CS 121: Lecture 21
More NP-completeness by Reductions

Adam Hesterberg

https://madhu.seas.Harvard.edu/courses/Fall2020

Book: https://introtcs.org

How to contact us

- The whole staff (faster response): CS 121 Piazza
- Only the course heads (slower): cs121.fall2020.course.heads@gmail.com
Announcements:

• 121.5: Nicole Immorlica: Econ and CS
• Sections: Polynomial time reductions, NP, etc.
• Homework 5 due today.
• Midterm 2 this Tuesday!
 • 90 minutes (70 if handwritten)
 • 2-sided cheatsheet, noncollaboratively made, plus Barak’s textbook.
 • Material through lecture 17 (Efficient Computation: P)
Where we are:

Part I: Circuits:
Finite computation, quantitative study

Part II: Automata:
Infinite restricted computation, quantitative study

Part III: Turing Machines:
Infinite computation, qualitative study

Part IV: Efficient Computation:
Infinite computation, quantitative study

Part V: Randomized computation:
Extending studies to non-classical algorithms
Review of last lectures

- Reductions: $F \leq_P G \iff \exists R \text{ such that } \forall x \ F(x) = G(R(x)), \ R \text{ polytime.}$
- $3\text{SAT} \leq_P \text{ISET}$

- NP: problems easy to verify.

 $F: \{0,1\}^* \to \{0,1\}$ is in NP iff:

 \[\exists V_F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\} \text{ s.t. } \forall x \in \{0,1\}^*, \ \\
 F(x) = 1 \iff \exists w \in \{0,1\}^* \text{ such that } V_F(x,w) = 1 \ \\
 \text{and } V_F(x,w) \text{ computable in time } \text{poly}(|x|) \]

- (Any problem in NP) $\leq_P \text{NANDSAT} \leq_P 3\text{NAND} \leq_P 3\text{SAT}$

 - So 3SAT is NP-Complete!
Witness, the NP concept

Function F is in NP if \exists polytime V_F s.t. $(F(x) = 1) \iff (\exists w: V_F(x, w) = 1)$

<table>
<thead>
<tr>
<th>Function F</th>
<th>Witness w</th>
<th>Verifier V_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>3SAT(formula)</td>
<td>Variable values</td>
<td>Check: formula satisfied?</td>
</tr>
<tr>
<td>Longpath(G)</td>
<td>Sequence of vertices</td>
<td>Check: is path, is long</td>
</tr>
<tr>
<td>COMPOSITE(x)</td>
<td>Factors p, q</td>
<td>Check: $p*q=x$</td>
</tr>
<tr>
<td>COMPOSITE(x)</td>
<td>y, z</td>
<td>Check: $\frac{yz}{x} \in \mathbb{Z}, \frac{y}{x} \notin \mathbb{Z}, \frac{z}{x} \notin \mathbb{Z}$</td>
</tr>
</tbody>
</table>
Witness, the computer game

Figure 1: A screenshot from The Witness, featuring 2D puzzles in a 3D world.
Today:

• Some NP-complete problems...
• $3\text{SAT} \leq_p \text{E3SAT} \leq_p \text{EU3SAT} \leq_p 1\text{-in-EU3SAT} \leq_p \text{SUBSETSUM}$
• Weak NP-hardness: hard only for big-number inputs
• Strong NP-hardness: hard even for small-number inputs.
3SAT \leq_P E3SAT

Last time, 3NAND \leq_P 3SAT:

$$c = \text{NAND}(a, b)$$

3SAT: Formulas like $(x_7 \lor \overline{x}_{17} \lor x_{29}) \land (\overline{x}_7 \lor x_{15} \lor x_{22}) \land (x_{22} \lor \overline{x}_{29})$,
\textit{at most} 3 variables/clause

E3SAT: Formulas like $(x_7 \lor \overline{x}_{17} \lor x_{29}) \land (\overline{x}_7 \lor x_{15} \lor x_{22}) \land (x_{22} \lor \overline{x}_{29} \lor x_{22})$,
\textit{exactly} 3 variables/clause.
3SAT \leq_p E3SAT

Reduction:

\[
(x_7) \quad \Rightarrow \quad (x_7 \lor x_7 \lor x_7)
\]

\[
(x_7 \lor \overline{x}_{17}) \quad \Rightarrow \quad (x_7 \lor \overline{x}_{17} \lor x_7)
\]

\[
(x_7 \lor \overline{x}_{17} \lor x_{29}) \quad \Rightarrow \quad (x_7 \lor \overline{x}_{17} \lor x_{29})
\]

\[
(x_7) \land (x_7 \lor \overline{x}_{17}) \land (x_7 \lor \overline{x}_{17} \lor x_{29}) \quad \Rightarrow \quad (x_7 \lor x_7 \lor x_7) \land (x_7 \lor \overline{x}_{17} \lor x_7) \land (x_7 \lor \overline{x}_{17} \lor x_{29})
\]

Proof:

(Sound, Complete)

\[
(x_7) \land (x_7 \lor \overline{x}_{17}) \land (x_7 \lor \overline{x}_{17} \lor x_{29})
\]

is satisfiable

\[
(x_7 \lor x_7 \lor x_7) \land (x_7 \lor \overline{x}_{17} \lor x_7) \land (x_7 \lor \overline{x}_{17} \lor x_{29})
\]

is satisfiable

\[
(x_7 \lor \overline{x}_{17})
\]

is satisfiable

\[
(x_7 \lor \overline{x}_{17} \lor x_7)
\]

is satisfiable

with the same variable values
3SAT \leq_P E3SAT

Reduction:

Proof:

(Sound, Complete)

Q: Have we proved that E3SAT is NP-complete?
$E3SAT \leq_P EU3SAT$

3SAT: Formulas like $(x_7 \lor \overline{x}_{17} \lor x_{29}) \land (\overline{x}_7 \lor x_{15} \lor x_{22}) \land (x_{22} \lor \overline{x}_{29})$,

at most 3 variables/clause

E3SAT: Formulas like $(x_7 \lor \overline{x}_{17} \lor x_{29}) \land (\overline{x}_7 \lor x_{15} \lor x_{22}) \land (x_{22} \lor \overline{x}_{29} \lor x_{22})$,

Exactly 3 variables/clause.

EU3SAT: Formulas like $(x_7 \lor \overline{x}_{17} \lor x_{29}) \land (\overline{x}_7 \lor x_{15} \lor x_{22}) \land (x_{22} \lor \overline{x}_{29} \lor x_{23})$,

exactly 3 *unique* variables/clause.
\[E3SAT \leq_P EU3SAT \]

Reduction:

\[(x_7 \lor \overline{x}_{17} \lor x_7) \rightarrow (x_7 \lor \overline{x}_{17} \lor y_7) \land (x_7 \lor \overline{y}_7 \lor temp) \land (x_7 \lor \overline{y}_7 \lor \overline{temp}) \land (\overline{x}_7 \lor y_7 \lor temp) \land (\overline{x}_7 \lor y_7 \lor \overline{temp}) \]

(Wherever we have \(t \) copies of a variable in a clause, change \(t-1 \) of them and add \(4(t-1) \) clauses.)

Proof:

(Sound, Complete)

E3SAT formula with clauses like
\[(x_7 \lor \overline{x}_{17} \lor x_7) \] is satisfiable

EU3SAT formula with clauses like
\[(x_7 \lor \overline{x}_{17} \lor y_7) \land (x_7 \lor \overline{y}_7 \lor temp) \land (x_7 \lor \overline{y}_7 \lor \overline{temp}) \land (\overline{x}_7 \lor y_7 \lor temp) \land (\overline{x}_7 \lor y_7 \lor \overline{temp}) \] is satisfiable
$\textbf{EU3SAT} \leq_P \textbf{1-in-EU3SAT}$

3SAT: Formulas like $(x_7 \lor \overline{x}_{17} \lor x_{29}) \land (\overline{x}_7 \lor x_{15} \lor x_{22}) \land (x_{22} \lor \overline{x}_{29})$,
\emph{at most} 3 variables/clause, clause is satisfied iff \textbf{at least} one literal is true.

E3SAT: Formulas like $(x_7 \lor \overline{x}_{17} \lor x_{29}) \land (\overline{x}_7 \lor x_{15} \lor x_{22}) \land (x_{22} \lor \overline{x}_{29} \lor x_{22})$,
\emph{Exactly} 3 variables/clause, clause is satisfied iff \textbf{at least} one literal is true.

EU3SAT: Formulas like $(x_7 \lor \overline{x}_{17} \lor x_{29}) \land (\overline{x}_7 \lor x_{15} \lor x_{22}) \land (x_{22} \lor \overline{x}_{29} \lor x_{23})$,
\emph{exactly} 3 \emph{unique} variables/clause, clause is satisfied iff \textbf{at least} one literal is true.

1-in-EU3SAT: Formulas like $\text{ONEOF}(x_7, \overline{x}_{17}, x_{29}) \land \text{ONEOF}(\overline{x}_7, x_{15}, x_{22}) \land \text{ONEOF}(x_{22}, \overline{x}_{29}, x_{23})$,
\emph{exactly} 3 \emph{unique} variables/clause, clause is satisfied iff \textbf{exactly} one literal is true.
EU3SAT \(\leq_p 1\text{-in-EU3SAT} \)

Reduction:

\[(a \lor b \lor c) \rightarrow ONEOF(\overline{a}, w, x) \land ONEOF(b, y, x) \land ONEOF(c, w, z)\]

Proof:

(Sound, Complete)
More SAT variants...

Figure 2-1: SAT notation example.
Knapsack Problem:

Given items with costs $a_0, a_1, ..., a_{k-1}$ and values $v_0, v_1, ..., v_{k-1}$, a budget b, and a target value t, choose a subset of the items with total cost at most b and value at least t.
Knapsack Problem:

Given items with costs $a_0, a_1, \ldots, a_{k-1}$ and values $v_0, v_1, \ldots, v_{k-1}$, a budget b, and a target value t, choose a subset of the items with total cost at most b and value at least t.

Subset Sum:

Given items with costs $a_0, a_1, \ldots, a_{k-1}$ and a target value t, choose a subset of the items with total cost exactly t.
1-in-EU3SAT \leq_P Subset Sum

Formulas like
ONEOF($x_7, \overline{x}_{17}, x_{29}$) \land
ONEOF($\overline{x}_7, x_{15}, x_{22}$) \land
ONEOF($x_{22}, \overline{x}_{29}, x_{23}$)

Subset Sum numbers (written in base $n + 1$)

\[\begin{array}{cccccc}
0 & 0 & 1 & 0 & 0 & 1 \ a_0 \\
0 & 1 & 0 & 0 & 0 & 1 \ a_1 \\
0 & 0 & 0 & 0 & 1 & 0 \ a_2 \\
0 & 0 & 1 & 0 & 1 & 0 \ a_3 \\
1 & 0 & 0 & 1 & 0 & 0 \ a_{2n-2} \\
0 & 0 & 0 & 1 & 0 & 0 \ a_{2n-1} \\
\hline
1 & 1 & 1 & 1 & 1 & 1 & t
\end{array}\]

Given items with costs $a_0, a_1, ..., a_{k-1}$ and a target value t, choose a subset of the items with total cost exactly t.

Reduction:

1-in-EU3SAT formula
m clauses (here $m=3$)
n variables (here $n=7$)

ONEOF($x_7, \overline{x}_{17}, x_{29}$) \land ONEOF($\overline{x}_7, x_{15}, x_{22}$) \land ONEOF($x_{22}, \overline{x}_{29}, x_{23}$)

Proof of Correctness?
Weak NP-hardness

Subset sum: Given items with costs $a_0, a_1, \ldots, a_{k-1}$ and a target value t, choose a subset of the items with total cost exactly t.

Some numbers (costs) in reduction were exponential in n. (Poly length!)
If all inputs were polynomial in n, Subset Sum isn’t NP-hard.

“Weakly NP-hard”

“Strongly NP-hard”: NP-hard even if all numerical inputs are polynomial-sized.
Traveling Salesman:

Given a (directed or undirected) graph G, a “distance” d_e for each edge e, and a target t, is there a walk visiting all the vertices of G whose total distance is at most t?

Strongly NP-hard (NP-hard even if t and every d_e is small).

Hint: Reduce from Longpath: Given a (directed or undirected) graph G and a target t, is there a path visiting at least t vertices? (Paths can’t revisit vertices.)
Summary of Lecture:

• \(3\text{SAT} \leq_p \text{E3SAT} \leq_p \text{EU3SAT} \leq_p \text{1-in-EU3SAT} \leq_p \text{SUBSETSUM}\)
• Weak NP-hardness: hard only for big-number inputs
• Strong NP-hardness: hard even for small-number inputs.