CS 121: Lecture 14 Uncomputability

Madhu Sudan

https://madhu.seas.Harvard.edu/courses/Fall2020
Book: https://introtcs.org
How to contact us $\left\{\begin{array}{l}\text { The whole staff (faster response): CS } 121 \text { Piazza } \\ \text { Only the course heads (slower): cs121.fall2020.course.heads@gmail.com }\end{array}\right.$

Announcements:

- Midterm 1 graded. Solutions to be posted today-ish.
- Homework 4 due in 9 days.
- Thanks for participating in Midterm Feedback Survey.

Where we are:

Today:

- Finiteness and Infinities
- Cantor: \#Reals > \#Rationals (Uncountable vs. Countable sets)
- Uncomputable function by counting
- Explicit Uncomputable function: HALT

Background: Finiteness \& Infinities

Glossary of terms:

- Back prior to1800s:
- $\mathbb{N}=$ Natural numbers
- $\mathbb{Z}=$ Integers
- Understood finite vs. infinite
- Set S is finite if $\exists n \in \mathbb{N}$ s.t. $\exists 1-1$ function $E: S \rightarrow[n]$
- Infinite otherwise.
- Example infinite sets: $\mathbb{N}, \mathbb{Z}, \mathbb{Z}^{2}, \mathbb{R}, \mathbb{R}^{10}$
- Thinking then: All of same size? No point comparing?
- $\mathbb{Q}=$ Rationals
- $\mathbb{R}=$ Reals
- $[0,1]=\{x \in \mathbb{R} \mid 0 \leq x \leq 1\}$
- $E: A \rightarrow B$ 1-1 (aka injective): $E(a)=E\left(a^{\prime}\right) \Rightarrow a=a^{\prime}$
- $F: B \rightarrow A$ onto (aka surjective): $\forall a \in A \exists b \in B$ s.t. $F(b)=a$
..., Cantor '1800s:
- $|S| \leq|T| \Leftrightarrow \exists 1-1 E: S \rightarrow T$: Applies also to infinite sets.
- Examples: $|\mathbb{N}|=|\mathbb{Z}|=|\mathbb{Q}|=\left|\mathbb{Z}^{2}\right|=\left|\{0,1\}^{*}\right|$
- Thm: No 1-1 function $E: \mathbb{R} \rightarrow \mathbb{Z}$ exists. $(|\mathbb{Q}|<|\mathbb{R}|)$

Cantor's Proof

- Suppose $\exists 1-1 E:[0,1] \rightarrow \mathbb{N}$. Then \exists onto $F: \mathbb{N} \rightarrow[0,1]$
- Then ... can draw matrix with $F(i)_{j}=j$ th bit in binary expansion of $F(i)$.
- Consider $\bar{F}=\overline{F(0)_{0}} \overline{F(1)_{1}} \overline{F(2)_{2}} \overline{F(3)_{3}} \cdots$ where does it lie? [Can't be i th row.] - Doesn't! Hence F can't exist!

Uncomputable functions by counting

- Q1: How many computable functions are there?
- Claim: At most $\left|\{0,1\}^{*}\right|$
- Why?
- Q2: How many functions $f:\{0,1\}^{*} \rightarrow\{0,1\}$
- Claim: |[0,1]|
- Put together: $|R|<|A L L|$, where

$$
\begin{gathered}
R=\left\{F:\{0,1\}^{*} \rightarrow\{0,1\} \mid F \text { is computable }\right\} ; \\
A L L=\left\{F:\{0,1\}^{*} \rightarrow\{0,1\}\right\}
\end{gathered}
$$

- $\Rightarrow \exists F \in A L L \backslash R$

Exercise Break 1

Give direct proof a la Cantor that $\left|\{0,1\}^{*}\right|<\operatorname{ALL} \stackrel{\text { def }}{=}\left\{f:\{0,1\}^{*} \rightarrow\{0,1\}\right\}$

Explicit Uncomputable Functions?

- Motivation: Are "uncomputable" functions of interest to us?
- Maybe they exist but can't even be described.
- (\#describable functions = countable! By definition!)
- If they can't be described why would we be interested in computing them?
- Turns out: Many natural problems uncomputable.
- As we will see, the following (very describable!) problem is uncomputable.
- $\operatorname{HALT}(M, x)=1$ if M halts on input x
$=0$ otherwise
- Will see in next lecture: HALT is uncomputable

An Explicit Uncomputable Function

- Cantor inspired by the diagonalization proof
- Idea:
- columns $=\{0,1\}^{*}=$ inputs
- rows $=\{0,1\}^{*} \supseteq$ Turing machines
- M th row, x th column $=(M, x)$
- If row not TM - fill with 0 s .
- If M does not halt on x enter 0 .
- Consider function that computes diagonal entries and flips them.
- \quad Cantor $(M)=\overline{M(M)}$

Exercise Break 2

- Prove Cantor is uncomputable, where Cantor $(M)=\overline{M(M)}$

Proof:

- Assume for contradiction that Turing Machine A computes Cantor
- Then we have $\forall M \quad A(M)=\overline{M(M)}$
- So $A(A)=\left.\overline{M(M)}\right|_{M=A}=\overline{A(A)}$. ... Contradiction!!

Next Lecture: More Uncomputability

- Uncomputability of new problems
- HALT,HALT_ON_ZERO
- Two proof techniques
- Using presumed (non-existent) Turing Machine
- REDUCTIONS!!!
- Using a hard problem to show other problems are also hard.

