CS 121: Lecture 13 Turing Equivalence \& Universality

Madhu Sudan

https://madhu.seas.Harvard.edu/courses/Fall2020
Book: https://introtcs.org
How to contact us $\left\{\begin{array}{l}\text { The whole staff (faster response): CS } 121 \text { Piazza } \\ \text { Only the course heads (slower): cs121.fall2020.course.heads@gmail.com }\end{array}\right.$

Announcements:

- Advanced Sections: Josh Alman on Matrix Multiplication
- Midterms yet to be graded. Will post details on Piazza when ready
- Homework 4 out today. Due in two weeks.
- Participation Survey done?
- Sign up for active participation here!
- Midterm Feedback Survey coming soon!
- Mandatory (5 points on homework 4.). Anonymous!
- Staff takes it seriously! (Be open - call out specific people, actions).
- Section 6 cycle starts today. Material in usual place!

Where we are:

Today:

- Two results to be aware of, and to use (heavily)?
- No proofs to know/remember.
- Proofs/sketches available in book.
- We will discuss. But suffices to know they exist!
- Result 1: Turing-Church Thesis
- Provable part: TMs as powerful as any high-level programming language.
- Usable part: To prove computability, suffices to give program in high-level lang.
- Result 2: \exists a Universal Turing Machine
- Takes as input description $E(M) \in\{0,1\}^{*}$ of any Turing Machine, and $x \in\{0,1\}^{*}$
- Outputs $M(x)$, the result computed by M on x (if M halts) - no output otherwise.

Recall Turing Machines

- (Barak, Definition 7.1):
- TM on k states and alphabet $\Sigma \supseteq\{0,1, \triangleright, \phi\}$
is given by $\delta:[k] \times \Sigma \rightarrow[k] \times \Sigma \times$ Action, where Action $=\{L, R, S, H\}$
- $L=$ Left, $R=$ Right, $S=$ Stay (don't move), $H=$ Halt (done!!)
- Operation:
- Start in state 0 , Tape $T=\square x_{0} \ldots x_{n-1} \phi \phi \phi \ldots$, Head (i) at x_{0}
- General step: current state q; input symbol σ :

Let $\delta(q, \sigma)=(r, \tau, X) \Rightarrow$ Write τ on tape (overwriting σ) ; Move to state r; Move Head left $(i \leftarrow i-1)$ if $X=L$; right if $X=R$; don't move if $X=S$.

- Repeat General step until $X=H$

Exercise Break 1

- Pick a high-level language
- Identify features that are very different from Turing Machines.
- Discuss differences after the break.

My list of differences:

- General programming languages allow multiple, multidimensional arrays!
- TMs have one array : Tape[0, ∞]
- Allow "random" (arbitrary) access into arrays/memory.
- Can look at $A[i]$ in one step and then $A\left[i^{2}+10 i+5\right]$ or even $A[A[i]]$ in next step
- TMs: If this step involves Tape[i]
then next can only involve $\{$ Tape $[i-1]$, Tape $[i]$, Tape $[i+1]\}$
- Rest? Syntactic Sugar
- Sophisticated constructs: loops, cases, recursion
- Data structures: Lists, Queues, Stacks ...

Dealing with the differences - 1

- Random access:
- Deal with by brute force.
- Store index on Tape. Compute new index and overwrite on tape.
- Make a linear pass of tape to recover $A[i]$
- (Quadratic slowdown in run time immediately)

Dealing with the differences - 2

- Multiple Arrays+Indices
- Same solution.
- Multi-dimensional Arrays
- (Draw this out)
- Consequence: If algorithm A runs in time T with high-level program, can be implemented to run in time $O\left(T^{2}\right)$ on Turing Machine.
- Details in Barak: Chapter 8

Road Map of details

- TMs
- Define NAND-TMs. Show equivalent to TMs.
- Just a program version of TMs. Like NAND circuits vs. NAND-CIRC programs.
- Define NAND-RAMs. Show equivalent to NAND-TMs.
- Allows loops and general indices.
- This is the crucial step.
- Define RAM machines. Show equivalent to NAND-RAMs
- This what most compilers use to compile "down" from the high-level spec.
- Equivalence straightforward.

"HOCAEIT" Theorem

- Recall definition of Computable.
- \quad : $\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is computable iff it is computable by TM.
- Equivalence (HOCAEIT) Theorem: TMs are equivalent to High-Level Languages.
- Having our cake: To prove F is computable only need to exhibit algorithm in high-level language.
- Eating it: To prove F is not computable only need to rule out TMs.

Church-Turing Thesis

- "Every function that is computable by physical means is (Turing Machine) computable."
- Some (made-up?) history:
- Church defined computability with λ-calculus
- Turing + Church compared notes and agreed their models were equivalent.
- Many other models were shown to be equivalent.
- Turing went on to do a postdoc under von Neumann.
- Von Neumann later introduced the "stored program architecture" of computer to the computer architects of the time. Led to the first physical computers.
- Conway invented Game of Life ... simplest Turing Equivalent model?

Universality

- "One machine to rule them all"
- "There exists a single program/algorithm/TM that can run all other programs/algorithms/TMs."
- Formally:

1. There exists a way to encode Turing Machines so that they can be (part of) input to other Turing Machines.
2. The exists a universal machine U that takes as input a pair (M, x) and outputs $U(M, x)=M(x)$ (if M halts on x)

Part 1: Encoding Turing Machines

- Should be familiar to us:
- Recall M specified by $\Sigma \supseteq\{>, 0,1, \phi\}, k, \delta:[k] \times \Sigma \rightarrow[k] \times \Sigma \times\{L, R, S, H\}$
- First encode $E_{\Sigma}: \Sigma \rightarrow\{0,1\}^{c} ; E_{A}:\{L, R, S, H\} \rightarrow\{0,1\}^{2}, E_{k}:[k] \rightarrow\{0,1\}^{\log k}$

$$
\text { so } \delta:\{0,1\}^{\log k+c} \rightarrow\{0,1\}^{\log k+c+2}
$$

- Encoding of $M=\operatorname{Enc}(c, k, \delta(0,000), \delta(0,001) \ldots \delta(k-1,111))$
- Where Enc: $\mathbb{N} \times \mathbb{N} \times\left(\{0,1\}^{\log k+c+2}\right)^{k 2^{c}} \rightarrow\{0,1\}^{*}$ is some 1-1 function.
- Encoding of $M=\operatorname{Enc}(c, k, \delta)$

Part 2: Interpreting the Encoding

- Definition: Configuration of a machine M on input x after t steps of computation, denoted C_{t}, is the "full state of the computation":
- Current state of Turing Machine
- Current contents of the Tape
- Current location i of Tape head
- Core of Universal TM U
- "Universal-Stepper": $\left(M, C_{t}\right) \mapsto\left(M, C_{t+1}\right)$

Definition: Configuration of a machine M on input x after t steps of computation, denoted C_{t}, is the "full state of the computation":

- Current state of Turing Machine
- Current contents of the Tape
- Current location i of Tape head
- Discuss how to organize the information $\left(M, C_{t}\right)$ on U 's tape:
- Describe (in English) steps needed to compute $\left(M, C_{t}\right) \mapsto\left(M, C_{t+1}\right)$

Computing $\left(M, C_{t}\right) \mapsto\left(M, C_{t+1}\right)$

- Initially: Make space for (current state, head location, current symbol)
- In each round:
- fetch contents of Tape[head location] and update
- Look at the code of the TM to determine next state, next location, symbol to write.
- Write the "symbol to write" at current location.
- Update "head location"
- Conclusion: Lots of string manipulation (string copy), adjust ... nothing profound.

Summary of Lecture:

- Turing Equivalence and Turing-Church Thesis:
- No proofs to remember. But encouraged to read the text (Chapter 8)
- Do remember the HOCAEIT theorem! "Do not leave home without it."
- To prove computability, give algorithm in high-level language.
- To prove non-computability, rule out TMs.
- Universal Turing machines:
- Single machine to simulate all others:
- Similar to circuits.
- Big difference: Simulates larger machines over larger alphabets!!!!

Next Lecture

- Uncomputability.
- Some functions are not computable no matter how much time we are willing to take!

