CS 121 Section 10:
 Poly-time Reductions, NP, and the Cook Levin Thm.

Fall 2020

Prof: Madhu Sudan and Adam Hesterberg TF: Eric Lin

Context for today

- Where did we come from?
- Pvs. EXP
- Uncomputability: reductions and Rice's Theorem
- Where are we now?
- Revisiting reductions with the added notion of time complexity
- Chapter 14: "Polynomial time reductions" (link to text)
- NP, NP completeness, and Cook Levin Theorem
- Chapter 15 (link to text)
- Where are we going?
- Explore more classes of Functions and algorithms
- Randomized algorithms

Polynomial-time Reductions

Past: Reductions to prove Uncomputability

In order to prove that HALTONZERO is uncomputable, we show HALT \leq HALTONZERO :

1. Compute HALT using HALTONZERO
a. $\operatorname{HALT}(\mathrm{M}, \mathrm{x})=\operatorname{HALTONZERO}(\mathrm{M})$
b. $\operatorname{HALT}(M, x)=\operatorname{HALTONZERO}(G(M, x))$ where G is a reduction function to transform the inputs of HALTONZERO to HALT
2. Show correctness
a. Soundness and completeness

Ex: Reducing HALT to HALTONZERO.

Polynomial-time Reductions

In order to show $A \leq B$:

1. Compute A using B
a. $\quad A(\mathrm{M}, \mathrm{x})=B(\mathrm{M})$
b. $\quad A(M, x)=B(G(M, x))$ where G is a reduction function to transform the inputs of B to A
2. Show correctness
a. Soundness and completeness

In order to show $A \leq{ }_{p} B$:

1. Compute A using B
a. $\quad A(\mathrm{M}, \mathrm{x})=B(\mathrm{M})$
b. $\quad A(M, x)=B(R(M, x))$ where R is a polynomial-time computable reduction function that transforms the inputs of B to A
2. Show correctness
a. Soundness and completeness
b. Show R can be computed in polynomial-time

Formal Definition

Definition 14.1 (Polynomial-time reductions)

Let $F, G:\{0,1\}^{*} \rightarrow\{0,1\}$. We say that F reduces to G, denoted by $F \leq_{p} G$ if there is a polynomial-time computable $R:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that for every $x \in\{0,1\}^{*}$,

$$
F(x)=G(R(x)) \cdot(14.2)
$$

We say that F and G have equivalent complexity if $F \leq_{p} G$ and $G \leq_{p} F$.

Why do we care?

Proving $A \leq_{p} B$ leads to this stipulation:
If B can be computed with a poly-time algorithm, Then A is also computable in poly-time.
(Concept check: why can't we say this with the regular reduction $A \leq B$?)

NP

Class of NP Functions

Definition 15.1 (NP)
We say that $F:\{0,1\}^{*} \rightarrow\{0,1\}$ is in NP if there exists some integer $a>0$ and V_{F} : $\{0,1\}^{*} \rightarrow\{0,1\}$ such that $V_{\mathrm{F}} \in \mathbf{P}$ and for every $x \in\{0,1\}^{n}$,

$$
F(x)=1 \Leftrightarrow \exists_{w \in\{0,1\}^{n^{a}}} \text { s.t. } V_{\mathrm{F}}(x w)=1 . \text { (15.1) }
$$

Non-mathematical explanation:

- NP is the class of functions that are efficiently verifiable.

$$
\begin{aligned}
\mathrm{NP}:= & \underline{N o n-d e t e r m i n i s t i c ~ P o l y n o m i a l-t i m e ~} \\
& \mathrm{NP} \neq \text { Not Polynomial-time }
\end{aligned}
$$

Concept Check: Prove NP \subseteq EXP

NP Hardness and Completeness

NP-hard

- A function F is NP-hard if all functions in NP can be reduced to it - F is "at least as hard" as all functions in NP; $\forall G \in \mathrm{NP}, G \leq_{p} F$

NP-complete

- A function F is NP-complete if

1. F is in NP
2. F is NP-hard

Cook-Levin
 Theorem

Cook-Levin Theorem

Once we prove $A \leq_{p} B$, we know that:

- If B is in NP then A is also in NP.
- If A is NP-hard then B is also NP-hard.

Theorem 15.6 (Cook-Levin Theorem)
For every $F \in \mathbf{N P}, F \leq_{p} 3 S A T$.
=> 3SAT is NP-complete
Key Concept: Given F and x, we use V_{F} and x to get a small circuit C s.t. $C(w)=1$ iff $V_{F}(x, w)=1$.

Example Reductions

Zero-One Linear Equations Problem

Problem: show that there is no efficient polynomial-time algorithm to compute the Zero-One Linear Equations Problem.

The Zero-One Linear Equations Problem corresponds to the function $01 E Q:\{0,1\}^{*} \rightarrow\{0,1\}$ where the input is a collection $=E$ of linear equations in variables $x_{0}, \ldots x_{n-1}$, and the output is 1 iff \exists assignment $x \in\{0,1\}^{n}$ of $0 / 1$ values to the variables that satisfies all the equations. So if E encodes the equations $x_{0}+x_{1}+x_{2}=2, x_{0}+x_{2}=1, x_{1}+x_{2}=2$ then $01 E Q=1$ because there exists an assignment to satisfy this $(x=011)$.

Ideas?

Zero-One Linear Equations Problem

Problem: show that there is no efficient polynomial-time algorithm to compute the Zero-One Linear Equations Problem.

To prove this, we can reduce a known NP-Hard problem (i.e. 3SAT) to Zero-One Linear Equations to show $3 S A T \leq_{p} 01 E Q$.

Steps
 for a Poly-time Reduction Proof

1. Describe a reduction function R to transform the inputs
2. Show R can be computed in polynomial time
3. Show Correctness
a. Completeness
b. Soundness

Step 1: Describe a reduction function R

We want to convert the inputs of 3SAT to the inputs of 01EQ

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{4} \vee x_{5} \vee x_{6}\right) \quad->\quad \text { system of } 01 \text { linear equations }
$$

We need to constrain each variable.
Hint: make each clause an equation. Any ideas on approaching this?

Step 1: Describe a reduction algorithm R

We want to convert the inputs of 3SAT to the inputs of 01EQ

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{4} \vee x_{5} \vee x_{6}\right) \quad->\quad \text { system of } 01 \text { linear equations }
$$

Proof idea: A constraint $x_{2} \vee \overline{x_{5}} \vee x_{7}$ can be rewritten as $x_{2}+\left(1-x_{5}\right)+x_{7} \geq 1$.
Making it an equation: Since the sum of the left hand side is an inequality but can be at most 3, we add auxiliary variables to make it an equality.
Dealing with negated variables: We also add another variable x_{i}^{\prime} to correspond to the negation of x_{i} and include the equation $x_{i}+x_{i}^{\prime}=1$.
Thus we have transformed

$$
x_{2} \vee \overline{x_{5}} \vee x_{7} \Longrightarrow x_{2}+x_{5}^{\prime}+x_{7}+y+z=3
$$

More generically, we transform:

$$
x_{1} \vee x_{2} \vee x_{3} \Longrightarrow x_{1}+x_{2}+x_{3}+u+v=3
$$

Step 2: Show R runs in polynomial time

- Initial loop of n steps to set up constraint for each variable
- Each iteration takes constant time
- Another loop of m steps
- Each iteration also taking constant time to convert a clause into an equation

Step 3a: Show Completeness

Step 3a: Show completeness: If $3 \operatorname{SAT}(\varphi)=1$ then $01 E Q(R(\varphi)=1$
This is the first part of our proof of correctness. Suppose that $3 S A T(\varphi)=1$, then there is an assignment w to satisfy φ. Every clause in φ has form $w_{1} \vee w_{2} \vee w_{3}$ so because $w_{1}+w_{2}+w_{3} \geq 1$ we can represent it as $w_{1}+w_{2}+w_{3}+y+z=3$ where y and z are between 0 and 1 . If we let $x_{i}^{\prime}=1-x_{i}$ for each variable i, the assignment $x_{0} \cdots x_{n-1}, x_{0}^{\prime} \cdots x_{n-1}^{\prime}, y_{0} \cdots y_{m-1}, z_{0} \cdots z_{m-1}$ satisfies $E=R(\varphi)$ so $01 E Q(R(\varphi))=1$.

Step 3b: Show soundness

Step 3b: Show soundness: If $01 E Q(R(\varphi)=1$ then $3 \operatorname{SAT}(\varphi)=1$
This is the second part of our proof of correctness. Suppose that $01 E Q(R(\varphi)=1$. Then there must be some assignment $x_{0} \cdots x_{n-1}, x_{0}^{\prime} \cdots x_{n-1}^{\prime}, y_{0} \cdots y_{m-1}, z_{0} \cdots z_{m-1}$.
Based on the way we did our transformation R, we know that x_{i}^{\prime} is the negation of x_{i} for all $i \in[n]$. Because we defined $y_{j}, z_{j} \in[0,1], y_{j}+z_{j} \leq 2$ for all j in [m]. Thus, for every clause C_{j} in φ of the form $w_{1} \vee w_{2} \vee w_{3}$, we have $w_{1}+w_{2}+w_{3} \geq 1$. This means the assignment $x_{0} \cdots x_{n-1}$ satisfies φ and thus $3 S A T(\varphi)=1$.

Another
 Example

Clique

Definition: Given an undirected graph $G=(V, E)$, a clique is a subset $V^{\prime} \subseteq V$ s.t. $\left(v_{1}\right.$, $\left.v_{2}\right) \in E$ for all $v_{1}, v_{2} \in V^{\prime}$.

Consider the function $\operatorname{CLIQUE}(G, k)=1 \mathrm{iff} G$ has a clique of size k, and 0 otherwise. Is CLIQUE NP-complete? Prove it or show why not.

Clique

Reminder: To prove NP-completeness, we need to:

1. Show CLIQUE $\in N P$

2. Show CLIQUE is NP-hard by reducing another NP-hard problem to CLIQUE (e.g. 3 SAT \leq_{p} CLIQUE).

Clique

Reminder: To prove NP-completeness, we need to:

1. Show CLIQUE \in NP.
2. Show CLIQUE is NP-hard by reducing another NP-hard problem to CLIQUE (e.g. 3 SAT \leq_{p} CLIQUE).

Some NP-hard problems:

1. 3SAT
2. Min. k-cut
3. ISET
4. HALT

Steps
 for a Poly-time Reduction Proof

1. Describe a reduction function R to transform the inputs
2. Show R can be computed in polynomial time
3. Show Correctness
a. Completeness
b. Soundness

Step 1: Describe a reduction function R

We want to convert the inputs of ISET to the inputs of CLIQUE $\operatorname{ISET}(\mathrm{G}(\mathrm{V}, \mathrm{E}), \mathrm{k})=1$ iff G contains an indep. set of size $\geq \mathrm{k}$.

CLIQUE $\left(G^{\prime}\left(V^{\prime}, E^{\prime}\right), k\right)=1$ iff G^{\prime} contains a clique of size $\geq k$.

Step 1: Describe a reduction function R

We want to convert the inputs of ISET to the inputs of CLIQUE $\operatorname{ISET}(\mathrm{G}(\mathrm{V}, \mathrm{E}), \mathrm{k})=\operatorname{CLIQUE}(\mathrm{R}(\mathrm{G}, \mathrm{k}))$
where $R(G, k)$ returns the complement of G and keeps k the same

Step 2: Show R runs in polynomial time

- Converting G to its complement G^{\prime} takes $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ time.

Step 3a: Show Completeness

Show: if $\operatorname{ISET}(\mathrm{G}, \mathrm{k})=1$ then $\operatorname{CLIQUE}\left(\mathrm{G}^{\prime}, \mathrm{k}\right)=1$.

Step 3b: Show soundness

Show: if $\operatorname{CLIQUE}\left(G^{\prime}, k\right)=1$ then $\operatorname{ISET}(G, k)=1$.

Implications of All of This

Reminder: Uncomputability

Once proven $A \leq B$: If A is uncomputable then B is also uncomputable.

What if $\mathrm{P}=\mathrm{NP}$?

- Difference between proving P = NP and actually discovering / constructing a "fast" algorithm
- Public-key cryptography
- Passwords are verifiable in poly-time
- Automating discovery of mathematical proofs
- Videos to check out
- Richard Karp on difficulty of proving P=NP
- Donald Knuth's intuition on $\mathrm{P}=\mathrm{NP}$
- Scott Aaronson on what happens if $\mathrm{P}=\mathrm{NP}$

More
 Problems

1. Transitivity of Poly-time Reductions

Show that for every $F, G, H:\{0,1\}^{*} \rightarrow\{0,1\}$, if $F \leq_{p} G$ and $G \leq_{p} H$, then $F \leq_{p} H$.

2. Vertex-Cover

Given an undirected graph $G=(V, E)$, a vertex-cover is a subset $V^{\prime} \subseteq V$ s.t. for all $\left(v_{1}, v_{2}\right) \in E$, either $v_{1} \in V^{\prime}$ or $v_{2} \in V^{\prime}$. Consider the function $\operatorname{VERTEX} \operatorname{-COVER}(G, k)=$ 1 iff G has a vertex cover of size k, and 0 otherwise. Is VERTEX-COVER NP-complete? Prove it or show why not.

3. Set-Cover NP-Completeness

Given n sets $S_{1}, S_{2}, \ldots, S_{n}$ such that

$$
\bigcup_{i=1}^{n} S_{i}=A
$$

the set cover of size k over these sets is a collection C of k of these sets such that

$$
\bigcup_{i \in C} S_{i}=A
$$

Given a collection of sets and an integer k, SET-COVER returns if there exists a valid set cover of a most size k over the given collection of sets. Prove that SET-COVER is NP-complete.

4. Say if P, NP, or Uncomputable:

(a) Given an integer x, determine if x has a prime factor that is at most k.
(b) Given an undirected graph graph, determine whether it is possible to partition its vertices into two sets, with at least k edges crossing between sets.
(c) Given a program Q, an input x, and a string 1^{t}, determine whether Q halts on x within t steps.

Thank You!

Appendix

coNP

Show that coNP = NP

Define $F \in \operatorname{coNP}$ iff $\bar{F} \in \mathrm{NP}$, where \bar{F} denotes the negation of the output of F (for example, if $F(00)=1$, then $\bar{F}(00)=0)$. Prove that if $\mathrm{P}=\mathrm{NP}$, then $\operatorname{coNP}=\mathrm{NP}$.

