
CS 121: Lecture 24
Intro to Randomized Algorithms

Adam Hesterberg

https://madhu.seas.Harvard.edu/courses/Fall2020

Book: https://introtcs.org

Only the course heads (slower):  cs121.fall2020.course.heads@gmail.com{How to contact us
The whole staff (faster response): CS 121 Piazza

mailto:cs121.fall2020.course.heads@gmail.com
https://piazza.com/class/kdux22p1mvg7ph


Announcements:
• Midterm 2 graded. Solutions to be posted today-ish.
• Thanks for participating in Midterm Feedback Survey.
• Happy Thanksgiving! (Next lecture Tuesday.)



Where we are:
Part I: Circuits: 
Finite computation, 
quantitative study

Part II: Automata: 
Infinite restricted computation, 
quantitative study

Part III: Turing Machines: 
Infinite computation, qualitative study

Part IV: Efficient Computation: 
Infinite computation, quantitative study

Part V: Randomized computation: 
Extending studies to non-classical algorithms










Last lecture

• Sample space
• Events
• Union/intersection/negation – AND/OR/NOT of events
• Random variables
• Expectation
• Concentration / tail bounds

𝑋𝑋: {0,1}𝑛𝑛 → ℝ

Average value of 𝑋𝑋 : 𝔼𝔼 𝑋𝑋 = ∑𝑥𝑥∈{0,1}𝑛𝑛 2−𝑛𝑛𝑋𝑋(𝑥𝑥) = ∑𝑣𝑣∈ℝ𝑣𝑣 ⋅ Pr[𝑋𝑋 = 𝑣𝑣]



Today:

• Randomized Algorithms
• Polynomial Identity Testing
• Approximation for maximum cut

• Randomized Complexity Class BPP

• Properties of randomized computation (Reducing error …)



Informal
A randomized algorithm has a special operation:

foo = i.e. foo ∼ {0,1}

By repeating can choose foo ∼ {0,1}𝑛𝑛 or ∼ [0,1]



Randomized algorithms
Two equivalent views:

input

Internal “coin 
tosses”

output

input

outputRandom
 coins

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)

1. Get input 𝑥𝑥 ∈ {0,1}𝑛𝑛
2. Choose 𝑟𝑟 ∼ {0,1}𝑚𝑚
3. Run deterministic algorithm 𝐴𝐴(𝑥𝑥, 𝑟𝑟)

1. Get input 𝑥𝑥 ∈ {0,1}𝑛𝑛
2. Run alg 𝐴𝐴(𝑥𝑥) that has special 

operation 𝑟𝑟𝑖𝑖 ← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅( )
(𝑟𝑟𝑖𝑖 ∼ {0,1})



Computing a function

Randomized algorithm 𝐴𝐴𝐴𝐴𝐴𝐴 computes 𝐹𝐹 if for every input 𝑥𝑥

Pr 𝐴𝐴𝐴𝐴𝐴𝐴 𝑥𝑥 = 𝐹𝐹 𝑥𝑥 ≥
2
3

Not random input –
has to work in the worst case

Probability over the randomness 
of the algorithm, not the input The constant 2/3 is arbitrary – can 

be replaced by 0.51, 0.99, even 
1 − 2−𝑛𝑛. Not by 1/2.

BPP: {Boolean functions computable by some randomized algorithm}



Polynomial Identity Testing: Problem
Q: (𝑥𝑥 + 𝑦𝑦𝑦𝑦)7−𝑥𝑥7 − 𝑦𝑦7𝑧𝑧7 = 7𝑥𝑥 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥2 + 𝑦𝑦2𝑧𝑧2 𝑥𝑥2 + 𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑦𝑦2𝑧𝑧2 ?
Standard form: 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 − 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 −
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 7𝑥𝑥 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑥𝑥𝑥𝑥 + 𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 0?

Input 𝜑𝜑: an expression like the above, with sums/products of variables.
Output 𝑃𝑃𝑃𝑃𝑃𝑃(𝜑𝜑): 1 iff 𝜑𝜑 is the 0 polynomial.

Why is the following not a polynomial-time algorithm for PIT?
Alg-PIT(𝜑𝜑):

Multiply everything out,
Add/subtract like terms,
Return 1 iff all terms cancel.



Polynomial Identity Testing: Algorithm

Q: 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 − 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 −
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 7𝑥𝑥 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑥𝑥𝑥𝑥 + 𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 0?

Randomized algorithm for PIT (note: polynomial time!):
RandAlg-PIT(𝜑𝜑):

For each variable, choose a random number between 0 and 3n.
Plug in those values and do all the integer arithmetic.
Return 1 iff the result is 0.

Can give the wrong answer! Give an example.

.



Polynomial Identity Testing: Correctness (1/2)

Randomized algorithm for PIT:
RandAlg-PIT(𝜑𝜑):

For each variable, choose a random number between 0 and 3n.
Plug in those values and do all the integer arithmetic.
Return 1 iff the result is 0.

Goal: Pr 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑃𝑃𝑃𝑃𝑃𝑃 𝑥𝑥 = 𝑃𝑃𝑃𝑃𝑃𝑃 𝑥𝑥 ≥ 2
3

If 𝑃𝑃𝑃𝑃𝑃𝑃 𝜑𝜑 = 1, Pr 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑃𝑃𝑃𝑃𝑃𝑃(𝜑𝜑) = 1 = 1

If 𝑃𝑃𝑃𝑃𝑃𝑃 𝜑𝜑 = 0…



Polynomial Identity Testing: Correctness (2/2)
𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 − 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 −
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 7𝑥𝑥(𝑥𝑥 + 𝑦𝑦𝑦𝑦)(𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦)(𝑥𝑥𝑥𝑥 + 𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦)?
RandAlg-PIT(𝜑𝜑):

For each variable, choose a random number between 0 and 3n.
Plug in those values and do all the integer arithmetic.
Return 1 iff the result is 0.

If 𝑃𝑃𝑃𝑃𝑃𝑃 𝜑𝜑 = 0: note that the degree is at most 𝑛𝑛.
Fact: A 1-variable polynomial 𝑝𝑝 ≠ 0 is 0 for ≤ deg(𝑝𝑝) inputs in {0, … ,3𝑛𝑛}

Fact: A k-variable polynomial 𝑝𝑝 ≠ 0 is 0 for ≤ deg(𝑝𝑝)(3𝑛𝑛 + 1)𝑘𝑘−1 inputs in {0, … ,3𝑛𝑛}𝑘𝑘

So Pr 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑃𝑃𝑃𝑃𝑃𝑃 𝜑𝜑 = 0 = Pr 𝜑𝜑 𝑥𝑥 = 0 ≤ deg 𝑝𝑝
3𝑛𝑛+1

< 2
3
.



Success amplification
Pr 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑃𝑃𝑃𝑃𝑃𝑃 𝜑𝜑 = 𝐹𝐹 𝑥𝑥 ≥

2
3

We have an algorithm RandAlg-PIT for which:

Give an algorithm BetterRandAlg-PIT for which:

Pr 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑃𝑃𝑃𝑃𝑃𝑃 𝜑𝜑 = 𝐹𝐹 𝑥𝑥 ≥ 1 − 2−60

Note: Pr 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 < Pr[ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑢𝑢𝑢𝑢 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚]
Bottom line: randomized algorithms as good as deterministic for all 
practical purposes.

Recall: randomized algorithms – work on worst case inputs.
Randomness is only over the coins of the algorithm.





Input: Graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸).
Output: Partition of 𝑉𝑉 maximizing # of crossing edges.

Define: 𝑂𝑂𝑂𝑂𝑂𝑂 𝐺𝐺 = max
S⊆𝑉𝑉

|E S, 𝑆𝑆 | to be max # of cut edges.

If 𝑃𝑃 ≠ 𝑁𝑁𝑁𝑁,no poly-time alg computes 𝑂𝑂𝑂𝑂𝑂𝑂(𝐺𝐺) / produces cut achieving it.

We’ll show: Poly-time randomized algorithm that w/ probability ≥ 0.99
outputs cut 𝑆𝑆 that cuts at least 0.5 ⋅ 𝑂𝑂𝑂𝑂𝑂𝑂(𝐺𝐺) edges.

Best known: Alg cutting 𝛼𝛼 ⋅ 𝑂𝑂𝑂𝑂𝑂𝑂(𝐺𝐺) edges for𝛼𝛼 = min
0≤𝜃𝜃≤𝜋𝜋

2
𝜋𝜋
⋅

𝜃𝜃
1 − cos 𝜃𝜃

≈ 0.87857

Central open question: is this optimal?



Input: Graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸).
Output: Partition of 𝑉𝑉 maximizing # of crossing edges.

Define: 𝑂𝑂𝑂𝑂𝑂𝑂 𝐺𝐺 = max
S⊆𝑉𝑉

|E S, 𝑆𝑆 | to be max # of cut edges.

We’ll show: Poly-time randomized algorithm that w/ probability ≥ 0.99
outputs cut 𝑆𝑆 that cuts at least 0.5 ⋅ 𝑂𝑂𝑂𝑂𝑂𝑂(𝐺𝐺) edges.

Thm: ∃ randomized poly time algorithm 𝐴𝐴 s.t. with prob ≥ 0.99

𝐴𝐴 𝐺𝐺 = S s.t. 𝐸𝐸 𝑆𝑆, 𝑆𝑆 ≥ |𝐸𝐸|/2

Q: Why does Thm imply what we need to show?



𝐴𝐴 𝐺𝐺 = S s.t. 𝐸𝐸 𝑆𝑆, 𝑆𝑆 ≥ |𝐸𝐸|/2

Lemma: ∃ randomized poly time algorithm 𝐴𝐴 s.t. if 𝑆𝑆 = 𝐴𝐴(𝐺𝐺) then 

𝔼𝔼 𝐸𝐸 𝑆𝑆, 𝑆𝑆 ≥ |𝐸𝐸|/2

Over randomness of 𝐴𝐴

Q: Why does Lemma not immediately imply the theorem? 

Thm: ∃ randomized poly time algorithm 𝐴𝐴 s.t. with prob ≥ 0.99



Proof: Given 𝐺𝐺 on 𝑛𝑛 vertices, 𝐴𝐴 picks 𝑥𝑥 ∼ {0,1}𝑛𝑛 and output 𝑆𝑆 = 𝑖𝑖 𝑥𝑥𝑖𝑖 = 1 }

For every edge 𝑖𝑖, 𝑗𝑗 ∈ 𝐸𝐸 , define 𝑋𝑋𝑖𝑖,𝑗𝑗 = �
1, 𝑥𝑥𝑖𝑖 ≠ 𝑥𝑥𝑗𝑗
0, 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑗𝑗

Q: Prove that 𝐸𝐸 𝑆𝑆, 𝑆𝑆 = ∑ 𝑖𝑖,𝑗𝑗 ∈𝐸𝐸 𝑋𝑋𝑖𝑖,𝑗𝑗

Q: What is 𝔼𝔼[𝑋𝑋𝑖𝑖,𝑗𝑗]?

Lemma: ∃ randomized poly time algorithm 𝐴𝐴 s.t. if 𝑆𝑆 = 𝐴𝐴(𝐺𝐺) then 

𝔼𝔼 𝐸𝐸 𝑆𝑆, 𝑆𝑆 ≥ |𝐸𝐸|/2

A: 1/2



From expectation to high probability
Given: Poly-time alg 𝐴𝐴 s.t. that 𝔼𝔼 𝑣𝑣𝑣𝑣𝑣𝑣(𝐴𝐴 𝐺𝐺 ) ≥ 𝑘𝑘

Goal: Poly-time alg 𝐵𝐵 s.t. that Pr[𝑣𝑣𝑣𝑣𝑣𝑣 𝐵𝐵 𝐺𝐺 ≥ 𝑘𝑘] ≥ 0.99

Algorithm 𝐵𝐵

Input: 𝐺𝐺
for 𝑖𝑖 = 1 … 1000𝑚𝑚:

𝑆𝑆𝑖𝑖 ← 𝐴𝐴(𝐺𝐺) # fresh randomness each time

return 𝑆𝑆𝑖𝑖 maximizing edges cut

Success 
amplification

𝑚𝑚: # of edges



Given: Poly-time alg 𝐴𝐴 s.t. that 𝔼𝔼 𝑣𝑣𝑣𝑣𝑣𝑣(𝐴𝐴 𝐺𝐺 ) ≥ 𝑘𝑘
Goal: Poly-time alg 𝐵𝐵 s.t. that Pr[𝑣𝑣𝑣𝑣𝑣𝑣 𝐵𝐵 𝐺𝐺 ≥ 𝑘𝑘] ≥ 0.99

Algorithm 𝐵𝐵

Input: 𝐺𝐺
for 𝑖𝑖 = 1 … 1000𝑚𝑚:

𝑆𝑆𝑖𝑖 ← 𝐴𝐴(𝐺𝐺) # fresh randomness each time

return 𝑆𝑆𝑖𝑖 maximizing edges cut

Lemma: Pr[𝑣𝑣𝑣𝑣𝑣𝑣 𝐴𝐴 𝐺𝐺 ≥ 𝑘𝑘] ≥ 1/𝑚𝑚

Q: Prove that Lemma ⇒ Pr[𝑣𝑣𝑣𝑣𝑣𝑣 𝐵𝐵 𝐺𝐺 ≥ 𝑘𝑘] ≥ 0.99



Given: Poly-time alg 𝐴𝐴 s.t. that 𝔼𝔼 𝑣𝑣𝑣𝑣𝑣𝑣(𝐴𝐴 𝐺𝐺 ) ≥ 𝑘𝑘

Lemma: Pr[𝑣𝑣𝑣𝑣𝑣𝑣 𝐴𝐴 𝐺𝐺 ≥ 𝑘𝑘] ≥ 1/𝑚𝑚

Proof: Suppose that Pr 𝑣𝑣𝑣𝑣𝑣𝑣 𝐴𝐴 𝐺𝐺 ≥ 𝑘𝑘 < 1
𝑚𝑚

𝔼𝔼[𝑣𝑣𝑣𝑣𝑣𝑣 𝐴𝐴 𝐺𝐺 <
1
𝑚𝑚
⋅ 𝑚𝑚 + 1 ⋅ (𝑘𝑘 − 1)

then

Contribution 
from case that 
𝑣𝑣𝑣𝑣𝑣𝑣 𝐴𝐴 𝐺𝐺 ≥ 𝑘𝑘

Contribution
from case that 
𝑣𝑣𝑣𝑣𝑣𝑣 𝐴𝐴 𝐺𝐺 < 𝑘𝑘 − 1

= 𝑘𝑘

prob < 1/𝑚𝑚 val ≤ 𝑚𝑚 prob ≤ 1 val ≤ 𝑘𝑘 − 1



Recap
Def: 𝐹𝐹: {0,1}∗ → {0,1} is in 𝐵𝐵𝐵𝐵𝐵𝐵 is there is a poly-time 
randomized algorithm 𝐴𝐴 s.t. ∀𝑛𝑛 ∀𝑥𝑥 ∈ 0,1 𝑛𝑛

Pr
𝐴𝐴′𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

[𝐴𝐴 𝑥𝑥 = 𝐹𝐹(𝑥𝑥)] ≥
2
3

Def: 𝐹𝐹: {0,1}∗ → {0,1} is in 𝐵𝐵𝐵𝐵𝐵𝐵 is there is a poly-time 
algorithm 𝐴𝐴 , poly 𝑞𝑞 𝑛𝑛 s.t. ∀𝑛𝑛 ∀𝑥𝑥 ∈ 0,1 𝑛𝑛

Pr
𝑟𝑟∼{0,1}𝑞𝑞 𝑛𝑛

[𝐴𝐴 𝑥𝑥; 𝑟𝑟 = 𝐹𝐹(𝑥𝑥)] ≥
2
3



Functions with unbounded input lengths: 
inclusion diagram – not to scale!!

Some classes might “collapse” to one another.

All functions 𝐹𝐹: {0,1}∗ → {0,1}
𝑹𝑹 Computable functions

𝑬𝑬𝑬𝑬𝑬𝑬

𝑷𝑷/𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

U𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇22𝑛𝑛

3𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇2𝑛𝑛

𝑷𝑷2𝑆𝑆𝑆𝑆𝑆𝑆
𝑩𝑩𝑩𝑩𝑩𝑩

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑃𝑃𝑃𝑃𝑃𝑃



Functions with unbounded input lengths: 
inclusion diagram – not to scale!!

Some classes might “collapse” to one another.

All functions 𝐹𝐹: {0,1}∗ → {0,1}
𝑹𝑹 Computable functions

𝑬𝑬𝑬𝑬𝑬𝑬

𝑷𝑷/𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

U𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇22𝑛𝑛

3𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇2𝑛𝑛

𝑷𝑷2𝑆𝑆𝑆𝑆𝑆𝑆 𝑩𝑩𝑩𝑩𝑩𝑩
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑃𝑃𝑃𝑃𝑃𝑃

=

Unknown but believed to be true



Next Lecture

• BPP vs EXP
• BPP vs P/poly
• BPP vs NP 








	CS 121: Lecture 24�Intro to Randomized Algorithms
	Announcements:
	Where we are:
	Last lecture
	Today:
	Informal
	Randomized algorithms
	Computing a function
	Polynomial Identity Testing: Problem
	Polynomial Identity Testing: Algorithm
	Polynomial Identity Testing: Correctness (1/2)
	Polynomial Identity Testing: Correctness (2/2)
	Success amplification
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	From expectation to high probability
	Slide Number 20
	Slide Number 21
	Recap
	Slide Number 23
	Slide Number 24
	Next Lecture
	Slide Number 26
	Slide Number 27
	Slide Number 28

