CS 121: Lecture 11 More on Turing Machines

Madhu Sudan

https://madhu.seas.Harvard.edu/courses/Fall2020

Book: https://introtcs.org

How to contact us The whole staff (faster response): <u>CS 121 Piazza</u> Only the course heads (slower): <u>cs121.fall2020.course.heads@gmail.com</u>

Announcements:

- Advanced Sections: Christina Ilvento on Differential Privacy!
- Homework 3 due today.
- Sample midterm available for tech/TeX/rules.
- Actual Midterm:
 - Pick up on Canvas;
 - TeX your answers ;
 - Submit on Gradescope-submit your answers like a problem set.
- Section: no video this week; review for midterm.
 - Section on Turing Machines: next week.
- Midterm review materials:
 - Diego/Joanna's handout
 - Past midterms: two on finite automata without solutions; several from Boaz with solutions.

Where we are:

- Part 1: More examples of Turing Machines
 - TM to compute $PAL: \{0,1\}^* \to \{0,1\}$ where $PAL(x) = 1 \Leftrightarrow x = x^R$
 - TM to compute $h: \{0,1\}^* \rightarrow \{0,1\}^*$, where h(x) = y where x = yz and $|y| \in \{|z|, |z| + 1\}$
- Part 2: (Discussion) Looking to the future:
 - Computable functions.
 - Def (7.2 in Barak): Function computable \Leftrightarrow computable by TM
 - Equivalence with other computing & non-computing models: Multiple tapes, RAM, λ -calculus, polynomials ...

Recall Turing Machines

- (Barak, Definition 7.1):
- TM on k states and alphabet $\Sigma \supseteq \{0,1, \triangleright, \phi\}$

is given by $\delta: [k] \times \Sigma \rightarrow [k] \times \Sigma \times Action$,

where Action = $\{L, R, S, H\}$

- L=Left, R=Right, S=Stay (don't move), H=Halt (done!!)
- Operation:
 - Start in state 0, Tape $T = \square x_0 \dots x_{n-1} \phi \phi \phi \dots$, Head (i) at x_0
 - General step: current state q ; input symbol σ :

Let $\delta(q, \sigma) = (r, \tau, X) \Rightarrow$ Write τ on tape (overwriting σ); Move to state r; Move Head left ($i \leftarrow i - 1$) if X = L; right if X = R; don't move if X = S.

• Repeat General step until X = H

Recognizing Palindromes

- $PAL: \{0,1\}^* \rightarrow \{0,1\}$ where $PAL(x) = 1 \Leftrightarrow x = x^R$
- Overview/Idea:
 - Scan left to right between #s.
 - Replace extreme symbols by # if they match, Reject if they don't
 - Till middle region is empty.

More details:

- Alphabet: $\Sigma = \{0, 1, \triangleright, \phi, \#\}$
- States:
 - 0: Start
 - 1: Scan Right 0
 - 2: Scan Right 1
 - 3: Check 0
 - 4: Check 1
 - 5: Move Left
 - 6: Accept and Halt
 - 7: Reject and Clean Left

						Alphabet: $\Sigma = \{0, 1, \triangleright, \phi, \#\}$
						States:
State/Input	\triangleright	0	1	φ	#	0: Start
						1: Scan Right 0
0						2: Scan Right 1
1						3: Check 0
T						4: Check 1
2						5: Move Left
						6: Accept and Halt
3						7: Reject and Clean Left
Λ						
4						
5						
6						
7						

Alphabet: $\Sigma = \{0, 1, \triangleright, \phi, \#\}$ States: 0: Start 1: Scan Right 0 2: Scan Right 1 3: Check 0 4: Check 1 5: Move Left 6: Accept and Halt 7: Reject and Clean Left

Exercise Break 1

- Design TM to compute $h: \{0,1\}^* \rightarrow \{0,1\}^*$, where h(x) = y where x = yzand $|y| \in \{|z|, |z| + 1\}$
 - 1. Formulate your plan
 - 2. Break from Break (Return from Break + Discuss Plan)
 - 3. Choose your alphabet
 - 4. Set up the states
 - 5. Start thinking about key transitions

Computable Functions

- **Definition (7.1 in Barak):** A function $f: \{0,1\}^* \rightarrow \{0,1\}^*$ is computable if and only if it is computable by a Turing Machine.
- Warning: Definition, not a Theorem!
- **Definition:** $R = \{ f: \{0,1\}^* \rightarrow \{0,1\} \mid f \text{ is computable } \}$
 - Why *R*? ("Recursive")

• **Turing-Church Thesis:** *f* is computable by a physical process if and only if it is computable (by a Turing Machine).

In following lectures

- Turing Equivalence
 - Turing machines can simulate other Turing Machines
 - With multiple tapes
 - With accept/reject states
 - With 1 tape and multiple heads
 - RAM programs: (Main diff: Can read Tape[i] and then Tape[3*i*+25] in O(1) steps.
 - High-level programs C++, Python ...
 - Rewrite systems; Λ-Calculus ; Hilbert Problem
- **Universal** TMs: TM that takes other TMs as input and runs them!
- **Uncomputability** ... the bane of computing.