
CS 121: Lecture 7
Infinite Functions

Madhu Sudan

https://madhu.seas.Harvard.edu/courses/Fall2020

Book: https://introtcs.org

Only the course heads (slower): cs121.fall2020.course.heads@gmail.com{How to contact us
The whole staff (faster response): CS 121 Piazza

Reminders

• 121.5: Ryan O’Donnell, Analysis of Boolean Functions. Today @ 4:30
• Section 3 cycle begins today
• Extra-length sections:
• Will (Thursdays: 6-7:30pm), Max & Zuzanna (Tuesdays: 7:30am-9am).

Today

• Infinite vs. Finite functions
• Example: Addition as finite state algorithm
• (Deterministic) Finite Automata:
• Break 1: Understand DFA
• Break 2: Design DFA
• Preview of next lecture: Regular Expressions

So far

• Have seen Circuits/NAND-CIRC Programs
• Compute all finite functions:
• Given ݂: 0,1 ՜ 0,1 , exists NAND-CIRC ܥ, s.t. ݔ א 0,1 ,ܥ ݔ = ݂ ݔ
• Sounds great?

ܱܴܺ on 2 variables

ܱܴܺ on 3 variables

ܱܴܺ on 4 variables

ܱܴܺ on 5 variables

ܱܴܺ on 6 variables

ܱܴܺ on 7 variables

ܱܴܺ on 8 variables

ܱܴܺ on 9 variables

ܱܴܺ on 10 variables

So far

• Have seen Circuits/NAND-CIRC Programs
• Compute all finite functions:
• Given ݂: 0,1 ՜ 0,1 , exists NAND-CIRC ܥ, s.t. ݔ א 0,1 ,ܥ ݔ = ݂ ݔ
• Sounds great?

• Weakness: Only computes finite functions.
• No generalization?
• Given circuits for ADDଵ, ADDଶ, ADDଷ, …ADD - do we know what circuit for
ADDାଵ looks like?

• Our favorite algorithms generalize!!

Today: Algorithms with finite state

• What should an algorithm be?
• Sequence of simple steps
• Different steps for different inputs
• Exactly which step to take must be determined (based on input, easily, locally).
• Different #steps for different input lengths
• When to stop must be determined (based on input, easily, locally).

• Finite state algorithms: What step to take, when to stop determined by
“finite state” (constant # bits of memory).

Example: Addition as finite state algorithm

• Advantage: O(1)-sized description. Tells how to compute an infinite
function ADD: 0,1 כ × 0,1 כ ՜ 0,1 כ

• Can you do anything else?
• Multiplication? NO /
• … but can do modular counting, pattern matching

⇒÷.
"it÷'

.

I

too

Boolean functions

• From now will focus only on Boolean functions: ܩ: 0,1 כ ՜ 0,1

• Why?
• Given ܨ: 0,1 כ ՜ 0,1 :ܨcan design b ,כ 0,1 כ × Գ ՜ 0,1 or

:ܨܤ 0,1 כ × Գ ՜ 0,1 , that are roughly “equally easy/hard”.
• Idea: ܨܤ ,ݔ ݅ = ܨ ݔ

• If ܨ ݔ א 0,1 for some ݉:
• Can go from ܨ ݔ to ܨܤ ,ݔ ݅ (for any single ݅) by erasing other parts of output.
• Can go from ݔ)ܨܤ, ݅) to (ݔ)ܨ by ݉ calls to algorithm for (ڄ,ڄ)ܨܤ

Exercise Break 1

• Booleanize ݐ݈ݑܯ: 0,1 כ × 0,1 כ ՜ 0,1 ݐ݈ݑܯ where ,כ is the
multiplication function for integers (given in “little-endian”).

• What is domain of your function?
• What is the range?

Deterministic Finite Automata (DFA)

• Finite algorithms computing Boolean functions: ݂: 0,1 כ ՜ 0,1

• Operation:
1. Finite number of states: ܥ
2. Starts in state 0, reads ݔ
3. At any stage has current state ݍ, last read input symbol ߪ
4. Moves to state ܶ(ߪ,ݍ); moves to read next input symbol
5. If input not done, repeat from Step 3.
6. When done: Accept (output 1) if current state ݍ א ܵ and reject (output 0) otherwise.

• Specification:, ܶ, ܵ where ܶ: ܥ × 0,1 ՜ ܵ ,[ܥ] ك [݇]

• (more elaborate spec. in Sipser): (ܳ, ,ܶ,,ȭݍ ܵ) [ܳ = ܥ , ݍ = 0,ȭ = {0,1}]

Example:

݂ ݔ = 1֞ ݔ contains 011 as a subsequence

⇒O O O 00

Exercise Break 2:

1) Convert the following diagram to transition function:

2) Describe the function ݂ computed by this DFA.

° I
⇒8%
''f t

o ¥00
Ooo

Regular Expressions
• Motivation: DFA detects simple patterns in strings. Can it do more complex ones?
• Regular expressions:

• A generalization of “Patterns”.
• Succinct descriptions of subsets of 0,1 כ

• Definition:
• Basic cases:

• 0 is a regular expression
• 1 is a regular expression

• Compound cases: If ݎଵ, ଶݎ are regular expressions, then so are:
• ଵݎ“ :ଶݎଵݎ followed by ݎଶ” (or “concatenation”)
• |ଵݎ) ”ଶݎ ଵorݎ“ :(ଶݎ
• ”ଵ’sݎ Concatenation of finite number of“ :כଵݎ

• End Cases:
• ߶ (empty set) is regular.
• “” (null string) is regular.

Regular Expression Matching

• Basic
• 0 matches 0
• 1 matches 1
• “” matches “”
• No string matches ߶

• Compound:
• ݏ matches ݎଵݎଶ if there exists ݏଵ, ଶݏ such that ݏ = ଶݏଵݏ and ݏଵ matches ݎଵ and ݏଶ

matches ݏଶ
• ݏ matches ݎଵ|ݎଶ if ݏ matches ݎଵ or ݏ matches ݏଶ
• ݏ matches ݎଵכ if there exists ݏଵ, ,ଶݏ … , κݏ such that ݏ = …ଶݏଵݏ κݏ and ݏ matches ݎଵ

for every ݅ א κ

Examples:

• 0 1 011כ 0 1 כ

Examples:

• 0 1 1כ 0 1 1כ 0|1 1כ 0 1 כ

Examples:

• 1כ10כ10כ0 כ

Regular expressions = sets (languages) = functions

• Can think of a regular expression as a set or as a Boolean function:
• Given regular expression ݎ can look at set (language)

• ܮ ݎ = ݔ א 0,1 כ matchesݔ {ݎ
• ݂: 0,1 כ ՜ 0,1 where ݂ ݔ = 1֞ ݔ א ܮ ݎ ֞ matchesݔ ݎ

• We prefer the last version

Next two lectures:

• Understanding DFA via regular expressions:
• For which regular expressions ݎ is ݂ ݎ computable by a DFA

• (Note: # states can depend on ݎ, but not on ݔ or |ݔ|)

• What are some functions computable by DFA that are not regular

• Limits of DFA
• What are some functions that are not computed by DFA?

