Announcements:

• Advanced section: Roei Tell (De)Randomization
• 2nd feedback survey
• Homework 6 out today. Due 12/3/2020
• Section 11 week starts
Where we are:

Part I: Circuits: Finite computation, quantitative study

Part II: Automata: Infinite restricted computation, quantitative study

Part III: Turing Machines: Infinite computation, qualitative study

Part IV: Efficient Computation: Infinite computation, quantitative study

Part V: Randomized computation: Extending studies to non-classical algorithms
Review of course so far

• Circuits:
 • Compute every finite function ... but no infinite function
 • Measure of complexity: SIZE. ALL_n \subseteq SIZE(\Theta(\frac{2^n}{n})); \exists f \notin SIZE(o(\frac{2^n}{n}))

• Finite Automata:
 • Compute some infinite functions (all Regular functions)
 • Do not compute many (easy) functions (e.g. EQ(x, y) = 1 \iff x = y)

• Turing Machines:
 • Compute everything computable (definition/thesis)
 • HALT is not computable: Diagonalization, Reductions

• Efficient Computation:
 • P Polytime computable Boolean functions – our notion of efficiently computable
 • NP Efficiently verifiable Boolean functions. Our wishlist ...
 • NP-complete: Hardest problems in NP: 3SAT, ISET, MaxCut, EU3SAT, Subset Sum
Last Module: Challenges to STCT

- Strong Turing-Church Thesis: Everything physically computable in polynomial time can be computable in polynomial time on Turing Machine.

- Challenges:
 - Randomized algorithms: Already being computed by our computers:
 - Weather simulation, Market prediction, ...
 - Quantum algorithms:

- Status:
 - Randomized: May not add power?
 - Quantum: May add power?
 - Still can be studied with same tools. New classes: BPP, BQP:
 - B – bounded error; P – Probabilistic, Q - Quantum
Today: Review of Basic Probability

- Sample space
- Events
- Union/intersection/negation – AND/OR/NOT of events
- Random variables
- Expectation
- Concentration / tail bounds

Read Chapter 18
Throughout this lecture

Probabilistic experiment: tossing n independent unbiased coins.

Equivalently: Choose $x \sim \{0,1\}^n$
Events

Fix sample space to be \(x \sim \{0,1\}^n \)

An event is a set \(A \subseteq \{0,1\}^n \). Probability that \(A \) happens is \(\Pr[A] = \frac{|A|}{2^n} \)

Example: If \(x \sim \{0,1\}^3 \), \(\Pr[x_0 = 1] = \frac{4}{8} = \frac{1}{2} \)
Q: Let \(n = 3 \), \(A = \{ x_0 = 1 \} \), \(B = \{ x_0 + x_1 + x_2 \geq 2 \} \), \(C = \{ x_0 + x_1 + x_2 = 1 \mod 2 \} \). What are (i) \(\Pr[B] \), (ii) \(\Pr[C] \), (iii) \(\Pr[A \cap B] \), (iv) \(\Pr[A \cap C] \) (v) \(\Pr[B \cap C] \) ?
Q: Let $n = 3$, $A = \{x_0 = 1\}$, $B = \{x_0 + x_1 + x_2 \geq 2\}$, $C = \{x_0 + x_1 + x_2 = 1 \mod 2\}$.

What are (i) $\Pr[B]$, (ii) $\Pr[C]$, (iii) $\Pr[A \cap B]$, (iv) $\Pr[A \cap C]$ (v) $\Pr[B \cap C]$?
Q: Let \(n = 3 \), \(A = \{ x_0 = 1 \} \), \(B = \{ x_0 + x_1 + x_2 \geq 2 \} \), \(C = \{ x_1 + x_2 + x_3 = 1 \mod 2 \} \). What are (i) \(\Pr[B] \), (ii) \(\Pr[C] \), (iii) \(\Pr[A \cap B] \), (iv) \(\Pr[A \cap C] \) (v) \(\Pr[B \cap C] \)?

\[
\begin{align*}
\frac{1}{2} & \quad \frac{4}{8} = \frac{1}{2} \\
\frac{2}{8} = \frac{1}{4} & \quad \frac{2}{8} = \frac{1}{4}\end{align*}
\]

\(\frac{3}{8} > \frac{1}{2} \times \frac{1}{2} \)

\(\frac{1}{4} = \frac{1}{2} \times \frac{1}{2} \)

\(A \& C \) are independent

\(A \& B \) not independent

Compare \(\Pr[A \cap B] \) vs \(\Pr[A] \Pr[B] \)

\(\Pr[A \cap C] \) vs \(\Pr[A] \Pr[C] \)

\(\frac{1}{4} \)
Operations on events

\[\Pr[A \text{ or } B \text{ happens}] = \Pr[A \cup B] \]

\[\Pr[A \text{ and } B \text{ happen}] = \Pr[A \cap B] \]

\[\Pr[A \text{ doesn't happen}] = \Pr[\overline{A}] = \Pr[\{0,1\}^n \setminus A] = 1 - \Pr[A] \]

Q: Prove the union bound: \(\Pr[A \cup B] \leq \Pr[A] + \Pr[B] \)

Example: \(\Pr[A] = 4/25, \Pr[B] = 6/25, \Pr[A \cup B] = 9/25 \)

\[|A \cup B| = |A| + |B| - |A \cap B| \leq |A| + |B| \]
Independence

Informal: Two events A, B are independent if knowing A happened doesn’t give any information on whether B happened.

Formal: Two events A, B are independent if $\Pr[A \cap B] = \Pr[A] \Pr[B]$.

Q: Which pairs are independent?

(i) \checkmark

Pr[B|A] = Pr[B]
“Conditioning is the soul of statistics”

A - Green

B - Red

(ii) \times

(iii) \times
More than 2 events

Informal: Two events A, B are independent if knowing whether A happened doesn’t give any information on whether B happened.

Formal: Three events A, B, C are independent if every pair A, B, A, C and B, C is independent and $\Pr[A \cap B \cap C] = \Pr[A] \Pr[B] \Pr[C]$

(i) ![Diagram of independent events]

(ii) ![Diagram of independent events]
Assign a **number** to every outcome of the coins.

Formally r.v. is \(X: \{0,1\}^n \rightarrow \mathbb{R} \)

Example: \(X(x) = x_0 + x_1 + x_2 \)

<table>
<thead>
<tr>
<th>(v)</th>
<th>(Pr[X = v])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/8</td>
</tr>
<tr>
<td>1</td>
<td>3/8</td>
</tr>
<tr>
<td>2</td>
<td>3/8</td>
</tr>
<tr>
<td>3</td>
<td>1/8</td>
</tr>
</tbody>
</table>

\(f: \{0,1\}^n \rightarrow \mathbb{R} \) is a random variable if \(\{0,1\}^n \) is our prob. space.
Expectation

Average value of X:

$$\mathbb{E}[X] = \sum_{x \in \{0, 1\}^n} 2^{-n} X(x) = \sum_{v \in \mathbb{R}} v \cdot \Pr[X = v]$$

Example: $X(x) = x_0 + x_1 + x_2$

<table>
<thead>
<tr>
<th>v</th>
<th>$\Pr[X = v]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/8</td>
</tr>
<tr>
<td>1</td>
<td>3/8</td>
</tr>
<tr>
<td>2</td>
<td>3/8</td>
</tr>
<tr>
<td>3</td>
<td>1/8</td>
</tr>
</tbody>
</table>

Q: What is $\mathbb{E}[X]$?

$$0 \cdot \frac{1}{8} + 1 \cdot \frac{3}{8} + 2 \cdot \frac{3}{8} + 3 \cdot \frac{1}{8} = \frac{12}{8} = 1.5$$
Linearity of expectation

Lemma: $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$

Corollary: $\mathbb{E}[x_0 + x_1 + x_2] = \mathbb{E}[x_0] + \mathbb{E}[x_1] + \mathbb{E}[x_2] = 1.5$

Proof:

$$\mathbb{E}[X + Y] = 2^{-n} \sum_{x} (X(x) + Y(x)) = 2^{-n} \sum_{x} X(x) + 2^{-n} \sum_{x} Y(x) = \mathbb{E}[X] + \mathbb{E}[Y]$$
Independent random variables

Def: X, Y are independent if $\{X = u\}$ and $\{Y = v\}$ are independent $\forall u, v$

Def: $X_0, ..., X_{k-1}$, independent if $\{X_0 = v_0\}, ..., \{X_{k-1} = v_{k-1}\}$ ind. $\forall u_0 ... u_{k-1}$

i.e. $\forall v, ..., v_{k-1} \forall S \subseteq [k]$

$$\Pr\left[\bigwedge_{i \in S} X_i = v_i \right] = \prod_{i \in S} \Pr[X_i = v_i]$$

Q: Let $x \sim \{0,1\}^n$. Let $X_0 = x_0, X_1 = x_1, ..., X_{n-1} = x_{n-1}$

Let $Y_0 = Y_1 = \cdots = Y_{k-1} = x_0$

Are $X_0, ..., X_{n-1}$ independent?
Are $Y_0, ..., Y_{n-1}$ independent?
Independence and concentration

Q: Let $x \sim \{0,1\}^n$. Let $X_0 = x_0, X_1 = x_1, \ldots, X_{n-1} = x_{n-1}$

Let $Y_0 = Y_1 = \ldots = Y_{k-1} = x_0$

Let $X = X_0 + \ldots + X_{n-1}, Y = Y_0 + \ldots + Y_{n-1}$

Compute $\mathbb{E}[X]$, compute $\mathbb{E}[Y]$

For $n = 100$, estimate $\Pr[Y \notin (0.4n, 0.6n)]$, $\Pr[X \notin (0.4n, 0.6n)]$
Sums of independent random variables

\[n = 5 \quad \Pr[X \notin (0.4,0.6)n] = 37.5\% \]

https://www.stat.berkeley.edu/~stark/Java/Html/BinHist.htm
Sums of independent random variables

\[n = 10 \quad \Pr[X \notin (0.4, 0.6)n] = 34.4\% \]

https://www.stat.berkeley.edu/~stark/Java/Html/BinHist.htm
Sums of independent random variables

\[n = 20 \quad \text{Pr}[X \notin (0.4, 0.6)n] = 26.3\% \]

https://www.stat.berkeley.edu/~stark/Java/Html/BinHist.htm
Sums of independent random variables

\[n = 50 \quad \text{Pr}[X \notin (0.4,0.6)n] = 11.9\% \]

https://www.stat.berkeley.edu/~stark/Java/Html/BinHist.htm
Sums of independent random variables

\[n = 100 \quad \text{Pr}[X \notin (0.4, 0.6)n] = 3.6\% \]

https://www.stat.berkeley.edu/~stark/Java/Html/BinHist.htm
Sums of independent random variables

\[n = 200 \quad \text{Pr}[X \notin (0.4, 0.6)n] = 0.4\% \]

https://www.stat.berkeley.edu/~stark/Java/Html/BinHist.htm
Sums of independent random variables

\[n = 400 \quad \Pr[X \notin (0.4, 0.6) n] = 0.01\% \]

https://www.stat.berkeley.edu/~stark/Java/Html/BinHist.htm
Concentration bounds

X sum of n independent random variables – \approx “Normal/Gaussian/bell curve”:

$$\Pr[X \notin (0.99, 1.01) \mathbb{E}[X]] < \exp(-\delta \cdot n)$$

Otherwise: weaker bounds

In concentrated r.v.’s, expectation, median, mode, etc.

Chernoff Bound: Let X_0, \ldots, X_{n-1} i.i.d. r.v.’s with $X_i \in [0,1]$. Then if $X = X_0 + \cdots + X_{n-1}$ and $p = \mathbb{E}[X_i]$ for every $\epsilon > 0$,

$$\Pr[|X - np| > \epsilon n] < 2 \cdot \exp(-2\epsilon^2 \cdot n)$$

$0 \leq p \leq 1$
Concentration bounds

X sum of n independent random variables – \approx “Normal/Gaussian/bell curve”:

$$\Pr\left[X \notin (0.99, 1.01) \mathbb{E}[X] \right] < \exp(-\delta \cdot n)$$

Otherwise: weaker bounds

In concentrated r.v.’s, expectation, median, etc.

Chernoff Bound: Let X_0, \ldots, X_{n-1} i.i.d. r.v.’s with $X_i \in [0,1]$. Then if $X = X_0 + \cdots + X_{n-1}$ and $p = \mathbb{E}[X]$ for every $\epsilon > 0$,

$$\Pr[|X - np| > \epsilon n] < 2 \cdot \exp(-2\epsilon^2 \cdot n)$$

< $\exp(-\epsilon^2 \cdot n)$ (if $n > \frac{1}{\epsilon^2}$)
Simplest Bound: Markov’s Inequality

Q: Suppose that the average age in a neighborhood is 20. Prove that at most $1/4$ of the residents are 80 or older.

A: Suppose otherwise:

$$\text{Avg} > \frac{1}{4} \cdot 80 = 20$$

Thm (Markov’s Inequality): Let X be a non-negative r.v. and $\mu = \mathbb{E}[X]$. Then for every $k > 1$, $\Pr[X \geq k\mu] \leq 1/k$

Proof: Same as question above
Variance & Chebychev

If X is r.v. with $\mu = \mathbb{E}[X]$ then $\text{Var}(X) = \mathbb{E}[(X - \mu)^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

$$\sigma(X) = \sqrt{\text{Var}(X)}$$

Chebychev’s Inequality: For every r.v. X

$$\Pr[X \geq k \text{ deviations from } \mu] \leq \frac{1}{k^2}$$

(Proof: Markov on $Y = (X - \mu)^2$)

Compare with $X = \sum X_i$ i.i.d or other r.v.’s well approx. by Normal where

$$\Pr[X \geq k \text{ deviations from } \mu] \approx \exp(-k^2)$$
Next Lectures

• Randomized Algorithms
 • Some examples

• Randomized Complexity Classes
 • \(\text{BPTIME}(T(n)), \text{BPP} \)
 • Properties of randomized computation (Reducing error ...)