CS 121: Lecture 7
Infinite Functions
AND Finite Automata
Madhu Sudan

https://madhu.seas.Harvard.edu/courses/Fall2020

Book: https://introtcs.org

How to contact us

The whole staff (faster response): CS 121 Piazza
Only the course heads (slower): cs121.fall2020.course.heads@gmail.com
Reminders

• 121.5: Ryan O’Donnell, Analysis of Boolean Functions. Today @ 4:30
• Section 3 cycle begins today
• Extra-length sections:
 • Will (Thursdays: 6-7:30pm), Max & Zuzanna (Tuesdays: 7:30am-9am).
Today

• Infinite vs. Finite functions
• Example: Addition as finite state algorithm
• (Deterministic) Finite Automata:
• Break 1: Understand DFA
• Break 2: Design DFA
• Preview of next lecture: Regular Expressions
So far

• Have seen Circuits/NAND-CIRC Programs

• Compute all finite functions:
 • Given $f: \{0,1\}^n \rightarrow \{0,1\}^m$, exists NAND-CIRC C, s.t. $\forall x \in \{0,1\}^n, C(x) = f(x)$
 • Sounds great?
XOR on 2 variables
XOR on 3 variables
XOR on 4 variables
XOR on 5 variables
XOR on 6 variables
XOR on 7 variables
XOR on 8 variables
XOR on 9 variables
XOR on 10 variables

[Diagram showing a circuit with 10 variables (x[0] to x[9]) interconnected with NOT and XOR gates leading to a final output (y[0]).]
So far

- Have seen Circuits/NAND-CIRC Programs
- Compute all finite functions:
 - Given $f : \{0,1\}^n \to \{0,1\}^m$, exists NAND-CIRC C, s.t. $\forall x \in \{0,1\}^n, C(x) = f(x)$
 - Sounds great?
- Weakness: Only computes finite functions.
 - No generalization?
 - Given circuits for $ADD_1, ADD_2, ADD_3, \ldots ADD_n$ - do we know what circuit for ADD_{n+1} looks like?
 - Our favorite algorithms generalize!!
Today: Algorithms with finite state

- What should an algorithm be?
 - Sequence of simple steps
 - Different steps for different inputs
 - Exactly which step to take must be determined (based on input, easily, locally).
 - Different #steps for different input lengths
 - When to stop must be determined (based on input, easily, locally).

- Finite state algorithms: What step to take, when to stop determined by “finite state” (constant # bits of memory).
Example: Addition as finite state algorithm

- Advantage: O(1)-sized description. Tells how to compute an infinite function ADD: \(\{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}^* \)

- Can you do anything else?
 - Multiplication? NO 😞
 - ... but can do modular counting, pattern matching
Boolean functions

• From now will focus only on Boolean functions: $G: \{0,1\}^* \rightarrow \{0,1\}$
• Why?
 • Given $F: \{0,1\}^* \rightarrow \{0,1\}^*$, can design $bF: \{0,1\}^* \times \mathbb{N} \rightarrow \{0,1\}$ or $BF: \{0,1\}^* \times \mathbb{N} \rightarrow \{0,1\}$, that are roughly “equally easy/hard”.
 • Idea: $BF(x, i) = F(x)_i$
 • If $F(x) \in \{0,1\}^m$ for some m:
 • Can go from $F(x)$ to $BF(x, i)$ (for any single i) by erasing other parts of output.
 • Can go from $BF(x, i)$ to $F(x)$ by m calls to algorithm for $BF(\cdot, \cdot)$
Exercise Break 1

• Booleanize $Mult: \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}^*$, where $Mult$ is the multiplication function for integers (given in “little-endian”).

$$BMult(x,y,i) = (x \cdot y)_i$$

• What is domain of your function?

• What is the range?

Suppose $Mult(x,y) \in \{0,1\}^m$

$BMult(x,y,2m) = ?$

if $(x,y) \in \{0,1\}^m$ then $BMult(x,y,2m) = ?$

if $i \in [m]$ then $BMult(x,y,2m) = ?$
Deterministic Finite Automata (DFA)

- Finite algorithms computing Boolean functions: \(f: \{0,1\}^* \rightarrow \{0,1\} \)
- Operation:
 1. Finite number of states: \(C \)
 2. Starts in state 0, reads \(x_0 \)
 3. At any stage has current state \(q \), last read input symbol \(\sigma \)
 4. Moves to state \(T(q, \sigma) \); moves to read next input symbol
 5. If input not done, repeat from Step 3.
 6. When done: Accept (output 1) if current state \(q \in S \) and reject (output 0) otherwise.
- Specification: \((T, S) \) where \(T: [C] \times \{0,1\} \rightarrow [C], S \subseteq [C] \)

- (more elaborate spec. in Sipser): \((Q, q_0, \Sigma, T, S) \) [\(Q = [C], q_0 = 0, \Sigma = \{0,1\} \)]
Example:

\[f(x) = 1 \iff x \text{ contains 0111 as a subsequence} \]

\[T(3,1) = 3 \]

\[T = ? \quad C = 4 \]
\[S = ? \]
\[S \leq \{0,1,2,3\} \]
\[S = \{33\} \]
Exercise Break 2:

1) Convert the following diagram to transition function:

2) Describe the function f computed by this DFA.

$$f(x) = 1 \quad \text{if} \quad \sum x_i = 1 \pmod{5}$$
Regular Expressions

• Motivation: DFA detects simple patterns in strings. Can it do more complex ones?

• Regular expressions:
 • A generalization of “Patterns”.
 • Succinct descriptions of subsets of \{0,1\}*

• Definition:
 • Basic cases:
 • 0 is a regular expression
 • 1 is a regular expression
 • Compound cases: If \(r_1, r_2\) are regular expressions, then so are:
 • \(r_1 r_2\): “\(r_1\) followed by \(r_2\)” (or “concatenation”)
 • \((r_1 | r_2)\): “\(r_1\) or \(r_2\)”
 • \(r_1^*\): “Concatenation of finite number of \(r_1\)’s”
 • End Cases:
 • \(\emptyset\) (empty set) is regular.
 • “” (null string) is regular.
Regular Expression Matching

• Basic
 • 0 matches 0
 • 1 matches 1
 • "" matches ""
 • No string matches \(\phi \)

• Compound:
 • \(s \) matches \(r_1 r_2 \) if there exists \(s_1, s_2 \) such that \(s = s_1 s_2 \) and \(s_1 \) matches \(r_1 \) and \(s_2 \) matches \(s_2 \)
 • \(s \) matches \((r_1 | r_2) \) if \(s \) matches \(r_1 \) or \(s \) matches \(r_2 \)
 • \(s \) matches \((r_1^*) \) if there exists \(s_1, s_2, \ldots, s_\ell \) such that \(s = s_1 s_2 \ldots s_\ell \) and \(s_i \) matches \(r_1 \) for every \(i \in [\ell] \)

\((011) \cdot (011)^* \)
Examples:

- \((0|1)^*011(0|1)^*\)
- all strings in \(011^*\) match \((0|1)^*\)
- the only string that matches 011 is 011
- So \((0|1)^*011(0|1)^*\) is matched by all strings that have 011 inside as contiguous subsequence.
Examples:

- $\{0|1\}^*1\{0|1\}^*1\{0|1\}^*1\{0|1\}^*$

 - Again $0,138$ matches $(0|1)^*$

 - So a string must have ≥ 3 1s to match the above.
Examples:

- \((0^*10^*10^*1)^*\)
 - \((0^*10^*10^*1)\) is matched by strings with 3 1s, with last character being 1.
 - \((0^*10^*10^*1)^*\) is matched by null string \(\"\"\) and by strings where number of 1's is a multiple of three and last character is a 1.
Regular expressions = sets (languages) = functions

- Can think of a regular expression as a set or as a Boolean function:
 - Given regular expression \(r \) can look at set (language)
 - \(L(r) = \{ x \in \{0,1\}^* \mid x \text{ matches } r \} \)
 - \(f_r: \{0,1\}^* \to \{0,1\} \) where \(f_r(x) = 1 \iff x \in L(r) \iff x \text{ matches } r \)
 - We prefer the last version
Next two lectures:

- Understanding DFA via regular expressions:
 - For which regular expressions r is $f(r)$ computable by a DFA
 - (Note: # states can depend on r, but not on x or $|x|$)
 - What are some functions computable by DFA that are not regular

- Limits of DFA
 - What are some functions that are not computed by DFA?