CS 121: Lecture 26 What we didn't cover

Madhu Sudan

https://madhu.seas.Harvard.edu/courses/Fall2020
Book: https://introtcs.org
How to contact us $\left\{\begin{array}{l}\text { The whole staff (faster response): CS } 121 \text { Piazza } \\ \text { Only the course heads (slower): } \text { cs121.fall2020.course.heads@gmail.com }\end{array}\right.$

Announcements:

- Advanced section: Yael Kalai (Proofs in CS: Probabilistic Checking, Interaction, Zero Knowledge, Delegation)
- Final Exam (any 3hrs between [1:21pm 12/10-1:21pm 12/12])

Summary of the course

- Turing Machines!
- Compute everything computable ...
- (weaker models exist (circuits, DFA) but they don't compute everything)
- In fact ... there exists one TM that computes everything computable!
- ... but some problems not computable $: \%$
- Can be used to measure complexity ...
- $P=$ poly time $=$ efficient
- EXP $\neq P$ inefficient
- NP $\neq P$? desired to be efficient, believed inefficient.
- STCT Challengers: Randomness and Quantum
- BPP (can do stuff not known to be in P), status also unknown

1. Quantum computing

Physics 500BC-1920’s: Clockwork universe

- A physical theory has basic objects ("particles") and forces between them.
- Given state of all particles at time t, can compute state at time $t+1$
- If universe has N particles, we can represent state with $O(N)$ numbers and compute one time-step in $O(N)$ or $O\left(N^{2}\right)$ time.
Examples: Newtonian mechanics, Maxwell's equations, Special and general relativity (\& TM Configurations!)

Quantum Mechanics is not a "clockwork" theory!

Double slit experiment: classical view

$$
\operatorname{Pr}[\text { hit }]=\operatorname{Pr}[\text { hit } \mid \text { top }] \cdot \operatorname{Pr}[t o p]+\operatorname{Pr}[\text { hit } \mid b o t] \cdot \operatorname{Pr}[\text { bot }]=\frac{1}{10} \cdot \frac{1}{10}+\frac{1}{10} \cdot \frac{1}{10}=\frac{2}{100}
$$

Double slit experiment: quantum view*

Quantum weirdness II

Measuring if an event happens collapses the amplitude - the event happens with probability α^{2} and doesn't happen with probability $1-\alpha^{2}$

An event can depend on particles that are far from each other measurement can create "spooky correlations at a distance".

Implications to computing

- Probabilistic computing:
- Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ be polytime computable
- Can put computer in the configuration $2^{-n} \cdot \sum_{x \in\{0,1\}^{n}} f(x)$
- Allows us to compute "average(f)", "variance(f)" etc.
- Quantum computing:
- Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ be polytime computable
- Can put computer in the configuration $2^{-\frac{n}{2}} \cdot \sum_{x \in\{0,1\}^{n}}(-1)^{x_{0}} f(x)$
- Allows us to compute?

Some quantum computing history

1981: Feynman talks about difficulty of simulating quantum physics with classical computers, speculates maybe a different computer would work. 1985: David Deutsch starts studying quantum computers in their own right.
1993: Bernstein and Vazirani give formal definitions, first formal evidence of exponential speedup.

- Spring 1994: Simons gives "period finding" algorithm for functions $f: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}^{n}$.
- Fall 1994: Shor gives "period finding" algorithm for functions $f: \mathbb{Z}_{N} \rightarrow \mathbb{Z}_{N}$ and show it implies a polynomial-time factoring algorithm. Field explodes.

More details:

- Model: Quantum Turing Machine or (uniform) Quantum circuits
- Uniform circuit = constructed in time poly in its size.
- Complexity Measure: Quantum time/Quantum size (equal up to poly factors, due to uniformity)
- Complexity Class: BQP - Boolean functions computable in Poly time.

Thms: $P \subseteq B Q P, B P P \subseteq B Q P, B Q P \subseteq E X P$

Moral of the story

- Importance of STCT!
- Axioms of quantum physics being tested by STCT!
- Tools used to establish tests: from CS 121/221/321....

2. Cryptography

Cryptography

- Very subtle - long history of people getting it wrong
- Can't be taught in one class, not even one term
- Our focus is connection between cryptography, computational complexity, and randomness.

History of Crypto: 3000BC-1976

History of Crypto: 3000BC-1976

Desian crvnto svstem

"Human ingenuity cannot concoct a cipher which human ingenuity cannot resolve."

Edgar Allan Poe, I84I

System is broken

Example 1: Mary's cipher

Example 2: Enigma

A typewriter that based on wires and rotor setting would emit different letter for every
keypress. current state
letter typed
new state
letter output

About 10^{113} possibilities to set the wirings and rotors.
Lightspeed supercomputer will take $\gg 10^{17}$ years to check them all (universe is only 10^{10} years old)
Believed impossible to break by Germans.
Broken (following Polish advances) via heroic efforts by British at Bletchley park

- Cut German U-Boat success in sinking ships by $\sim 90 \%$
- Sank about 60% of German U-Boats in Mediterranean
- Crucial to success of Normandy D-day landing.

Modern Cryptography (1976-)

"We stand today on the brink of a revolution in cryptography"
Whit Diffie and Martin Hellman, 1976

Data	Cycles	Person-years	Result	
Mary's cipher	10^{4} bytes	N/A	1	KBroken
Enigma	10^{7} bytes	10^{13}	10^{5}	Kroken
1976				
Diffie-Hellman/RSA	10^{22} bytes	10^{25}	10^{8}	Unbroken!

DH/RSA are simpler than Enigma, and allow public encryption key

Security through obscurity \square Security through simplicity

Modern cryptography

- Key insight: $N P \neq P$ on steroids
- There exist "one-way" functions $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ such that:
- f is easy to compute (in poly(n) time)
- f is hard to invert (Given $f(x)$, hard to find any x^{\prime} such that $f\left(x^{\prime}\right)=f(x)$)
- (Exercise: Prove that if $\mathrm{NP}=\mathrm{P}$, then such functions don't exist!)
- 3 Phases of modern crypto:
- Phase 1: Diffie/Hellman, Rivest/Shamir/Adleman: Realized above, and used sheer ingenuity to build some crypto primitives (encryption, signature, key distribution)
- Phase 2: Blum/Goldwasser/Micali/Yao: Used principles of CS (!!!reductions!!!) to "automate" development of cryptography. Start with o.w.f., + build almost everything else from them! Proven secure unless owf breaks.
- Phase 3: ... Barak/Gentry/Sahai/Waters ... : Ingenuity+Principles: Homomorphic Encryption, Obfuscation

Computational Secrecy

There are not in nature two real, absolute beings, indiscernible from each other", Gottfried Wilhelm Leibniz
"Identity of Indiscernibles Principle"
a.k.a "If two distributions cannot be distinguished by polynomial-time algorithms, they may as well be the same"

Cryptography vs. security

What we didn't see

(and where to see it.)

Who supplies the input? And what do we do with the output?

Incentives, mechanism design (CS 13x, 23x)

Privacy , Fairness (CS126, CS208)
Cryptography/security(CS 127/227, CS 263, MIT 6.857, MIT 6.875)
Average case complexity, learning, generalization (CS 181, 183, 228)

Surprising algorithms and data structures

Multiply n bit numbers in $\ll n^{2}$ time. Multiply $n \times n$ matrices in $\ll n^{3}$ time.

Solve linear programming in poly(n) time.

Answer query " $i \in S$?" in $O(1)$ time. (dictionaries, hash tables)
Answer query "dist $(u, v)<k$?" in << n time. (distance oracles, nearest neighbors)

$$
\text { CS 124, CS 222/223, MIT } 6.854
$$

More on computational complexity

- Hardness of approximation and probabilistically checkable proofs.
- Lower bounds for concrete computational models.
(For general Boolean circuits, can't rule out 6n gate circuit for 3SAT!)
- Derandomization from weaker assumptions.

$$
\text { CS } 221 \text {, MIT } 6.841
$$

https://www.math.ias.edu/avi/book
https://theory.cs.princeton.edu/complexity/
https://people.seas.harvard.edu/~salil/ pseudorandomness/

Computational complexity andean
Pseudorandomness

Error
correcting
codes cs 229

Machine
Learning
CS 18x/28x/228

Data CS 224/226
structures
lower bounds

Thank You to ...

Adam Hesterberg

Amy Wang

Serena Davis

Nari Johnson

Joanna Boyland

Kevin Chen

Max Guo

Diego Gutierrez

Eric Lin

Ife Omidiran

James Roney

Noah Singer

Zuzanna Skoczylas

Sahana Srinivasan

Richard Xu

