CS 121: Lecture 7 Infinite Functions And Finite Automata

Madhu Sudan

https://madhu.seas.Harvard.edu/courses/Fall2020
Book: https://introtcs.org

How to contact us $\left\{\begin{array}{l}\text { The whole staff (faster response): CS } 121 \text { Piazza } \\ \text { Only the course heads (slower): } \text { cs121.fall2020.course.heads@gmail.com }\end{array}\right.$

Reminders

- 121.5: Ryan O'Donnell, Analysis of Boolean Functions. Today @ 4:30
- Section 3 cycle begins today
- Extra-length sections:
- Will (Thursdays: 6-7:30pm), Max \& Zuzanna (Tuesdays: 7:30am-9am).

Today

- Infinite vs. Finite functions
- Example: Addition as finite state algorithm
- (Deterministic) Finite Automata:
- Break 1: Understand DFA
- Break 2: Design DFA
- Preview of next lecture: Regular Expressions
- Have seen Circuits/NAND-CIRC Programs
- Compute all finite functions:
- Given $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, exists NAND-CIRC C, s.t. $\forall x \in\{0,1\}^{n}, C(x)=f(x)$
- Sounds great?

XOR on 2 variables

XOR on 3 variables

XOR on 4 variables

XOR on 5 variables

XOR on 6 variables

XOR on 7 variables

XOR on 8 variables

XOR on 9 variables

XOR on 10 variables

So far

- Have seen Circuits/NAND-CIRC Programs
- Compute all finite functions:
- Given $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, exists NAND-CIRC C, s.t. $\forall x \in\{0,1\}^{n}, C(x)=f(x)$
- Sounds great?
- Weakness: Only computes finite functions.
- No generalization?
- Given circuits for $\mathrm{ADD}_{1}, \mathrm{ADD}_{2}, \mathrm{ADD}_{3}, \ldots \mathrm{ADD}_{n}$ - do we know what circuit for ADD_{n+1} looks like?
- Our favorite algorithms generalize!!

Today: Algorithms with finite state

- What should an algorithm be?
- Sequence of simple steps
- Different steps for different inputs
- Exactly which step to take must be determined (based on input, easily, locally).
- Different \#steps for different input lengths
- When to stop must be determined (based on input, easily, locally).
- Finite state algorithms: What step to take, when to stop determined by "finite state" (constant \# bits of memory).

Example: Addition as finite state algorithm

- Advantage: $\mathrm{O}(1)$-sized description. Tells how to compute an infinite function ADD: $\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}^{*}$
- Can you do anything else?
- Multiplication? NO :
- ... but can do modular counting, pattern matching

Boolean functions

- From now will focus only on Boolean functions: $G:\{0,1\}^{*} \rightarrow\{0,1\}$
- Why?
- Given $F:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, can design $\mathrm{b} F:\{0,1\}^{*} \times \mathbb{N} \rightarrow\{0,1\}$ or $B F:\{0,1\}^{*} \times \mathcal{X}^{\prime} \rightarrow\{0,1\}$, that are roughly "equally easy/hard".
- Idea: $B F(x, i)=F(x)_{i}$
- If $F(x) \in\{0,1\}^{m}$ for some m :
- Can go from $F(x)$ to $B F(x, i)$ (for any single i) by erasing other parts of output.
- Can go from $B F(x, i)$ to $F(x)$ by m calls to algorithm for $B F(\cdot, \cdot)$

Exercise Break 1

- Booleanize Mult: $\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, where Mut is the multiplication function for integers (given in "little-endian").

$$
\left.\beta m_{n}\right) t(x, y, i)=(x \cdot y)_{i}
$$

-What is domain of your function?

- What is the range?

$$
\begin{aligned}
& \text { What is domain of your function? } \\
& \text { What is the range? } \\
& \text { Suppose } \quad \operatorname{Bmult}(x, y) \in\{0,1\}^{m} \quad\{0,1,1\} \\
& \text { if } f(x, y) \in\{0,1\}^{m} \Rightarrow \begin{array}{l}
\text { if } i \in[m] \\
\operatorname{Bf}(x, i)=f(x) ;
\end{array}
\end{aligned}
$$

Deterministic Finite Automata (DFA)

- Finite algorithms computing Boolean functions: $f:\{0,1\}^{*} \rightarrow\{0,1\}$
- Operation:

1. Finite number of states: C

$$
\begin{gathered}
E:\{\text { Transition functions }\} \rightarrow\{0,1\}^{\infty} O(c \log c) \\
E=(T \text { on }(\text { States }) \in\{0,1\}
\end{gathered}
$$

2. Starts in state 0 , reads x_{0}
3. At any stage has current state q, last read input symbol σ
4. Moves to state $T(q, \sigma)$; moves to read next input symbol E is $1-1$.
5. If input not done, repeat from Step 3.
6. When done: Accept (output 1) if current state $q \in S$ and reject (output 0) otherwise.

- Specification:, (T, S) where $T:[C] \times\{0,1\} \rightarrow[C], S \subseteq$ 㟬 $[C]$
- (more elaborate spec. in Sipser): $\left(Q, q_{0}, \Sigma, T, S\right)\left[Q=[C], q_{0}=0, \Sigma=\{0,1\}\right]$

Example:
$f(x)=1 \Leftrightarrow x$ contains 011 as a subsequence

$$
\begin{array}{ll}
T=? & C=4 \\
S=? &
\end{array}
$$

$$
\begin{aligned}
& S \subseteq\{0,1,2,3\} \\
& S=\{3\}
\end{aligned}
$$

Exercise Break 2:

1) Convert the following diagram to transition function:

2) Describe the function f computed by this DFA.

$$
f(x)=1 \quad \text { if } \sum x_{i}=1(\bmod 5)
$$

Regular Expressions

- Motivation: DFA detects simple patterns in strings. Can it do more complex ones?
- Regular expressions:
- A generalization of "Patterns".
- Succinct descriptions of subsets of $\{0,1\}^{*}$
- Definition:
- Basic cases:
- 0 is a regular expression
- 1 is a regular expression
- Compound cases: If r_{1}, r_{2} are regular expressions, then so are:
- $\quad r_{1} r_{2}$: " r_{1} followed by r_{2} " (or "concatenation")
- $\quad\left(r_{1} \mid r_{2}\right)$: " r_{1} or r_{2} "
- r_{1}^{*} : "Concatenation of finite number of r_{1} 's"
- End Cases:
- $\quad \phi$ (empty set) is regular.
- "" (null string) is regular.

Regular Expression Matching

- Basic
- 0 matches 0
- 1 matches 1
- "" matches ""

$$
(011) 1(011)^{*}
$$

expression

- No string matches ϕ
- Compound:
- s matches $r_{1} r_{2}$ if there exists s_{1}, s_{2} such that $s=s_{1} s_{2}$ and s_{1} matches r_{1} and s_{2} matches s_{2}
- s matches $\left(r_{1} \mid r_{2}\right)$ if s matches r_{1} or s matches $s / 2 r_{2}$
- s matches r_{1}^{*}) there exists $s_{1}, s_{2}, \ldots, s_{\ell}$ such that $s=s_{1} s_{2} \ldots s_{\ell}$ and s_{i} matches r_{1} for every $i \in[\ell]$
ℓ could be zero.

Examples:
${ }^{(0 \mid 1)^{*} 011(0 \mid 1)^{*}}$

- all strings in $\{0,1\}^{\nrightarrow}$ match $(0 / 1)^{*}$
- then only gearing that matches 011 is 011
- So $(0 \mid 1)^{*} 011(0 \mid 1)^{*}$ is matched by all stings that have $O I I$ inside as contiguous subsequence.

Examples:

- $(0 \mid 1)^{*} 1(0 \mid 1)^{*} 1(0 \mid 1)^{*} 1(0 \mid 1)^{*}$
- Again $\{0,1\}^{*}$ matches $(0,1)^{*}$
- so a sting must have $\geqslant 3$ is to match the above.

Examples:

- $\left(0^{*} 10^{*} 10^{*} 1\right)^{*}$
- $\left(O^{\phi}, O^{*} \backslash O^{*} \backslash\right)$ is matched by strings with $3 x_{s}$, with hot character being 1 .
- $\left(0^{*}, 0^{*}, 0^{*} 1\right)^{*}$ is matched by ul string "" \& by strings where \# of 1 's is a multiph of three and last character is a 1 .

Regular expressions $=$ sets (languages) $=$ functions

- Can think of a regular expression as a set or as a Boolean function:
- Given regular expression r can look at set (language)
- $L(r)=\left\{x \in\{0,1\}^{*} \mid x\right.$ matches $\left.r\right\}$
- $f_{r}:\{0,1\}^{*} \rightarrow\{0,1\}$ where $f_{r}(x)=1 \Leftrightarrow x \in L(r) \Leftrightarrow x$ matches r
- We prefer the last version

Next two lectures:

- Understanding DFA via regular expressions:
- For which regular expressions r is $f(r)$ computable by a DFA
- (Note: \# states can depend on r, but not on x or $|x|$)
- What are some functions computable by DFA that are not regular
- Limits of DFA
- What are some functions that are not computed by DFA?

