
Section 0 Answer Key

Richard Xu
raxu@college.harvard.edu

September 4, 2020

1. (a) Let S be the set of functions f : [n]→ [n] such that f(x) 6= x for any x. What is the size
of S?

(b) Let S be the set of bijective functions f : [n]→ [n]. What is the size of S?

Proof. (a) For each x ∈ [n], we have n − 1 options for the value of f(x). Therefore, |S| =
(n− 1)n.

(b) Notice that every injective f : [n]→ [n] is also bijective. We have n options for the value
of f(0), n− 1 options for f(1), and so on until 1 option for f(n− 1). Therefore, |S| = n!.

2. Write an algorithm for integer division. The algorithm should, on input x, y two numbers,
output x/y if x is an integer multiple of y, and “error” otherwise. If x, y each have O(n)
digits, how many NAND operations does your algorithm take?

Start with an inefficient algorithm. Optional challenge: write an algorithm that takes O(n2)
time.

Proof. Let A be our inefficient algorithm. A sets s := 0, ans := 0 and repeatedly calculates
s := s + y, ans := ans + 1. At each step, if s = x then A outputs ans, and if s > x then A
outputs “error”.

Correctness: we claim that s = y ·ans at all times. This is true at the beginning, and at each
step we add y to s and 1 to ans.

Suppose s = x at some point, then we know x = y · ans and ans = x/y. Then, our output is
correct. Suppose s is never equal to x. Since s iterates through all integer multiples of y, x
is not a multiple of y. Then, output is correct.

Efficiency: Since it takes x/y steps before s ≥ y, and x/y < x, the algorithm takes O(x) =
O(2n) steps.

1

Optional: Efficient algorithm. Note. There are two possible algorithms: binary search,
or long division. We will write the long division algorithm here. The proof of correctness is
somewhat difficult. I am just trying to show that the long division we learned in school works
:)

Let B be our algorithm. Suppose x has length n bits and y has length m bits. If n ≤ m we
can check whether x = y. If so, output 1 and otherwise output “error”.

Suppose n < m. Then, let z be the first m bits of x and initialize an empty string ans. If
z ≥ y, append 1 to ans and subtract y from z. If z < y, append 0 to ans. Then, append the
next digit of x to z until we run out of digits.

At the end, if z = 0 then B outputs ans. Otherwise, B outputs “error”.

Correctness: This is somewhat tricky. Suppose that we just finished the iteration which
appended the i-th digit to x. Let wi be the number formed by the first i digits of x, and
ansi, zi be the values of ans, z at that point. We claim that ansi, zi are the quotient and
remainder when we divide wi by y.

In the first iteration, since y has m digits and z starts with m digits, z < 2y and z − y < y.
Therefore, out computation ensures that ans, z are the quotient and remainder.

Notice that wi = 2 · wi−1 + xi. Since wi−1 = ansi−1 · y + zi−1, we have wi = (2 · ansi−1) ·
y + (2 · zi−1 + x). The second value is exactly the value of z at the start of the i-th iteration.
Then, the i-th iteration ensures that ansi, zi are quotient and remainder when wi is divided
by y.

Since wn = x, in the end ans, z are the quotient and remainder of x divided by y. If z = 0,
then y|x and we output x/y. If z 6= 0, then x is not a multiple of y and we output “error”.
Therefore, the algorithm is correct.

Efficiency: In each iteration, we compare z with y, which takes O(n) operations. Since we
have O(n) iterations, the algorithm takes O(n2) operations.

2

