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Announcements:
• Midterm 2 graded. Solutions to be posted today-ish.
• Thanks for participating in Midterm Feedback Survey.
• Happy Thanksgiving! (Next lecture Tuesday.)



Where we are:
Part I: Circuits: 
Finite computation, 
quantitative study

Part II: Automata: 
Infinite restricted computation, 
quantitative study

Part III: Turing Machines: 
Infinite computation, qualitative study

Part IV: Efficient Computation: 
Infinite computation, quantitative study

Part V: Randomized computation: 
Extending studies to non-classical algorithms










Last lecture

• Sample space
• Events
• Union/intersection/negation – AND/OR/NOT of events
• Random variables
• Expectation
• Concentration / tail bounds

𝑋𝑋: {0,1}𝑛𝑛 → ℝ

Average value of 𝑋𝑋 : 𝔼𝔼 𝑋𝑋 = ∑𝑥𝑥∈{0,1}𝑛𝑛 2−𝑛𝑛𝑋𝑋(𝑥𝑥) = ∑𝑣𝑣∈ℝ𝑣𝑣 ⋅ Pr[𝑋𝑋 = 𝑣𝑣]



Today:

• Randomized Algorithms
• Polynomial Identity Testing
• Approximation for maximum cut

• Randomized Complexity Class BPP

• Properties of randomized computation (Reducing error …)



Informal
A randomized algorithm has a special operation:

foo = i.e. foo ∼ {0,1}

By repeating can choose foo ∼ {0,1}𝑛𝑛 or ∼ [0,1]



Randomized algorithms
Two equivalent views:

input

Internal “coin 
tosses”

output

input

outputRandom
 coins

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)

1. Get input 𝑥𝑥 ∈ {0,1}𝑛𝑛
2. Choose 𝑟𝑟 ∼ {0,1}𝑚𝑚
3. Run deterministic algorithm 𝐴𝐴(𝑥𝑥, 𝑟𝑟)

1. Get input 𝑥𝑥 ∈ {0,1}𝑛𝑛
2. Run alg 𝐴𝐴(𝑥𝑥) that has special 

operation 𝑟𝑟𝑖𝑖 ← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅( )
(𝑟𝑟𝑖𝑖 ∼ {0,1})



Computing a function

Randomized algorithm 𝐴𝐴𝐴𝐴𝐴𝐴 computes 𝐹𝐹 if for every input 𝑥𝑥

Pr 𝐴𝐴𝐴𝐴𝐴𝐴 𝑥𝑥 = 𝐹𝐹 𝑥𝑥 ≥
2
3

Not random input –
has to work in the worst case

Probability over the randomness 
of the algorithm, not the input The constant 2/3 is arbitrary – can 

be replaced by 0.51, 0.99, even 
1 − 2−𝑛𝑛. Not by 1/2.

BPP: {Boolean functions computable by some randomized algorithm}



Polynomial Identity Testing: Problem
Q: (𝑥𝑥 + 𝑦𝑦𝑦𝑦)7−𝑥𝑥7 − 𝑦𝑦7𝑧𝑧7 = 7𝑥𝑥 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥2 + 𝑦𝑦2𝑧𝑧2 𝑥𝑥2 + 𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑦𝑦2𝑧𝑧2 ?
Standard form: 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 − 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 −
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 7𝑥𝑥 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑥𝑥𝑥𝑥 + 𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 0?

Input 𝜑𝜑: an expression like the above, with sums/products of variables.
Output 𝑃𝑃𝑃𝑃𝑃𝑃(𝜑𝜑): 1 iff 𝜑𝜑 is the 0 polynomial.

Why is the following not a polynomial-time algorithm for PIT?
Alg-PIT(𝜑𝜑):

Multiply everything out,
Add/subtract like terms,
Return 1 iff all terms cancel.



Polynomial Identity Testing: Algorithm

Q: 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 − 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 −
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 7𝑥𝑥 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑥𝑥𝑥𝑥 + 𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 0?

Randomized algorithm for PIT (note: polynomial time!):
RandAlg-PIT(𝜑𝜑):

For each variable, choose a random number between 0 and 3n.
Plug in those values and do all the integer arithmetic.
Return 1 iff the result is 0.

Can give the wrong answer! Give an example.

.



Polynomial Identity Testing: Correctness (1/2)

Randomized algorithm for PIT:
RandAlg-PIT(𝜑𝜑):

For each variable, choose a random number between 0 and 3n.
Plug in those values and do all the integer arithmetic.
Return 1 iff the result is 0.

Goal: Pr 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑃𝑃𝑃𝑃𝑃𝑃 𝑥𝑥 = 𝑃𝑃𝑃𝑃𝑃𝑃 𝑥𝑥 ≥ 2
3

If 𝑃𝑃𝑃𝑃𝑃𝑃 𝜑𝜑 = 1, Pr 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑃𝑃𝑃𝑃𝑃𝑃(𝜑𝜑) = 1 = 1

If 𝑃𝑃𝑃𝑃𝑃𝑃 𝜑𝜑 = 0…



Polynomial Identity Testing: Correctness (2/2)
𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 𝑥𝑥 + 𝑦𝑦𝑦𝑦 − 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 −
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 7𝑥𝑥(𝑥𝑥 + 𝑦𝑦𝑦𝑦)(𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦)(𝑥𝑥𝑥𝑥 + 𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦)?
RandAlg-PIT(𝜑𝜑):

For each variable, choose a random number between 0 and 3n.
Plug in those values and do all the integer arithmetic.
Return 1 iff the result is 0.

If 𝑃𝑃𝑃𝑃𝑃𝑃 𝜑𝜑 = 0: note that the degree is at most 𝑛𝑛.
Fact: A 1-variable polynomial 𝑝𝑝 ≠ 0 is 0 for ≤ deg(𝑝𝑝) inputs in {0, … ,3𝑛𝑛}

Fact: A k-variable polynomial 𝑝𝑝 ≠ 0 is 0 for ≤ deg(𝑝𝑝)(3𝑛𝑛 + 1)𝑘𝑘−1 inputs in {0, … ,3𝑛𝑛}𝑘𝑘

So Pr 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑃𝑃𝑃𝑃𝑃𝑃 𝜑𝜑 = 0 = Pr 𝜑𝜑 𝑥𝑥 = 0 ≤ deg 𝑝𝑝
3𝑛𝑛+1

< 2
3
.



Success amplification
Pr 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑃𝑃𝑃𝑃𝑃𝑃 𝜑𝜑 = 𝐹𝐹 𝑥𝑥 ≥

2
3

We have an algorithm RandAlg-PIT for which:

Give an algorithm BetterRandAlg-PIT for which:

Pr 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑃𝑃𝑃𝑃𝑃𝑃 𝜑𝜑 = 𝐹𝐹 𝑥𝑥 ≥ 1 − 2−60

Note: Pr 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 < Pr[ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑢𝑢𝑢𝑢 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚]
Bottom line: randomized algorithms as good as deterministic for all 
practical purposes.

Recall: randomized algorithms – work on worst case inputs.
Randomness is only over the coins of the algorithm.





Input: Graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸).
Output: Partition of 𝑉𝑉 maximizing # of crossing edges.

Define: 𝑂𝑂𝑂𝑂𝑂𝑂 𝐺𝐺 = max
S⊆𝑉𝑉

|E S, 𝑆𝑆 | to be max # of cut edges.

If 𝑃𝑃 ≠ 𝑁𝑁𝑁𝑁,no poly-time alg computes 𝑂𝑂𝑂𝑂𝑂𝑂(𝐺𝐺) / produces cut achieving it.

We’ll show: Poly-time randomized algorithm that w/ probability ≥ 0.99
outputs cut 𝑆𝑆 that cuts at least 0.5 ⋅ 𝑂𝑂𝑂𝑂𝑂𝑂(𝐺𝐺) edges.

Best known: Alg cutting 𝛼𝛼 ⋅ 𝑂𝑂𝑂𝑂𝑂𝑂(𝐺𝐺) edges for𝛼𝛼 = min
0≤𝜃𝜃≤𝜋𝜋

2
𝜋𝜋
⋅

𝜃𝜃
1 − cos 𝜃𝜃

≈ 0.87857

Central open question: is this optimal?



Input: Graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸).
Output: Partition of 𝑉𝑉 maximizing # of crossing edges.

Define: 𝑂𝑂𝑂𝑂𝑂𝑂 𝐺𝐺 = max
S⊆𝑉𝑉

|E S, 𝑆𝑆 | to be max # of cut edges.

We’ll show: Poly-time randomized algorithm that w/ probability ≥ 0.99
outputs cut 𝑆𝑆 that cuts at least 0.5 ⋅ 𝑂𝑂𝑂𝑂𝑂𝑂(𝐺𝐺) edges.

Thm: ∃ randomized poly time algorithm 𝐴𝐴 s.t. with prob ≥ 0.99

𝐴𝐴 𝐺𝐺 = S s.t. 𝐸𝐸 𝑆𝑆, 𝑆𝑆 ≥ |𝐸𝐸|/2

Q: Why does Thm imply what we need to show?



𝐴𝐴 𝐺𝐺 = S s.t. 𝐸𝐸 𝑆𝑆, 𝑆𝑆 ≥ |𝐸𝐸|/2

Lemma: ∃ randomized poly time algorithm 𝐴𝐴 s.t. if 𝑆𝑆 = 𝐴𝐴(𝐺𝐺) then 

𝔼𝔼 𝐸𝐸 𝑆𝑆, 𝑆𝑆 ≥ |𝐸𝐸|/2

Over randomness of 𝐴𝐴

Q: Why does Lemma not immediately imply the theorem? 

Thm: ∃ randomized poly time algorithm 𝐴𝐴 s.t. with prob ≥ 0.99



Proof: Given 𝐺𝐺 on 𝑛𝑛 vertices, 𝐴𝐴 picks 𝑥𝑥 ∼ {0,1}𝑛𝑛 and output 𝑆𝑆 = 𝑖𝑖 𝑥𝑥𝑖𝑖 = 1 }

For every edge 𝑖𝑖, 𝑗𝑗 ∈ 𝐸𝐸 , define 𝑋𝑋𝑖𝑖,𝑗𝑗 = �
1, 𝑥𝑥𝑖𝑖 ≠ 𝑥𝑥𝑗𝑗
0, 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑗𝑗

Q: Prove that 𝐸𝐸 𝑆𝑆, 𝑆𝑆 = ∑ 𝑖𝑖,𝑗𝑗 ∈𝐸𝐸 𝑋𝑋𝑖𝑖,𝑗𝑗

Q: What is 𝔼𝔼[𝑋𝑋𝑖𝑖,𝑗𝑗]?

Lemma: ∃ randomized poly time algorithm 𝐴𝐴 s.t. if 𝑆𝑆 = 𝐴𝐴(𝐺𝐺) then 

𝔼𝔼 𝐸𝐸 𝑆𝑆, 𝑆𝑆 ≥ |𝐸𝐸|/2

A: 1/2



From expectation to high probability
Given: Poly-time alg 𝐴𝐴 s.t. that 𝔼𝔼 𝑣𝑣𝑣𝑣𝑣𝑣(𝐴𝐴 𝐺𝐺 ) ≥ 𝑘𝑘

Goal: Poly-time alg 𝐵𝐵 s.t. that Pr[𝑣𝑣𝑣𝑣𝑣𝑣 𝐵𝐵 𝐺𝐺 ≥ 𝑘𝑘] ≥ 0.99

Algorithm 𝐵𝐵

Input: 𝐺𝐺
for 𝑖𝑖 = 1 … 1000𝑚𝑚:

𝑆𝑆𝑖𝑖 ← 𝐴𝐴(𝐺𝐺) # fresh randomness each time

return 𝑆𝑆𝑖𝑖 maximizing edges cut

Success 
amplification

𝑚𝑚: # of edges



Given: Poly-time alg 𝐴𝐴 s.t. that 𝔼𝔼 𝑣𝑣𝑣𝑣𝑣𝑣(𝐴𝐴 𝐺𝐺 ) ≥ 𝑘𝑘
Goal: Poly-time alg 𝐵𝐵 s.t. that Pr[𝑣𝑣𝑣𝑣𝑣𝑣 𝐵𝐵 𝐺𝐺 ≥ 𝑘𝑘] ≥ 0.99

Algorithm 𝐵𝐵

Input: 𝐺𝐺
for 𝑖𝑖 = 1 … 1000𝑚𝑚:

𝑆𝑆𝑖𝑖 ← 𝐴𝐴(𝐺𝐺) # fresh randomness each time

return 𝑆𝑆𝑖𝑖 maximizing edges cut

Lemma: Pr[𝑣𝑣𝑣𝑣𝑣𝑣 𝐴𝐴 𝐺𝐺 ≥ 𝑘𝑘] ≥ 1/𝑚𝑚

Q: Prove that Lemma ⇒ Pr[𝑣𝑣𝑣𝑣𝑣𝑣 𝐵𝐵 𝐺𝐺 ≥ 𝑘𝑘] ≥ 0.99



Given: Poly-time alg 𝐴𝐴 s.t. that 𝔼𝔼 𝑣𝑣𝑣𝑣𝑣𝑣(𝐴𝐴 𝐺𝐺 ) ≥ 𝑘𝑘

Lemma: Pr[𝑣𝑣𝑣𝑣𝑣𝑣 𝐴𝐴 𝐺𝐺 ≥ 𝑘𝑘] ≥ 1/𝑚𝑚

Proof: Suppose that Pr 𝑣𝑣𝑣𝑣𝑣𝑣 𝐴𝐴 𝐺𝐺 ≥ 𝑘𝑘 < 1
𝑚𝑚

𝔼𝔼[𝑣𝑣𝑣𝑣𝑣𝑣 𝐴𝐴 𝐺𝐺 <
1
𝑚𝑚
⋅ 𝑚𝑚 + 1 ⋅ (𝑘𝑘 − 1)

then

Contribution 
from case that 
𝑣𝑣𝑣𝑣𝑣𝑣 𝐴𝐴 𝐺𝐺 ≥ 𝑘𝑘

Contribution
from case that 
𝑣𝑣𝑣𝑣𝑣𝑣 𝐴𝐴 𝐺𝐺 < 𝑘𝑘 − 1

= 𝑘𝑘

prob < 1/𝑚𝑚 val ≤ 𝑚𝑚 prob ≤ 1 val ≤ 𝑘𝑘 − 1



Recap
Def: 𝐹𝐹: {0,1}∗ → {0,1} is in 𝐵𝐵𝐵𝐵𝐵𝐵 is there is a poly-time 
randomized algorithm 𝐴𝐴 s.t. ∀𝑛𝑛 ∀𝑥𝑥 ∈ 0,1 𝑛𝑛

Pr
𝐴𝐴′𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

[𝐴𝐴 𝑥𝑥 = 𝐹𝐹(𝑥𝑥)] ≥
2
3

Def: 𝐹𝐹: {0,1}∗ → {0,1} is in 𝐵𝐵𝐵𝐵𝐵𝐵 is there is a poly-time 
algorithm 𝐴𝐴 , poly 𝑞𝑞 𝑛𝑛 s.t. ∀𝑛𝑛 ∀𝑥𝑥 ∈ 0,1 𝑛𝑛

Pr
𝑟𝑟∼{0,1}𝑞𝑞 𝑛𝑛

[𝐴𝐴 𝑥𝑥; 𝑟𝑟 = 𝐹𝐹(𝑥𝑥)] ≥
2
3



Functions with unbounded input lengths: 
inclusion diagram – not to scale!!

Some classes might “collapse” to one another.

All functions 𝐹𝐹: {0,1}∗ → {0,1}
𝑹𝑹 Computable functions

𝑬𝑬𝑬𝑬𝑬𝑬

𝑷𝑷/𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

U𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇22𝑛𝑛

3𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇2𝑛𝑛

𝑷𝑷2𝑆𝑆𝑆𝑆𝑆𝑆
𝑩𝑩𝑩𝑩𝑩𝑩

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑃𝑃𝑃𝑃𝑃𝑃



Functions with unbounded input lengths: 
inclusion diagram – not to scale!!

Some classes might “collapse” to one another.

All functions 𝐹𝐹: {0,1}∗ → {0,1}
𝑹𝑹 Computable functions

𝑬𝑬𝑬𝑬𝑬𝑬

𝑷𝑷/𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

U𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇22𝑛𝑛

3𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇2𝑛𝑛

𝑷𝑷2𝑆𝑆𝑆𝑆𝑆𝑆 𝑩𝑩𝑩𝑩𝑩𝑩
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑃𝑃𝑃𝑃𝑃𝑃

=

Unknown but believed to be true



Next Lecture

• BPP vs EXP
• BPP vs P/poly
• BPP vs NP 
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