0} \vee \overline{x_{1}} \vee x_{2}\right) \wedge\left(\overline{x_{0}} \vee x_{1} \vee \overline{x_{2}}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right)$ ind. Set of (has $\mathrm{n}=4$ variables, $\mathrm{m}=3^{-}$clauses)
size m

Theorem: Suppose that $I S E T \in P$ then $3 S A T \in P$
Proof: We will show poly-time $R:\{3 C N F$ formulas $\} \rightarrow\{$ (graphs ,numbers) $\}$
st. for every $3 \operatorname{CNF} \varphi, 3 \operatorname{SAT}(\varphi)=\operatorname{ISET}(R(\varphi))$
Algorithm R :
Input: φ - 3CNF with n variables and m clauses

1. Let G be graph with $3 m$ vertices we will name $(j, 1),(j, 2),(j, 3)$ for $j \in[m]$
2. For every $j \in[m]$, add edges $(j, 1)-(j, 2),(j, 2)-(j, 3),(j, 3)-(j, 1)$
3. For every pair of clauses C_{j} and $C_{j^{\prime}}$ if literals (j, a) and $\left(j^{\prime}, b\right)$ conflict (one negation of the other) then add the edge $(j, a)-\left(j^{\prime}, b\right)$
4. Return (G, m)

Claim 1 (completeness): If $3 \operatorname{SAT}(\varphi)=1$ then $\operatorname{ISET}(G, m)=1$.

$$
\begin{aligned}
& \text { if } 3 \operatorname{sAT}(\phi)=0 \\
& 1 \operatorname{SET}()=
\end{aligned}
$$

Claim 2 (soundness): If $\operatorname{ISET}(G, m)=1$ then $3 \operatorname{SAT}(\varphi)=1 . \Leftrightarrow$ then $\operatorname{ISET}()=0$

Exitizs syitem
of Logic
T is trese
F is true
T is tabse
soundnes
\widetilde{T} is taise
$\sim \Rightarrow R$

$$
\begin{array}{lll}
F(x)=1 & \xrightarrow[\text { complen }]{ } & G(R(x))=1 \\
F(x)=0 & \xrightarrow[\text { soundiers }]{ } & G(R(x))=0
\end{array}
$$

Given $S \subseteq, \quad S$ indepent, $\quad|S|=m$

can get aroinght to $x_{0}=\ldots \quad x_{1}=-\quad x_{2}=\ldots \quad x_{n_{1}}=-$ S.t. every clawe is safistied.

$$
x_{i_{1}} \vee \bar{X}_{i_{2}} \vee x_{i_{3}}
$$

Theorem: Suppose that $I S E T \in P$ then $3 S A T \in P$
Proof: We will show poly-time $R:\{3 C N F$ formulas $\} \rightarrow\{$ (graphs,numbers) $\}$ s.t. for every 3CNF $\varphi, 3 \operatorname{SAT}(\varphi)=\operatorname{ISET}(R(\varphi))$

Example: $\varphi=\left(x_{0} \vee \overline{x_{1}} \vee x_{2}\right) \wedge\left(\overline{x_{0}} \vee x_{1} \vee \overline{x_{2}}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right)$
(has $\mathrm{n}=4$ variables, $\mathrm{m}=3$ clauses)

Theorem: Suppose that $I S E T \in P$ then $3 S A T \in P$
Proof: We will show poly-time $R:\{3 C N F$ formulas $\} \rightarrow\{$ (graphs,numbers) $\}$ s.t. for every $3 \operatorname{CNF} \varphi, 3 \operatorname{SAT}(\varphi)=\operatorname{ISET}(R(\varphi))$

Example: $\varphi=\left(x_{0} \vee \overline{x_{1}} \vee x_{2}\right) \wedge\left(\overline{x_{0}} \vee x_{1} \vee \overline{x_{2}}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right)$
(has $\mathrm{n}=4$ variables, $\mathrm{m}=3$ clauses)

$x=1101$

Algorithm R :
Input: φ - 3CNF with n variables and m clauses

1. Let G be graph with $3 m$ vertices we will name $(j, 1),(j, 2),(j, 3)$ for $j \in[m]$
2. For every $j \in[m]$, add edges $(j, 1)-(j, 2),(j, 2)-(j, 3),(j, 3)-(j, 1)$
3. For every pair of clauses C_{j} and $C_{j^{\prime}}$ if literals (j, a) and $\left(j^{\prime}, b\right)$ conflict (one negation of the other) then add the edge $(j, a)-\left(j^{\prime}, b\right)$
4. Return (G, m)

Claim 1 (completeness): If $3 \operatorname{SAT}(\varphi)=1$ then $\operatorname{ISET}(G, m)=1$.

Proof: Assume x satisfies φ. Then for every clause C_{j} there is a literal (j, a) satisfied. add (j, a) to set S. The size of S is m.

We claim that S is an independent set:

- S contains one vertex in each triangle so no "black" edges.
- If vertex tagged as " $x_{i}=0$ " in S then " $x_{i}=1$ " can't be in S so no "red" edges.

Algorithm R :
Input: φ - 3CNF with n variables and m clauses

1. Let G be graph with $3 m$ vertices we will name $(j, 1),(j, 2),(j, 3)$ for $j \in[m]$
2. For every $j \in[m]$, add edges $(j, 1)-(j, 2),(j, 2)-(j, 3),(j, 3)-(j, 1)$
3. For every pair of clauses C_{j} and $C_{j^{\prime}}$ if literals (j, a) and $\left(j^{\prime}, b\right)$ conflict (one negation of the other) then add the edge $(j, a)-\left(j^{\prime}, b\right)$
4. Return (G, m)

Claim 2 (soundness): If $\operatorname{ISET}(G, m)=1$ then $\operatorname{3SAT}(\varphi)=1$.
Proof: Assume S independent set of size m in G.
Q: Show that S contains exactly one vertex per triangle Hint:

Set $x_{i}^{*}=1$ if S contains vertex tagged " $x_{i}=1$ " otherwise $x_{i}=0$.
For every clause C_{j} there is vertex in S tagged " $x_{i}=b$ ". We claim $x_{i}^{*}=b$
If $b=1$: by definition.
If $b=0$: S can't contain vertex tagged " $x_{i}=1$ " since it's independent.

Polynomial-time reductions

$3 S A T \leq_{p}$ ISET

We showed: Poly time A for ISET \Rightarrow Poly time B for $3 S A T$

Alg B

φ

$\operatorname{ISET}(G, k)=3 \operatorname{SAT}(\varphi)$

Def: Let $F, G:\{0,1\}^{*} \rightarrow\{0,1\}$. We say $F \leq_{p} G$ if \exists poly-time $R:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ s.t. $\forall_{x \in\{0,1\}^{*}} F(x)=G(R(x))$

Q: Prove that if $F \leq_{p} G$ and $G \leq_{p} H$ then $F \leq_{p} H$

Next Lecture:

More systematic exploration of the "hard" problems from today. All share a common feature: What?

Leads us to NP and NP-completeness!

