CS 121: Lecture 24 Intro to Randomized Algorithms

Adam Hesterberg

https://madhu.seas.Harvard.edu/courses/Fall2020
Book: https://introtcs.org
How to contact us $\left\{\begin{array}{l}\text { The whole staff (faster response): CS } 121 \text { Piazza } \\ \text { Only the course heads (slower): cs121.fall2020.course.heads@gmail.com }\end{array}\right.$

Announcements:

- Midterm 2 graded. Solutions to be posted today-ish.
- Thanks for participating in Midterm Feedback Survey.
- Happy Thanksgiving! (Next lecture Tuesday.)

Where we are:

Last lecture

- Sample space -o on on on on on
- Events

- Union/intersection/negation - AND/OR/NOT of events
- Random variables
- Expectation

$$
X:\{0,1\}^{n} \rightarrow \mathbb{R}
$$

- Concentration / tail bounds

Today:

- Randomized Algorithms
- Polynomial Identity Testing
- Approximation for maximum cut
- Randomized Complexity Class BPP
- Properties of randomized computation (Reducing error ...)

Informal

A randomized algorithm has a special operation:

$$
\text { i.e. } f \circ \circ \sim\{0,1\}
$$

By repeating can choose foo $\sim\{0,1\}^{n}$ or $\sim[0,1]$

Randomized algorithms

 Two equivalent views:

1. Get input $x \in\{0,1\}^{n}$
2. Run alg $A(x)$ that has special operation $r_{i} \leftarrow$ RAND () ($r_{i} \sim\{0,1\}$)

3. Get input $x \in\{0,1\}^{n}$
4. Choose $r \sim\{0,1\}^{m}$
5. Run deterministic algorithm $A(x, r)$
output $=A L G($ input, randomness $)$

Computing a function

Not random input has to work in the worst case

Randomized algorithm $A L G$ computes F if for every input x

Polynomial Identity Testing: Problem

Q: $(x+y z)^{7}-x^{7}-y^{7} z^{7}=7 x(x+y z)\left(x^{2}+y^{2} z^{2}\right)\left(x^{2}+x y z+y^{2} z^{2}\right)$?
Standard form: $(x+y z)(x+y z)(x+y z)(x+y z)(x+y z)(x+y z)(x+y z)-x x x x x x x x-$ yyyyyyyzzzzzzz $-7 x(x+y z)(x x+y y z z)(x x+x y z+y y z z)=0$?

$$
x^{2}+2 x y z+y^{2} z^{2} \rightarrow
$$

Input φ : an expression like the above, with sums/products of variables.
Output $\operatorname{PIT}(\varphi): 1$ iff φ is the 0 polynomial.

Why is the following not a polynomial-time algorithm for PIT?

Alg-PIT(φ):

Multiply everything out, Add/subtract like terms, Return 1 iff all terms cancel.

Polynomial Identity Testing: Algorithm

$x=3 \quad y=0 \quad<=121$

Q: $(x+y z)(x+y z)(x+y z)(x+y z)(x+y z)(x+y z)(x+y z)-x x x x x x x-$ yyyyyyyzzzzzzz $-7 x(x+y z)(x x+y y z z)(x x+x y z+y y z z)=0$?

$$
x-y^{?}=0 \quad \hat{y}_{2} \quad 3^{3}-3^{2}-7 \cdot 3^{6} \neq 0
$$

Randomized algorithm for PIT (note: polynomial time!):

RandAlg-PIT(φ):

For each variable, choose a random number between 0 and $3 n$.
Plug in those values and do all the integer arithmetic. \leftarrow poly time Return 1 ff the result is 0 .
Can give the wrong answer! Give an example.
Give a_{n}

the random choices.)

Polynomial Identity Testing: Correctness (1/2)

Randomized algorithm for PIT:
RandAlg-PIT(φ):
For each variable, choose a random number between 0 and $3 n$.
Plug in those values and do all the integer arithmetic.
Return 1 iff the result is 0 .
Goal: $\operatorname{Pr}[\operatorname{RandAlg}-\operatorname{PIT}(x)=\operatorname{xit}(x)] \geq \frac{2}{3}$ for all x If $\operatorname{PIT}(\varphi)=1, \operatorname{Pr}[\operatorname{RandAlg}-\operatorname{PIT}(\varphi)=1]=1$ no matter. what If $\operatorname{PIT}(\varphi)=0 \ldots$

Polynomial Identity Testing: Correctness (2/2)

 $(x+y z)(x+y z)(x+y z)(x+y z)(x+y z)(x+y z)(x+y z)-x x x x x x x-$ $y y y y y y y z z z z z z$ 天 $7 x(x+y z)(x x+y y z z)(x x+x y z+y y z z) ? 0$?RandAlg-PIT (φ) :
For each variable, choose a random number between 0 and 3 n .
Plug in those values and do all the integer arithmetic.
Return 1 iff the result is 0 .
If $\operatorname{PIT}(\varphi)=0$: note that the degree is at most $n . \quad \operatorname{deg}\left(x^{2} y^{3}\right)=10$
Fact: A 1 -variable polynomial $p \neq 0$ is 0 for $\leq \operatorname{deg}(p)$ inputs in $\{0, \ldots, 3 n\}$
Fact: A k-variable polynomial $p \neq 0$ is 0 for $\leq \operatorname{deg}(p)(3 n+1)^{k-1}$ inputs in $\{0, \ldots, 3 n\}^{k}$
So $\operatorname{Pr}[\operatorname{RandAlg}-\operatorname{PIT}(\varphi)=\$]=\operatorname{Pr}[\varphi(x)=0] \leq \frac{\operatorname{deg}(p)}{3 n+1}<\frac{!}{3}$.

Success amplification

We have an algorithm RandAlg-PIT for which:

$$
\begin{aligned}
& \text { RandAlg-PIT for which: } \quad \text { PIt }(\varphi) \\
& \operatorname{Pr}\left[\operatorname{RandAlg}-\operatorname{PIT}(\varphi)=(\operatorname{low}(x)] \geq \frac{2}{3}\right.
\end{aligned}
$$

Give an algorithm BetterRandAlg-PIT for which:

$$
\operatorname{Pr}[\operatorname{RandAlg}-\operatorname{PIT}(\varphi)=F(x)] \geq 1-2^{-60 n}
$$

$$
\begin{aligned}
& \text { A. run the above } O\left(60 n^{\prime}\right) \text { times, return the } \\
& \text { major ity an suer. }
\end{aligned}
$$

Note: $\operatorname{Pr}[$ failure $]<\operatorname{Pr}[$ asteroid hits us this minute] Bottom line: randomized algorithms as good as deterministic for all practical purposes.

Recall: randomized algorithms - work on worst case inputs. Randomness is only over the coins of the algorithm.

Input: Graph $G=(V, E)$.
Output: Partition of V maximizing \# of crossing edges.

Define: $O P T(G)=\max _{S \subseteq V}|\mathrm{E}(\mathrm{S}, \bar{S})|$ to be max \# of cut edges.
If $P \neq N P$, no poly-time alg computes $O P T(G) /$ produces cut achieving it.
We'll show: Poly-time randomized algorithm that w/ probability ≥ 0.99 outputs cut S that cuts at least $0.5 \cdot \underset{\text { computing }}{\text { OPT }}$ relation edges. Note: nst computing computing a relation $2 \hat{\theta}$
Best known: Alg cutting $\alpha \cdot O P T(G)$ edges for $\alpha=\min _{0 \leq \theta \leq \pi} \frac{2}{\pi} \cdot \frac{\theta}{1-\cos \theta} \approx 0.87857$
Central open question: is this optimal?

Input: Graph $G=(V, E)$.
Output: Partition of V maximizing \# of crossing edges.
Define: $O P T(G)=\max _{S \subseteq V}|\mathrm{E}(\mathrm{S}, \bar{S})|$ to be max \# of cut edges.
We'll show: Poly-time randomized algorithm that w/ probability ≥ 0.99 outputs cut S that cuts at least $0.5 \cdot O P T(G)$ edges.

Thm: \exists randomized poly time algorithm A s.t. with prob ≥ 0.99

$$
A(G)=\text { S s.t. }|E(S, \bar{S})| \geq|E| / 2
$$

Q: Why does Thm imply what we need to show?

Thm: \exists randomized poly time algorithm A s.t. with prob ≥ 0.99

$$
A(G)=\text { S s.t. }|E(S, \bar{S})| \geq|E| / 2
$$

Lemma: \exists randomized poly time algorithm A s.t. if $S=A(G)$ then

$$
\mathbb{E}[|E(S, \bar{S})|] \geq|E| / 2 \quad \begin{gathered}
\text { Ruhs of } \\
.499|E|
\end{gathered}
$$

Over randomness of A
$.999(E)$
.499 IEI
. 999 IE
Q: Why does Lemma not immediately imply the theorem?

Lemma: \exists randomized poly time algorithm A s.t. if $S=A(G)$ then

$$
\mathbb{E}[|E(S, \bar{S})|] \geq|E| / 2
$$

Proof: Given G on n vertices, A picks $x \sim\{0,1\}^{n}$ and output $S=\left\{i \mid x_{i}=1\right\}$
For every edge $(i, j) \in E$, define $X_{i, j}= \begin{cases}1, & x_{i} \neq x_{j} \\ 0, & x_{i}=x_{j}\end{cases}$
Q: What is $\mathbb{E}\left[X_{i, j}\right]$? $\quad \mathrm{A}: 1 / 2$
Q: Prove that $|E(S, \bar{S})|=\mathbb{E}\left[\sum_{(i, j) \in E} X_{i, j}\right]=\sum_{(i, j) \in E} \mathbb{E}\left[X_{i, j}\right]=\frac{|\hat{E}|}{2}$

From expectation to high probability

Given: Poly-time alg A s.t. that $\mathbb{E}[\operatorname{val}(A(G))] \geq k$
Goal: Poly-time alg B s.t. that $\operatorname{Pr}[\operatorname{val}(B(G)) \geq k] \geq 0.99$
Algorithm B
Input: G
for $i=1 \ldots 1000 m$:
$S_{i} \leftarrow A(G) \#$ fresh randomness each time
for $i=1$... 1000m:
return S_{i} maximizing edges cut

Given: Poly-time alg A s.t. that $\mathbb{E}[\operatorname{val}(A(G))] \geq k$
Goal: Poly-time alg B s.t. that $\operatorname{Pr}[\operatorname{val}(B(G)) \geq k] \geq 0.99$
Algorithm B
Input: G
for $i=1 \ldots 1000 m$:
$S_{i} \leftarrow A(G) \#$ fresh randomness each time
return S_{i} maximizing edges cut

Lemma: $\operatorname{Pr}[\operatorname{val}(A(G)) \geq k] \geq 1 / m$
Q: Prove that Lemma $\Rightarrow \operatorname{Pr}[\operatorname{val}(B(G)) \geq k] \geq 0.99$

Given: Poly-time alg A s.t. that $\mathbb{E}[\operatorname{val}(A(G))] \geq k$ Lemma: $\operatorname{Pr}[\operatorname{val}(A(G)) \geq k] \geq 1 / m$

Proof: Suppose that $\operatorname{Pr}[\operatorname{val}(A(G)) \geq k]<\frac{1}{m}$
$\underbrace{\sum}_{|E| / 2}$
number of edges
in cut
then
$|E|$

$$
\begin{aligned}
& \frac{1}{2}=k \leq \mathbb{E}\left[\operatorname{val}(A(G)]<\frac{1}{m} \cdot m\right. \\
& p[A(0) \geq \pi] E[\text { wal if } A(6) \geq k]+\underbrace{n}
\end{aligned}
$$

$$
+p[A(6) \leq k] E[\text { val if } A(6)<k] \text { Contribution }
$$ from case that $\operatorname{val}(A(G)) \geq k$

Contribution from case that

$$
\operatorname{val}(A(G))<k-1
$$

Recap

Def: $F:\{0,1\}^{*} \rightarrow\{0,1\}$ is in $B P P$ is there is a poly-time randomized algorithm A s.t. $\forall n \forall x \in\{0,1\}^{n}$

$$
\begin{aligned}
& \operatorname{Pr}_{\text {A's randomness }}[A(x)=F(x)] \geq \frac{2}{3} \\
& \text { not over input: every input }
\end{aligned}
$$

Def: $F:\{0,1\}^{*} \rightarrow\{0,1\}$ is in BPP is there is a poly-time algorithm A, poly $q(n)$ s.t. $\forall n \forall x \in\{0,1\}^{n}$

$$
\operatorname{Pr}_{r \sim\{0,1\}^{q(n)}}[A(x ; r)=F(x)] \geq \frac{2}{3}
$$

All functions $F:\{0,1\}^{*} \rightarrow\{0,1\}$
\boldsymbol{R} Computable functions

* $H A L T 2_{2^{n}}$

All functions $F:\{0,1\}^{*} \rightarrow\{0,1\}$
\boldsymbol{R} Computable functions
$\mathcal{A} \operatorname{HALT}_{2^{2 n}}$

Next Lecture

- BPP vs EXP
- BPP vs P/poly
- BPP vs NP

