
CS 121: Lecture 24
Intro to Randomized Algorithms

Adam Hesterberg

https://madhu.seas.Harvard.edu/courses/Fall2020

Book: https://introtcs.org

Only the course heads (slower): cs121.fall2020.course.heads@gmail.com{How to contact us
The whole staff (faster response): CS 121 Piazza

Announcements:
• Midterm 2 graded. Solutions to be posted today-ish.
• Thanks for participating in Midterm Feedback Survey.
• Happy Thanksgiving! (Next lecture Tuesday.)

Where we are:
Part I: Circuits:
Finite computation,
quantitative study

Part II: Automata:
Infinite restricted computation,
quantitative study

Part III: Turing Machines:
Infinite computation, qualitative study

Part IV: Efficient Computation:
Infinite computation, quantitative study

Part V: Randomized computation:
Extending studies to non-classical algorithms

9
9

9

9

Last lecture

• Sample space
• Events
• Union/intersection/negation – AND/OR/NOT of events
• Random variables
• Expectation
• Concentration / tail bounds

ܺ: {0,1} ՜ Թ

Average value of ܺ : ॱ ܺ = σ௫א{,ଵ} 2ିܺ(ݔ) = σ௩אԹݒ ڄ Pr[ܺ = [ݒ

Today:

• Randomized Algorithms
• Polynomial Identity Testing
• Approximation for maximum cut

• Randomized Complexity Class BPP
• Properties of randomized computation (Reducing error …)

Informal
A randomized algorithm has a special operation:

foo = i.e. foo {0,1}

By repeating can choose foo {0,1} or [0,1]

'
o

Randomized algorithms
Two equivalent views:

input

Internal “coin
tosses”

output

input

outputRandom
 coins

ݐݑݐݑ = ,ݐݑ݊݅)ܩܮܣ (ݏݏ݁݊݉݀݊ܽݎ

1. Get input ݔ א {0,1}
2. Choose ݎ {0,1}
3. Run deterministic algorithm ݔ)ܣ, (ݎ

1. Get input ݔ א {0,1}
2. Run alg (ݔ)ܣ that has special

operation ݎ ՚)ܦܰܣܴ)
ݎ) {0,1})

deterministic

Time→

Computing a function

Randomized algorithm ܩܮܣ computes ܨ if for every input ݔ

Pr ܩܮܣ ݔ = ܨ ݔ
2
3

Not random input –
has to work in the worst case

Probability over the randomness
of the algorithm, not the input The constant 2/3 is arbitrary – can

be replaced by 0.51, 0.99, even
1െ 2ି. Not by 1/2.

BPP: {Boolean functions computable by some randomized algorithm}poly- time z p

Polynomial Identity Testing: Problem
Q: (ݔ + ݔെ(ݖݕ െ ݖݕ = ݔ ݔ + ݖݕ ଶݔ + ଶݖଶݕ ଶݔ + ݖݕݔ + ଶݖଶݕ ?
Standard form: ݔ + ݖݕ ݔ + ݖݕ ݔ + ݖݕ ݔ + ݖݕ ݔ + ݖݕ ݔ + ݖݕ ݔ + ݖݕ െ ݔݔݔݔݔݔݔ െ
ݖݖݖݖݖݖݖݕݕݕݕݕݕݕ െ ݔ7 ݔ + ݖݕ ݔݔ + ݖݖݕݕ ݔݔ + ݖݕݔ + ݖݖݕݕ = 0?

Input ߮: an expression like the above, with sums/products of variables.
Output ܲ1 :(߮)ܶܫ iff ߮ is the 0 polynomial.

Why is the following not a polynomial-time algorithm for PIT?
Alg-PIT(߮):

Multiply everything out,
Add/subtract like terms,
Return 1 iff all terms cancel.

X't Zxyztyz →

Polynomial Identity Testing: Algorithm

Q: ݔ + ݖݕ ݔ + ݖݕ ݔ + ݖݕ ݔ + ݖݕ ݔ + ݖݕ ݔ + ݖݕ ݔ + ݖݕ െ ݔݔݔݔݔݔݔ െ
ݖݖݖݖݖݖݖݕݕݕݕݕݕݕ െ ݔ ݔ + ݖݕ ݔݔ + ݖݖݕݕ ݔݔ + ݖݕݔ + ݖݖݕݕ = 0?

Randomized algorithm for PIT (note: polynomial time!):
RandAlg-PIT(߮):

For each variable, choose a random number between 0 and 3n.
Plug in those values and do all the integer arithmetic.
Return 1 iff the result is 0.

Can give the wrong answer! Give an example.

.

X - 3 y :O 2=121

r

x -y O 72 5-3>-7.36*0

← poly time

(Give an input and the random choices
.

)
Tpolynomial inputs

Polynomial Identity Testing: Correctness (1/2)

Randomized algorithm for PIT:
RandAlg-PIT(߮):

For each variable, choose a random number between 0 and 3n.
Plug in those values and do all the integer arithmetic.
Return 1 iff the result is 0.

Goal: Pr ݈݃ܣܴ݀݊ܽ െ ܶܫܲ ݔ = ܶܫܲ ݔ ଶ
ଷ

If ܲܶܫ ߮ = 1, Pr ݈݃ܣܴ݀݊ܽ െ (߮)ܶܫܲ = 1 = 1

If ܲܶܫ ߮ = 0…

← ¥)
for all x
no matter what

you plug in to 0

poly , get 0 .

Polynomial Identity Testing: Correctness (2/2)
ݔ + ݖݕ ݔ + ݖݕ ݔ + ݖݕ ݔ + ݖݕ ݔ + ݖݕ ݔ + ݖݕ ݔ + ݖݕ െ ݔݔݔݔݔݔݔ െ
ݖݖݖݖݖݖݖݕݕݕݕݕݕݕ = ݔ)ݔ + ݔݔ)(ݖݕ + ݔݔ)(ݖݖݕݕ + ݖݕݔ + ?(ݖݖݕݕ
RandAlg-PIT(߮):

For each variable, choose a random number between 0 and 3n.
Plug in those values and do all the integer arithmetic.
Return 1 iff the result is 0.

If ܲܶܫ ߮ = 0: note that the degree is at most ݊.
Fact: A 1-variable polynomial ് 0 is 0 for deg() inputs in {0,… ,͵݊}

Fact: A k-variable polynomial ് 0 is 0 for deg()(͵݊ + 1)ିଵ inputs in {0,… ,͵݊}

So Pr ݈݃ܣܴ݀݊ܽ െ ܶܫܲ ߮ = 0 = Pr ߮ ݔ = 0 ୢୣ
ଷାଵ

< ଶ
ଷ
.

(xty#

I = 0 ?

deg (x'y3)=D

x -y

Mf • I

Success amplification
Pr ݈݃ܣܴ݀݊ܽ െ ܶܫܲ ߮ = ܨ ݔ

2
3

We have an algorithm RandAlg-PIT for which:

Give an algorithm BetterRandAlg-PIT for which:

Pr ݈݃ܣܴ݀݊ܽ െ ܶܫܲ ߮ = ܨ ݔ 1െ 2ି

Note: Pr ݁ݎݑ݈݂݅ܽ < Pr[݀݅ݎ݁ݐݏܽ ݏݐ݄݅ ݏݑ ݏ݄݅ݐ [݁ݐݑ݊݅݉
Bottom line: randomized algorithms as good as deterministic for all
practical purposes.

Recall: randomized algorithms – work on worst case inputs.
Randomness is only over the coins of the algorithm.

runs

ii. KIL
:e.Hamlet :X
in"L Is

A : run the above 01607 times; return the
majority answer.

Input: Graph ܩ = .(ܧ,ܸ)
Output: Partition of ܸ maximizing # of crossing edges.

Define: ܱܲܶ ܩ = max
ୗك

|E S, ܵ | to be max # of cut edges.

If ܲ ് ܰܲ,no poly-time alg computes ܱܲܶ(ܩ) / produces cut achieving it.

We’ll show: Poly-time randomized algorithm that w/ probability 0.99
outputs cut ܵ that cuts at least 0.5 ڄ (ܩ)ܱܶܲ edges.

Best known: Alg cutting ߙ ڄ (ܩ)ܱܶܲ edges forߙ = min
ஸఏஸగ

2
ߨ
ڄ

ߠ
1െ cos ߠ

ൎ 0.87857

Central open question: is this optimal?

Note: t computing
computing a relation

a function!

Input: Graph ܩ = .(ܧ,ܸ)
Output: Partition of ܸ maximizing # of crossing edges.

Define: ܱܲܶ ܩ = max
ୗك

|E S, ܵ | to be max # of cut edges.

We’ll show: Poly-time randomized algorithm that w/ probability 0.99
outputs cut ܵ that cuts at least 0.5 ڄ (ܩ)ܱܶܲ edges.

Thm: randomized poly time algorithm ܣ s.t. with prob 0.99

ܣ ܩ = S s.t. ܧ ܵ, ܵ 2/|ܧ|

Q: Why does Thm imply what we need to show?

ܣ ܩ = S s.t. ܧ ܵ, ܵ 2/|ܧ|

Lemma: randomized poly time algorithm ܣ s.t. if ܵ = (ܩ)ܣ then

ॱ ܧ ܵ, ܵ 2/|ܧ|

Over randomness of ܣ

Q: Why does Lemma not immediately imply the theorem?

Thm: randomized poly time algorithm ܣ s.t. with prob 0.99

Runs of A :

•
499 let
• 999 'El
- 499 LEI
-4991 El

Proof: Given ܩ on ݊ vertices, ܣ picks ݔ {0,1} and output ܵ = ݅ ݔ = 1 }

For every edge ݅, ݆ א ܧ , define ܺ, = ൝
1, ݔ ് ݔ
0, ݔ = ݔ

Q: Prove that ܧ ܵ, ܵ = σ , ாא ܺ,

Q: What is ॱ[ܺ,]?

Lemma: randomized poly time algorithm ܣ s.t. if ܵ = (ܩ)ܣ then

ॱ ܧ ܵ, ܵ 2/|ܧ|

A: 1/2

E J
⇐

KG =

From expectation to high probability
Given: Poly-time alg ܣ s.t. that ॱ ܣ)݈ܽݒ ܩ) ݇

Goal: Poly-time alg ܤ s.t. that Pr[݈ܽݒ ܤ ܩ ݇] 0.99

Algorithm ܤ

Input: ܩ
for ݅ = 1… ͳͲͲͲ݉:

ܵ ՚ (ܩ)ܣ # fresh randomness each time

return ܵ maximizing edges cut

Success
amplification

݉: # of edges

¥79,1 wlp . 999
Mn
(El wlp .

001

m - let

Given: Poly-time alg ܣ s.t. that ॱ ܣ)݈ܽݒ ܩ) ݇
Goal: Poly-time alg ܤ s.t. that Pr[݈ܽݒ ܤ ܩ ݇] 0.99

Algorithm ܤ

Input: ܩ
for ݅ = 1… ͳͲͲͲ݉:

ܵ ՚ (ܩ)ܣ # fresh randomness each time

return ܵ maximizing edges cut

Lemma: Pr[݈ܽݒ ܣ ܩ ݇] 1/݉

Q: Prove that Lemma ֜ Pr[݈ܽݒ ܤ ܩ ݇] 0.99

Given: Poly-time alg ܣ s.t. that ॱ ܣ)݈ܽݒ ܩ) ݇

Lemma: Pr[݈ܽݒ ܣ ܩ ݇] 1/݉

Proof: Suppose that Pr ݈ܽݒ ܣ ܩ ݇ < ଵ

ॱ[݈ܽݒ ܣ ܩ <
1
݉
ڄ ݉ + 1 ڄ (݇ െ 1)

then

Contribution
from case that
݈ܽݒ ܣ ܩ ݇

Contribution
from case that
݈ܽݒ ܣ ܩ < ݇ െ 1

= ݇

prob < 1/݉ val ݉ prob 1 val ݇ െ 1

P
,

#
IElk

n cyber of edge,
m cat

IEKE
Z y g

p CAH-④ Ecwval it Al 6)
'II

xp CANINE Gal if AG)

Recap
Def: ܨ: כ{0,1} ՜ {0,1} is in ܲܲܤ is there is a poly-time
randomized algorithm ܣ s.t. ݊ ݔ א 0,1

Pr
ᇲ௦ ௗ௦௦

ܣ] ݔ = [(ݔ)ܨ
2
3

Def: ܨ: כ{0,1} ՜ {0,1} is in ܲܲܤ is there is a poly-time
algorithm ܣ , poly ݍ ݊ s.t. ݊ ݔ א 0,1

Pr
{,ଵ}

ܣ] ;ݔ ݎ = [(ݔ)ܨ
2
3

not over input : every input

Functions with unbounded input lengths:
inclusion diagram – not to scale!!

Some classes might “collapse” to one another.

All functions ܨ: כ{0,1} ՜ {0,1}
ࡾ Computable functions

ࡼࢄࡱ

࢟/ࡼ
ܶܮܣܪ

Uܶܮܣܪ

ଶమܶܮܣܪ

ܩܰܫܴܱܶܥܣܨܶܣܵ͵

ଶܶܮܣܪ

ܶܣܵʹࡼ
ࡼࡼ

ܻܶܫܮܣܯܫܴܲ
ܶܫܲ

Functions with unbounded input lengths:
inclusion diagram – not to scale!!

Some classes might “collapse” to one another.

All functions ܨ: כ{0,1} ՜ {0,1}
ࡾ Computable functions

ࡼࢄࡱ

࢟/ࡼ
ܶܮܣܪ

Uܶܮܣܪ

ଶమܶܮܣܪ

ܩܰܫܴܱܶܥܣܨܶܣܵ͵

ଶܶܮܣܪ

ܶܣܵʹࡼ ࡼࡼ
ܻܶܫܮܣܯܫܴܲ

ܶܫܲ

=

Unknown but believed to be true

Next Lecture

• BPP vs EXP
• BPP vs P/poly
• BPP vs NP

