Today

- Comparison of regular expressions and finite automata
- Nondeterministic Finite Automata
- Preview of next lecture: non-regular functions
Reminder: Regular Expressions

• Defines function \(f : \{0,1\}^* \rightarrow \{0,1\} \)

• Definition:
 • Basic cases:
 • \(0, 1, \phi = \{\} \) (empty set), "" = \(\varepsilon \) (null string)
 • Compound cases: If \(r_1, r_2 \) are regular expressions, then so are:
 • \(r_1r_2 \): "\(r_1 \) followed by \(r_2 \)" (or "concatenation")
 • \((r_1|r_2) \): "\(r_1 \) or \(r_2 \)"
 • \(r_1^* \): "Concatenation of nonnegative (finite) number of \(r_1 \)’s"

• Example:
 • \(0|1(0|1)^*0 \): nonnegative even integers in binary
 • (deterministic |)finite(-state | state |)automaton
Reminder: Deterministic Finite Automata (DFAs)

- Computes function $f : \{0, 1\}^* \rightarrow \{0, 1\}$
- Specification:
 - accept states S (subset of all states, C)
 - transition function $C \times \{0, 1\} \rightarrow C$
- Operation:
 1. Starts in state 0
 2. Read one bit of input x_0: do the state transition matching current state and just-read input.
 3. Move past just-read input.
 4. If input not done, repeat from Step 2.
 5. When done: Accept (output 1) if the sequence of transitions ends in an accept state $q \in S$ and reject (output 0) otherwise.
Comparison: DFAs and Regular expressions

<table>
<thead>
<tr>
<th>Function</th>
<th>Regular Expressions</th>
<th>DFAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f: {0,1}^* \rightarrow {0,1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Define set of strings $S \subseteq {0,1}^*$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One for every finite set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If S_1 is computed by one, so is S_1^*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If f_1 is comp by one, so is NOT(f_1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If f_1 and f_2 are, so is OR(f_1, f_2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If f_1 and f_2 are, so is AND(f_1, f_2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If S_1 and S_2 are, so is $S_1S_2 = {s: \exists s_1 \in S_1, \exists s_2 \in S_2. s = s_1s_2}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If f_1 is the function of some DFA, so is $\text{NOT}(f_1)$

DFA for the function that’s 1 at “”, “01”, “010”, and nothing else:

DFA for the function that’s 1 at everything but “”, “01”, and “010”?
If f_1 and f_2 are DFA functions, is $\text{AND}(f_1, f_2)$?

DFA for multiples of 2 in binary:

DFA for strings of length 2 mod 3:

Is there a DFA for multiples of 2 of length 2 mod 3?
Exercise Break 1:

1) Express “if each of f_1 and f_2 is the function computed by some DFA, so is $\text{OR}(f_1, f_2)$” in terms of sets of strings instead of functions.

2) Prove the above.

3) Prove that if each of f_1 and f_2 is the function computed by some DFA, so is $\text{NAND}(f_1, f_2)$.

4) True or false: 3) means that every function is the function computed by some DFA.
DFA for each infinite function?

True or false: “if each of f_1 and f_2 is the function computed by some DFA, so is $\text{NAND}(f_1, f_2)$” means that every infinite function is the function computed by some DFA.

- If f_1 and f_2 are the function of DFAs with q_1 and q_2 states, $\text{NAND}(f_1, f_2)$ is the function of some DFA with $q_1 q_2$ states.
- NAND of finitely many functions: still function of some DFA.
- NAND of infinitely many functions: DFAs aren’t allowed infinitely many states!
Comparison: DFAs and Regular expressions

<table>
<thead>
<tr>
<th>Define function $f: {0,1}^* \rightarrow {0,1}$</th>
<th>Regular Expressions</th>
<th>DFAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Define set of strings $S \subseteq {0,1}^*$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>One for every finite set</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>If S_1 is computed by one, so is S_1^*</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>If f_1 is comp by one, so is NOT(f_1)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>If f_1 and f_2 are, so is OR(f_1, f_2)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>If f_1 and f_2 are, so is AND(f_1, f_2)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>If S_1 and S_2 are, so is $S_1S_2 = {s: \exists s_1 \in S_1. \exists s_2 \in S_2. s = s_1s_2}$</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
Kleene closure for DFAs?

At right is a DFA that accepts $|01|010$:

Which of the bottom two is a DFA that accepts $|01|010|^{*}$?
Non-deterministic Finite Automata (NFAs)

- **Defines** Computes function $f: \{0,1\}^* \rightarrow \{0,1\}$

- **Specification:**
 - accept states S (subset of all states, C)
 - transition function relation $C \times \{0,1, \varepsilon = "\"\} \rightarrow C$

- **Operation:**
 1. Starts in state 0
 2. Read **up to** one bit of input x_0: do the **any** state transition matching current state and just-read input.
 3. Move past just-read input.
 4. If input not done, repeat from Step 2.
 5. When done: Accept (output 1) if the **any** sequence of transitions ends in an accept state $q \in S$ and reject (output 0) otherwise.
Kleene closure for NFAs?
DFA-NFA equivalence

Theorem: For every NFA, there’s a DFA that accepts the same language.

Proof: As an NFA reads its input, at all times, there’s a subset of states it could be in. Make each subset of NFA states a DFA state; define DFA transitions and accept states accordingly.

Example NFA (third-last bit 1): Equivalent DFA:
Kleene closure for DFAs, take 2
Exercise Break 2:

1) We negated the function computed by a DFA by switching accept and reject states. Switching accept and reject states doesn’t necessarily negate the function defined by an NFA. Why not?

2) If S_1 and S_2 are sets accepted by DFAs D_1 and D_2, prove that S_1S_2 (the set of concatenations of a string in S_1 and a string in S_2) is the set accepted by some DFA. (Hint: Convert to NFAs, solve the same problem for them, and convert back.)
NFA concatenation
Comparison: DFAs and Regular expressions

<table>
<thead>
<tr>
<th>Definition</th>
<th>Regular Expressions</th>
<th>DFAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Define function $f: {0,1}^* \rightarrow {0,1}$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Define set of strings $S \subseteq {0,1}^*$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>One for every finite set</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>If S_1 is computed by one, so is S_1^*</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>If f_1 is comp by one, so is NOT(f_1)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>If f_1 and f_2 are, so is OR(f_1, f_2)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>If f_1 and f_2 are, so is AND(f_1, f_2)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>If S_1 and S_2 are, so is $S_1S_2 = {s: \exists s_1 \in S_1, \exists s_2 \in S_2. s = s_1s_2}$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Summary: regular expressions vs DFAs

Theorem: For every regular expression, there’s an equivalent DFA.
Proof: Regular expressions are built up with *, |, concatenation. Do those with DFAs (possibly via NFAs), as on previous slides.

Theorem: For every DFA, there’s an equivalent regular expression, too!
Proof (optional, skipped slides):
• Generalize DFAs/NFAs to allow transitions to be any regular expressions.
• For any DFA/NFA/generalized NFA, eliminate states one by one.
• If just 1 start state and 1 accept state, can read off a regular expression.
Equivalent: DFAs and Regular expressions

<table>
<thead>
<tr>
<th>Description</th>
<th>Regular Expressions</th>
<th>DFAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Define function $f: {0,1}^* \rightarrow {0,1}$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Define set of strings $S \subseteq {0,1}^*$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>One for every finite set</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>If S_1 is computed by one, so is S_1^*</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>If f_1 is comp by one, so is $\text{NOT}(f_1)$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>If f_1 and f_2 are, so is $\text{OR}(f_1, f_2)$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>If f_1 and f_2 are, so is $\text{AND}(f_1, f_2)$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>If S_1 and S_2 are, so is $S_1S_2 = {s \mid \exists s_1 \in S_1, \exists s_2 \in S_2, s = s_1s_2}$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Generalized Non-deterministic Finite Automata

- Defines Computes function $f : \{0,1\}^* \rightarrow \{0,1\}$
- Specification:
 - accept states S (subset of all states, C)
 - transition function relation $C \times \{0,1, \varepsilon, regular \ expressions\} \rightarrow C$
- Operation:
 1. Starts in state 0
 2. Read up to one or more bits of input: do the any state transition matching (as a regular expression) current state and just-read input.
 3. Move past just-read input.
 4. If input not done, repeat from Step 2.
 5. When done: Accept (output 1) if the any sequence of transitions ends in an accept state $q \in S$ and reject (output 0) otherwise.
Eliminating all but one accept state of NFAs

Given an NFA with multiple accept states:

• Make a new accept state.
• Add a free transition from each old accept state.
• Un-accept the old accept states.
Eliminating non-accept, non-start of gNFAs

Given a gNFA with a non-accept, non-start state c:

- Eliminate it.
- For each ordered pair (a,b) of other states, if:
 - $r_{a,b}$ was the regular expression describing transitions from a to b,
 - $r_{a,c}$, $r_{c,c}$, and $r_{c,a}$ describe transitions from a to c, c to c, and c to a
 then replace $r_{a,b}$ by $r_{a,b} | r_{a,c} r_{c,c}^* r_{c,b}$: ways to transition from a to b, possibly through c.
Reading regular expression from 2-state gNFA

Given a gNFA with one start state and one accept state:

A regular expression equivalent to it is:

\[r_{00}^* r_{01} r_{11}^* (r_{10} r_{00}^* r_{01} r_{11}^*)^* \]

So, every NFA accepts the same set of strings as some regular expression!
Next lecture:

- Recap of DFA-regexp equivalence
- Limits of DFA
 - NAND circuits computed all (finite) functions.
 - Do DFA compute all (infinite) functions? No.
 - What are some functions that are not computed by DFA?