Announcements:

• Q survey open
• Last Sections this week (through Friday)
Where we are:

Part I: Circuits:
Finite computation, quantitative study

Part II: Automata:
Infinite restricted computation, quantitative study

Part III: Turing Machines:
Infinite computation, qualitative study

Part IV: Efficient Computation:
Infinite computation, quantitative study

Part V: Randomized computation:
Extending studies to non-classical algorithms
Randomized algorithm ALG computes F if for every input x

$$\Pr[ALG(x) = F(x)] \geq \frac{2}{3}$$

Probability over the randomness of the algorithm, not the input.

The constant $2/3$ is arbitrary – can be replaced by 0.51, 0.99, even $1 - 2^{-n}$. Not by $1/2$.

BPP: {Boolean functions computable by some randomized algorithm}

Polynomial Identity Testing: in BPP, not known if in P.

$\frac{1}{2}$-approx to Max Cut: in BPP.
All functions $F: \{0,1\}^* \rightarrow \{0,1\}$

R Computable functions

- $\star \text{HALT}_{2^n}$
Today

- \(P \subseteq BPP \subseteq EXP \)
- \(BPP \subseteq P/poly \)
 - Proof uses success amplification via the Chernoff bond
- \(NP \) vs \(BPP \): Unknown, but Sipser-Gaacs-Lautemann Theorem:
 - If \(P = NP \) then \(BPP = P \)
 - \(BPP \) contained in a class like, and not much larger than, \(NP \).
Q: Prove that \(P \subseteq BPP \)

A: Ignore randomness

Q: Prove that \(BPP \subseteq EXP \)

A: Try all possible coin flip results

Def 2: \(F : \{0,1\}^* \rightarrow \{0,1\} \) is in \(BPP \) if \(\exists \) poly-time deterministic algorithm \(A \), poly \(q(n) \) s.t. \(\forall n \forall x \in \{0,1\}^n \)

\[
\Pr_{r \sim \{0,1\}^{q(n)}}[A(x; r) = F(x)] \geq \frac{2}{3}
\]
BPP \subseteq P/poly outline in words

Def: \(F: \{0,1\}^* \rightarrow \{0,1\}\) is in \(BPP\) if \(\exists\) poly-time deterministic algorithm \(A\) such that \(\forall n\), given a random poly-size advice string \(q(n)\), \(\forall x \in \{0,1\}^n\), \(A\) decides \(F(x)\) right, \(p > 2/3\).

Def: \(F: \{0,1\}^* \rightarrow \{0,1\}\) is in \(P/poly\) if \(\exists\) poly-time deterministic algorithm \(A\) such that \(\forall n\), given a fixed poly-size advice string \(q(n)\), \(\forall x \in \{0,1\}^n\), \(A\) decides \(F(x)\) right.

Proof idea: Amplify the success probability so much that one \(q(n)\) works for every input.
\(BPP \subseteq P/poly \) outline in pictures

\[\Pr_{x \sim \{0,1\}^n, r \sim \{0,1\}^m}[A(x; r) = F(x)] \geq \frac{2}{3} \]

\(\forall x \in \{0,1\}^n, \Pr_{r \sim \{0,1\}^m}[A(x; r) = F(x)] \geq \frac{2}{3} \)
Amplification for 2-sided error

Thm: If $F \in BPP$ then \exists poly-time algorithm B, poly $q(n)$ s.t. $\forall n \forall x \in \{0,1\}^n$

$$\Pr_{r \sim \{0,1\}^{q(n)}}[B(x;r) = F(x)] \geq 1 - 2^{-n^2}$$

Generally: Can amplify success from $\frac{1}{2} + \frac{1}{p(n)}$ to $1 - 2^{-r(n)}$ for all polys p, r

Chernoff Bound: Let X_0, \ldots, X_{n-1} i.i.d. r.v.’s with $X_i \in [0,1]$. Then if $X = X_0 + \cdots + X_{n-1}$ and $p = \mathbb{E}[X]$, for every $\epsilon > 0$,

$$\Pr[|X - np| > \epsilon n] < 2^{1-(2 \log e)\epsilon^2 n}$$
Thm: If $F \in BPP$ then \exists poly-time algorithm B, poly $q(n)$ s.t. $\forall n \forall x \in \{0,1\}^n$

$$\Pr_{r \sim \{0,1\}^{q(n)}} [B(x; r) = F(x)] \geq 1 - 2^{-n^2}$$

Proof: Suppose $\Pr[A(x; r) = F(x)] \geq 2/3$.

Idea: B will run $A 1000n^2$ times and return majority vote.

Define $X_i = \begin{cases} 1, & A(x; r_i) = F(x) \\ 0, & A(x; r_i) \neq F(x) \end{cases}$

$X_1, ..., X_{1000n^2}$ i.i.d with $\mathbb{E}[X_i] \geq 2/3$

By Chernoff, $\Pr \left[\frac{1}{1000n^2} \sum_i X_i < 0.5 \right] < 2^{1 - \frac{2 \lg e}{36} \cdot 1000n^2} < 2^{-n^2}$
BPP ⊆ P/poly

If \(F \in BPP \) then by amplification \(\exists \) poly time algorithm \(A \) s.t.

\[
Pr_{r \sim \{0,1\}^m}[A(x;r) \neq F(x)] < 2^{-n}
\]

Let \(M = 2^m \) be # of random choices

Let \(N = 2^n \) be # of inputs

Every column has \(< \frac{M}{N} \) “reds”

\[\Rightarrow \] # reds < # rows

\[\Rightarrow \] must be rows with no reds!

A “good choice of randomness” \(r^* \) s.t.

\[\forall x \in \{0,1\}^n \ A(x; r^*) = F(x) \]

Use \(r^* \) as the P/poly advice string.
Proof: Suppose $F \in BPP$ and A is alg using n^a random bits and running in n^b time s.t. $\Pr[A(x;r) \neq F(x)] < 0.001 \cdot 2^{-n}$

By $P \subseteq P/poly$ there’s circuit C of $\leq n^{4b}$ computing $x, r \mapsto A(x; r)$
BPP \subseteq P/poly denouement

Proof: Suppose \(F \in BPP \) and \(A \) is alg using \(n^a \) random bits and running in \(n^b \) time s.t. \(\Pr[A(x; r) \neq F(x)] < 0.001 \cdot 2^{-n} \)

By \(P \subseteq P/poly \) there’s circuit \(C \) of \(\leq n^{4b} \) computing \(x, r \mapsto A(x; r) \)

Diagram:
- \(n \) inputs
- \(n^a \) random choices
- \(n^2b \) gates
- \(M = 2^m \) possible random choices
- \(N = 2^n \) possible inputs
BPP ⊆ P/poly denouement

Proof: Suppose $F \in BPP$ and A is alg using n^a random bits and running in n^b time s.t. $\Pr[A(x; r) \neq F(x)] < 0.001 \cdot 2^{-n}$

By $P \subseteq P/poly$ there’s circuit C of $\leq n^{4b}$ computing $x, r \mapsto A(x; r)$

$x \mapsto A(x; r^*)$ is the map F on $\{0,1\}^n$!
Recap for now

- $P \subseteq BPP$
- $BPP \subseteq EXP$
- $BPP \subseteq P_{/poly}$
- Unknown if $BPP = P$. Unknown if $BPP = EXP$

Q: Can it be that $P = BPP = EXP$?

Q: Is there a poly-time deterministic algorithm that given randomized alg A for $F \in BPP$ and $n \in \mathbb{N}$ outputs a circuit C_n that computes F on $\{0,1\}^n$?
Q: Suppose that $F \leq_p G$ and $G \in BPP$. Prove that $F \in BPP$.

Corollary: If $3SAT \in BPP$ then $NP \subseteq BPP$

Unknown: Is $BPP \subseteq NP$? Is $NP \subseteq BPP$? Both? Neither?

Known: Sipser-Gaacs-Lautemann Theorem: If $P = NP$ then $BPP = P$
Sipser-Gaacs-Lautemann Thm: If $P = NP$ then $BPP = P$

Proof idea: First, amplify like crazy:

Ensure: $\Pr_{r \sim \{0,1\}^m} [A(x;r) = F(x)] \geq 1 - 2^{-n} > 1 - \frac{1}{1000m}$

- $A(x; r) = 0$
- $A(x; r) = 1$

$S_x := \{ r | A(x;r) = 1 \}$

$F(x) = 0 : |S_x| < \frac{1}{1000m} 2^m$

$F(x) = 1 : |S_x| > \left(1 - \frac{1}{1000m}\right)^2 m$

MAIN LEMMA: $F(x) = 1 \text{ iff } \exists m \text{ shifts } s_1, \ldots, s_m \text{ s.t. } \{0,1\}^m = \bigcup (S_x \oplus s_i)$

$F(x) = 1 \text{ iff } \exists s_1, \ldots, s_m \in \{0,1\}^m \forall z \in \{0,1\}^m \exists i \in [m] \exists r \in \{0,1\}^m : (A(x;r) = 1) \land (z = r \oplus s_i)$
Ensure: \(\Pr_{r \sim \{0,1\}^m} [A(x; r) = F(x)] \geq 1 - 2^{-n} \geq 1 - \frac{1}{1000m} \)

\(S_x := \{ r \mid A(x; r) = 1 \} \)

- \(A(x; r) = 0 \)
- \(A(x; r) = 1 \)

\(F(x) = 0 : |S_x| < \frac{1}{1000m} 2^m \)

\(F(x) = 1 : |S_x| > \left(1 - \frac{1}{1000m}\right) 2^m \)

MAIN LEMMA: \(F(x) = 1 \) iff \(\exists m \) shifts \(s_1, \ldots, s_m \) s.t. \(\{0,1\}^m = \bigcup (S_x \oplus s_i) \)

CLAIM 1 (\(\iff \)): If \(|S| < \frac{1}{1000m} 2^m \) then \(\forall s_1, \ldots, s_m \in \{0,1\}^m \) \(|\bigcup_i (S \oplus s_i)| < 2^m \)

Proof: \(|S \oplus a| = |S| \)

\[|\bigcup_i (S \oplus s_i)| < m \cdot \frac{1}{1000m} 2^m < 2^m \]
Ensure: \(\Pr_{r \sim \{0,1\}^m}[A(x; r) = F(x)] \geq 1 - 2^{-n} \geq 1 - \frac{1}{1000m} \)

\(S_x := \{ r | A(x; r) = 1 \} \)

\[\begin{array}{c}
A(x; r) = 0 \\
A(x; r) = 1
\end{array} \]

\(F(x) = 0 : |S_x| < \frac{1}{1000m} 2^m \)

\(F(x) = 1 : |S_x| > \left(1 - \frac{1}{1000m}\right) 2^m \)

MAIN LEMMA: \(F(x) = 1 \iff \exists m \) shifts \(s_1, \ldots, s_m \) s.t. \(\{0,1\}^m = \bigcup (S_x \oplus s_i) \)

CLAIM 2 (\(\Rightarrow \)): If \(|S| > \frac{2}{3} 2^m \) then \(\exists s_1, \ldots, s_m \in \{0,1\}^m \) s.t. \(\bigcup_i (S \oplus s_i) = \{0,1\}^m \)

Proof: For every \(z \in \{0,1\}^m \)
\[\Pr_s[z \notin S \oplus s] = \Pr[s \notin S \oplus z] < \frac{1}{3} \]

\[\Rightarrow \] For every \(z \in \{0,1\}^m \)
\[\Pr_{s_1, \ldots, s_m}[\bigwedge_{i=1}^m z \notin S \oplus s_i] < \left(\frac{1}{3}\right)^m < 2^{-m} \]

\[\Rightarrow \] \[\Pr_{s_1, \ldots, s_m}[\exists z \in \{0,1\}^m \bigwedge_{i=1}^m z \notin S \oplus s_i] < 1 \]
Sipser-Gaacs-Lautemann Thm: If \(P = NP \) then \(BPP = P \)

MAIN LEMMA: \(F(x) = 1 \) iff \(\exists \ m \) shifts \(s_1, \ldots, s_m \) s.t. \(\{0,1\}^m = \cup (S_x \oplus s_i) \)

\[
F(x) = 1 \iff \exists s_1, \ldots, s_m \in \{0,1\}^m \forall z \in \{0,1\}^m \exists i \in [m] \exists r \in \{0,1\}^m : (A(x;r) = 1) \land (z = r \oplus s_i)
\]

\[
F(x) = 1 \iff \exists s_1, \ldots, s_m \neg \exists z \neg \exists i \exists r : (A(x;r) = 1) \land (z = r \oplus s_i)
\]

In NP, so replace with P alg (no \(\exists i \exists r \))

Also in P

In NP, so replace with P alg (no \(\exists z \))

Also in P

In NP, so replace with P alg (no \(\exists s_1, \ldots, s_m \))
BPP and NP recap

- If $3SAT \in BPP$ then $NP \subseteq BPP$: All theory of NP completeness stays the same if we use BPP as our model of “efficient computation”.

- If $P = NP$ then $BPP = P$

- If (as widely believed) $3SAT \notin P/poly$ then $NP \nsubseteq BPP$
All functions $F: \{0,1\}^* \to \{0,1\}$

R Computable functions

P Polynomial

NP Non-deterministic Polynomial

$BPP = EXP$

FACTORIZATION

$2SAT \in P$

$3SAT \in NPC$

$HALT_{2^{2n}}$

HALT

UHALT

Unknown but believed false
All functions $F: \{0,1\}^* \rightarrow \{0,1\}$

R Computable functions

\star $HALT_{2^n}$

EXP

\star $HALT_{2^n}$

P \(=\) BPP

$2SAT$ \(=\) $PRIMALITY$

PIT

NP

$FACTORIZING$

NPC

$3SAT$

Unknown but believed to be true
BPP recap

- $P \subseteq BPP \subseteq EXP$
 Unknown if either inclusion strict but can’t have $P = BPP = EXP$
- $BPP \subseteq P/poly$
- If BPP contains an NP-complete problem then $NP \subseteq BPP$
- Relation with NP unknown
- If $P = NP$ then $BPP = P$
- It is believed that $P \neq NP$ (of course) but it is also believed that $BPP = P$.
Next Lecture: Wrap-up

- Quantum Computation
 - Most credible challenger to Strong Church-Turing Thesis.
- Cryptography, Society
- Exam info
Bonus topics:

- One sided error algorithms: $coRP, RP$
- “Zero sided error” (Las Vegas): ZPP
- Known that $ZPP = RP \cap coRP$ and that $RP \cup coRP \subseteq BPP$
- Known that $RP \subseteq NP$ and $coRP \subseteq coNP$
- Pseudorandom generators
- relation between counting and sampling.
- Randomized reductions.