CS 121: Lecture 11 More on Turing Machines

Madhu Sudan

https://madhu.seas.Harvard.edu/courses/Fall2020
Book: https://introtes.org
How to contact us $\left\{\begin{array}{l}\text { The whole staff (faster response): CS } 121 \text { Piazza } \\ \text { Only the course heads (slower): } \text { cs121.fall2020.course.heads@gmail.com }\end{array}\right.$

Announcements:

- Advanced Sections: Christina Ilvento on Differential Privacy!
- Homework 3 due today.
- Sample midterm available for tech/TeX/rules.
- Actual Midterm:
- Pick up on Canvas;
- TeX your answers ;
- Submit on Gradescope-submit your answers like a problem set.
- Section: no video this week; review for midterm.
- Section on Turing Machines: next week.
- Midterm review materials:
- Diego/Joanna's handout
- Past midterms: two on finite automata without solutions; several from Boaz with solutions.

Where we are:

Today:

- Part 1: More examples of Turing Machines
- TM to compute PAL: $\{0,1\}^{*} \rightarrow\{0,1\}$ where $P A L(x)=1 \Leftrightarrow x=x^{R}$
- TM to compute $h:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, where $h(x)=y$ where $x=y z$ and $|y| \in$ $\{|z|,|z|+1\}$
- Part 2: (Discussion) Looking to the future:
- Computable functions.
- Def (7.2 in Barak): Function computable \Leftrightarrow computable by TM
- Equivalence with other computing \& non-computing models: Multiple tapes, RAM, λ-calculus, polynomials ...

Recall Turing Machines

- (Barak, Definition 7.1):
- TM on k states and alphabet $\Sigma \supseteq\{0,1, \triangleright, \phi\}$
is given by $\delta:[k] \times \Sigma \rightarrow[k] \times \Sigma \times$ Action, where Action $=\{L, R, S, H\}$
- $L=$ Left, $R=$ Right, $S=$ Stay (don't move), $H=$ Halt (done!!)
- Operation:
- Start in state 0 , Tape $T=\square x_{0} \ldots x_{n-1} \phi \phi \phi \ldots$, Head (i) at x_{0}
- General step: current state q; input symbol σ :

Let $\delta(q, \sigma)=(r, \tau, X) \Rightarrow$ Write τ on tape (overwriting σ) ; Move to state r; Move Head left $(i \leftarrow i-1)$ if $X=L$; right if $X=R$; don't move if $X=S$.

- Repeat General step until $X=H$

Recognizing Palindromes

- PAL: $\{0,1\}^{*} \rightarrow\{0,1\}$ where $\operatorname{PAL}(x)=1 \Leftrightarrow x=x^{R}$
- Overview/Idea:
- Scan left to right between \#s.
- Replace extreme symbols by \# if they match, Reject if they don't - Till middle region is empty.

More details:

- Alphabet: $\Sigma=\{0,1, \triangleright, \phi, \#\}$
- States:
- 0: Start
- 1: Scan Right 0
- 2: Scan Right 1
- 3: Check 0
- 4: Check 1
- 5: Move Left
- 6: Accept and Halt
- 7: Reject and Clean Left

Alphabet: $\Sigma=\{0,1, \triangleright, \phi, \#\}$
States:
0: Start
1: Scan Right 0
2: Scan Right 1
3: Check 0
4: Check 1
5: Move Left
6: Accept and Halt
7: Reject and Clean Left

Exercise Break 1

- Design TM to compute $h:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, where $h(x)=y$ where $x=y z$ and $|y| \in\{|z|,|z|+1\}$

1. Formulate your plan
2. Break from Break (Return from Break + Discuss Plan)
3. Choose your alphabet
4. Set up the states
5. Start thinking about key transitions

Computable Functions

- Definition (7.1 in Barak): A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is computable if and only if it is computable by a Turing Machine.
- Warning: Definition, not a Theorem!
- Definition: $R=\left\{f:\{0,1\}^{*} \rightarrow\{0,1\} \quad \mid f\right.$ is computable $\}$
- Why R? ("Recursive")
- Turing-Church Thesis: f is computable by a physical process if and only if it is computable (by a Turing Machine).

In following lectures

- Turing Equivalence
- Turing machines can simulate other Turing Machines
- With multiple tapes
- With accept/reject states
- With 1 tape and multiple heads
- RAM programs: (Main diff: Can read Tape[i] and then Tape[3i+25] in O(1) steps.
- High-level programs - C++, Python ...
- Rewrite systems; Λ-Calculus ; Hilbert Problem
- Universal TMs: TM that takes other TMs as input and runs them!
- Uncomputability ... the bane of computing.

