CS 121: Lecture 6 Code = Data

Madhu Sudan

https://madhu.seas.Harvard.edu/courses/Fall2020
Book: https://introtes.org
How to contact us $\left\{\begin{array}{l}\text { The whole staff (faster response): CS } 121 \text { Piazza } \\ \text { Only the course heads (slower): } \text { cs121.fall2020.course.heads@gmail.com }\end{array}\right.$

Where we are:

- Definition of Circuits
- Universality of NAND
- All functions can be computed
- $\forall f:\{0,1\}^{n} \rightarrow\{0,1\}$: Size $(f) \leq O\left(\frac{2^{n}}{n}\right)$
- Claimed: $\exists f, \backslash \operatorname{Size}(f) \geq \Omega\left(\frac{2^{n}}{n}\right)$
- Today: Will prove above.
- Show: Code = Data
- Show how to interpret Data as

Part IV: Efficient Computation:
Infinite computation, quantitative study
Part III: Turing Machines:
Infinite computation, qualitative study
 Code.

Part V: Randomized computation:
Extending studies to non-classical algorithms

Today: Code as Data

- Circuits can be represented by bits
- Exercise break: Quantify above. Prove lower bound on Circuit size (for hardest function).
- Universality: Circuit Interpreter I(C,x) $=C(x)$
- As immediate consequence of "Code as data" - Inefficient
- Efficient Circuit Interpreter (sketch)
- Exercise break: Some Ingredients

Notation: SIZE(s)

Answer was: The cricit is not inscze(angthing) since curmits are

- $\operatorname{SIZE}(\mathrm{s})=\left\{f:\{0,1\}^{n} \rightarrow\{0,1\} \mid \exists C\right.$ with $\leq s$ NAND gates computing $\left.f\right\}$
- $\operatorname{SIZE}(s)=$ Our first complexity class!
- Always a set (aka "class") of functions, not algorithms !
- Is the following in $\operatorname{SIZE}(3)$? $\operatorname{SIZE}(10)$?

- $\operatorname{ALL}_{n}=\left\{f:\{0,1\}^{n} \rightarrow\{0,1\}\right\}$
- Thm: $\operatorname{ALL}_{n} \subseteq \operatorname{SIZE}\left(O\left(\frac{2^{n}}{n}\right)\right)$
- (Claimed) Thm: $\operatorname{ALL}_{n} \nsubseteq \operatorname{SIZE}\left(o\left(\frac{2^{n}}{n}\right)\right)$

Reminder: Circuit \equiv Straightline Program

Temp $[0] \leftarrow \operatorname{NAND}(X[0], X[1])$
Temp [1] $\leftarrow \operatorname{NAND}(X[2], X[2])$

Encode to $\{0,1\}^{*}$ in class

$$
(0 \leftarrow x 0, \times 1)
$$

$$
(1 \leftharpoonup \times 2, \times 2)
$$

Temp $[\mathrm{i}] \leftarrow \operatorname{NAND}(\operatorname{Temp}[j], X[k])$

$$
\mathrm{Y}[0] \leftarrow \operatorname{NAND}(X[0], X[1])
$$

$$
\mathrm{Y}[\mathrm{~m}-1] \leftarrow \operatorname{NAND}(X[0], X[1])
$$

$$
i, j, k \ldots \in[n+s]
$$

$$
\delta=\# \text { lines. }
$$

Exercise Break 1:

1. Make Representation quantitative:

- Give (prefix-free) E : Circuits $\rightarrow\{0,1\}^{*}$, such that $\forall C$ with $\leq s$ gates, $|\boldsymbol{E}(\boldsymbol{C})|=\boldsymbol{O}(\boldsymbol{s} \log \boldsymbol{s})$

2. Show $|\operatorname{SIZE}(s)|=2^{O(s \| \log s)}$
3. Show $\exists f:\{0,1\}^{n} \rightarrow\{0,1\}$ s.t. $f \notin \operatorname{SIZE}\left(o\left(\frac{2^{n}}{n}\right)\right)\left(\Leftrightarrow \operatorname{ALL}_{\boldsymbol{n}} \nsubseteq \operatorname{SIZ} \boldsymbol{E}\left(\boldsymbol{o}\left(\frac{2^{n}}{n}\right)\right)\right)$

Bonus question (0 points): Why do Boaz Barak's slides associate this picture with $3^{\text {rd }}$ exercise!

Representation
S gates: Each gate $=3$ variables

- represent each line by

$$
3 \log (5)+\theta(1))
$$

- total $5 \times 3 \log (x s+O(1))$

$$
\text { Prefix-free } \rightarrow O(\log s)+\downarrow O(\log s)
$$

Part 1: Representation:

- We represent the corine as a list of lines.
- So need a prefix-free representation of line.
- line $=$ ordered tuple of 3 variables; Each variable from a set of $\eta+s_{\pi}$ variables $\leq 3 s$ variables n inputs ${ }^{\rho} s$ temp variables
[Can wee $n \leqslant 2 s$, since other inputs not involved in any gate]
\Rightarrow line requires $3 \log (3 s)$ bits.
\Rightarrow Girmit requers $S \times($ bits $/$ per line $)=S \times 3 \log 3 s=O(s \operatorname{logs})$

Part (2):

- Let $\operatorname{CIRCUIT}(S)=$ \{all circuits wilt at most S NAND gales\} ~
- We will prove $\mid S\left(2 E(S)|\leqslant|\operatorname{CIRCUIT}(S)| \leqslant|\{0,1\}^{0(s \operatorname{logs}) \mid}\right.$

$$
=2^{0(s \log s)}
$$

- Consider the map $A: \operatorname{SizE}(S) \rightarrow \operatorname{CIRCUIT}(S)$
where given $f \in \operatorname{SIZE}(S), A(f)$ is a cirint of size $\leqslant s$ that computes f.
A is 1.1 since $A(f)=A(g) \Rightarrow f=g$ any given cirlint computes one function]

$$
\Rightarrow|S I Z E(s)| \leq|\operatorname{Circuit}(s)|
$$

- From Part 1 of Exercise we have

$$
E: C_{1 R C u I T}(s) \rightarrow\{0,1\}^{0(s \log s)} \text { that is } 1-1 \text {. }
$$

$$
\Rightarrow \quad|C| r C u T(s)\left|\leq\left|\{0,1\}^{O(s \log s)}\right|=2^{O(s \log s)}\right.
$$

$$
\pm
$$

For $\operatorname{part}(3)$, real $A u_{n}=\left\{f:\{0,1\}^{n} \rightarrow\{0,1\}\right\}$
$\operatorname{SIZE}\left(O\left(\frac{2^{n}}{n}\right)\right)=\left\{f \in A L_{n} \mid f\right.$ hus circuits of size $\left.0\left(\frac{2^{n}}{n}\right)\right\}$

- We wish to show

$$
\begin{aligned}
& \text { to show } \\
& A L_{n} \notin \operatorname{SIZE}\left(0\left(\frac{2^{n}}{n}\right)\right)\left[\begin{array}{l}
\exists f \in A L_{n} \text { that does } \\
\text { not have }\left(\frac{2^{n}}{n}\right) \text { sired } \\
\text { cirats }
\end{array}\right]
\end{aligned}
$$

- Big Body Small shirt Principle if $|A|>|B|$ then $A \nsubseteq B$
- Apply to $A=A L_{n} \Rightarrow|A|=2^{2^{n}}[$ can yen prove His? ?

$$
\begin{aligned}
B=\operatorname{SizE}\left(0\left(\frac{2^{n}}{n}\right)\right) \Rightarrow|B| & =2^{0\left(0\left(\frac{2^{n}}{n}\right) \cdot \log \log _{n}^{n}\right)^{n}} \\
& =2^{0\left(2^{n} \cdot n\right)}=2^{0\left(2^{n}\right)}
\end{aligned}
$$

so. $|A|>|B| \Rightarrow A \notin B$

$$
\Rightarrow A \neq 15
$$

Interpreting Code

- Objective: Show Data representing Code can be interpreted as code.
- Have just shown: $\exists E$: Circuits \mapsto binary string, 1-to-1

$$
C \text { has } \leq s \text { NAND Gates } \Rightarrow|E(C)|=O(s \log s)
$$

- EVAL: $(E(C), x) \mapsto C(x), \forall C$ with n inputs, $x \in\{0,1\}^{n}$
- EVAL is a partial function - why?

$$
\text { EVAL }_{m, n}:\left\{0,13^{m+n} \times x^{n}, 1 S^{n} \rightarrow\{0,1\}\right.
$$

- $\mathrm{EVAL}_{m, n}=$ restriction of EVAL to $E(C) \in\{0,1\}^{m}, x \in\{0,1\}^{n}$
- Thm: $\mathrm{EVAL}_{m, n}$ computed by circuit of size $O\left(2^{m+n}\right)$
- Proof: Obvious!
- Implication: Power of Code \leftrightarrow Data-duality!

Rest of Tile lecture:
(1) You should know the theorem being proved but proof is not necessary (for h_{w}, tests...) (you can read the proof if interested!)
(2) You should read the "Extencled Turing Church Thesis (ciriunt version)" \& be aware of the statement + implications.

Interpreting Circuits Efficiently.
$m+n$ vs. m

- Ignore the
- Goal: Show EVAL $\left(m \in n \in \operatorname{SIZE}\left(O\left((m+n)^{2} \log ^{2} n\right)\right)\right.$
- Theorem 5.3 in Barak's IntroTCS. difference
- Her spare only
- Best bound in literature: close to $O\left((m+n) \log ^{2}(m+n)\right)$ $2 m$ real ingot
- Great, but not "Meta-circular interpreter" (small interpreter that interprets bigger functions).
(1) length of moet $=n$
(2) Cengtin of ciriut $=S$
(3) Encoding lens $=m \geqslant S$

Sketch of EVAL

- Recall: $E(C)=\left(\left(i_{0}, j_{0}, k_{0}\right) \ldots\left(i_{s-1}, j_{s-1}, k_{s-1}\right)\right){ }_{\uparrow}(s \leq m)$
- Define: $W_{t} \in\{0,1\}^{n+s}$: Values of n inputs, s TEMPs after t execution steps
- Define:
- VAL - TER: $(E(C), x, t) \mapsto W_{t}$

$$
W_{t \rightarrow 1} W_{t+1}
$$

- EVALHELP: $\left(W_{t-1}, i_{t}, j_{t}, k_{t}\right) \mapsto W_{t}$;
- $\operatorname{EVAL}-\operatorname{ITER}(E(C), x, t)=\operatorname{EVALHELP}\left(E V A L-\operatorname{ITER}(E(C), x, t-1), i_{t}, j_{t}, k_{t}\right)$
- Suffices to show EVALHELP $\in \operatorname{SIZE}((m+n) \log m+n)$

$$
\operatorname{Temp}\left(k_{t}\right) \leftarrow \operatorname{NaND}\left(\operatorname{Tomp}\left(i_{t}\right), \operatorname{Temp}\left(j_{t}\right)\right)
$$

Sketch of EVALHELP

- Key Ingredients:

- $\operatorname{LOOKUP}(W, i)=W_{i}$ where $W=W_{0} \ldots W_{m-1} \in\{0,1\}^{m}, i \in[m]$ represented in binary.
$\rightarrow \cdot \operatorname{UPDATE}(\underline{W}, k, b)=\widehat{W}$ where $\widehat{W}_{k}=b$ and $\widehat{W}_{\ell}=W_{\ell}$ for $\ell \neq k$
- Claims:
- LOOKUP $\in \operatorname{SIZE}(m)$
- Exercise: UPDATE $\in \operatorname{SIZE}\left(m^{2}\right)$ (even better $\operatorname{SIZE}(m \log m)$)
- Don't have to work out details. Think of the high-level plan.
- $\operatorname{EVALHELP}(W, i, j, k)=\operatorname{UPDATE}(W, k, \operatorname{NAND}(\operatorname{LOOKUP}(W, i), \operatorname{LOOKUP}(W, j)))$
\qquad , \qquad

Exercise Break 2:

- $\operatorname{UPDATE}(W, k, b)=\widehat{W}$ where $\widehat{W}_{k}=b$ and $\widehat{W}_{\ell}=W_{\ell}$ for $\ell \neq k$

$$
W, \widehat{W} \in\{0,1\}^{m}, k \in[m] \text { represented in binary }
$$

- Exercise:

- Show UPDATE $\in \operatorname{SIZE}\left(m^{2}\right)$ (even better $\left.\operatorname{SIZE}(m \log m)\right)$
- Don't have to work out details. Think of the high-level plan.

Note that UPDATE $(w, k, b)_{i}=b$ if $k=i$

$$
=w_{i} \text { if } k \neq i
$$

write $k=k_{0} \ldots k_{l}$ where $l=\log (m+n)$

$$
\text { so that. } k=k_{0}+2 k_{1}+\cdots 2^{e} k_{l} \text {. }
$$

similarly $i=i_{0} \ldots i_{l}$
let
Thu $\operatorname{UPDATE}(W, k, b)_{i}=\operatorname{IF}\left(\delta_{i}\left(k_{0} . . k_{l}\right), b, W_{i}\right)$
where $\delta_{i}\left(k_{0} . . k_{l}\right)=\underset{j=0}{\operatorname{AND}}\left[\operatorname{NOT}\left(\operatorname{XOR}\left(i_{j}, k_{j}\right)\right)\right.$

- Si requires $O(l)$ gates;

UPDATE $(\omega, k, b)_{i}$ also requires Ole) gates $\begin{aligned} & \\ & \quad \begin{array}{l}\text { UPDAE requires } \\ \\ O(m l) \\ = \\ =(m \log m) \text { gates }\end{array}\end{aligned}$

Circuits: What you need to know

Theorem I: Every function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed by circuit of size $O\left(2^{n} / n\right)$.

Theorem II: Some functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$ cannot be computed by circuits of size $o\left(2^{n} / n\right)$.

SIZE Hierarchy Theorem: Book + Section/HW
Thm 5.11: $\exists C\left(C=1000\right.$ will do) .s.t $\forall s<\frac{2^{n}}{C n}, S I Z E_{n, 1}(s) \subsetneq S I Z E_{n, 1}(C \cdot s)$

* If f outputs m bits then add factor m to Thm I,II

Extended Church Turing Thesis (circuit version)

If $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ can be computed in the physical world using s resources then f can be computed by circuit of $\approx s$ (e.g. $O\left(s^{2}\right)$ or $O\left(s^{3}\right)$) gates.
(finite function version - we'll see unbounded function version soon)
TL;DR: So far still stands. Only serious challenge is quantum computing which we'll see later.

Non-serious challenges: (Following slides stolen from Boaz Barak who stole it from Scott Aaronson)

Soap Bubble Computer

Protein Folding

Spaghetti Sort

Relativity Computer

(cf. Malament and Hogarth)

Zeno's Computer

Where we are:

Where we are:

End of Lecture

If eligible, Get Ready to Vote

- Today is National Voter Registration and Request your Ballot Day
- This year, young people are the largest voting bloc in the country.
- Less than 50% of Harvard students voted in 2018.
- Visit bit.ly/HVCpledge. If eligible, make sure to check your voter registration (and make sure that the right addresses are listed) and either request a mail ballot or make a plan to vote in person.
- If you have already completed these steps, still fill out the form to double check! Sometimes people think they are registered when they're not! Not everyone is eligible to vote encourage your friends to turn out and take action in other ways.
- Questions? Email voteschallenge@harvard.edu!

