
CS 121 Section 10:
Poly-time Reductions, NP, and the Cook Levin Thm.

Fall 2020

Prof: Madhu Sudan and Adam Hesterberg
TF: Eric Lin

Context for today

● Where did we come from?
○ P vs. EXP
○ Uncomputability: reductions and Rice’s Theorem

● Where are we now?
○ Revisiting reductions with the added notion of time complexity

■ Chapter 14: “Polynomial time reductions” (link to text)

○ NP, NP completeness, and Cook Levin Theorem
■ Chapter 15 (link to text)

● Where are we going?
○ Explore more classes of Functions and algorithms

■ Randomized algorithms
2

https://files.boazbarak.org/introtcs/lec_12_NP.pdf
https://files.boazbarak.org/introtcs/lec_13_Cook_Levin.pdf

Polynomial-time
Reductions

3

Past: Reductions to prove Uncomputability

Ex: Reducing HALT to HALTONZERO.

In order to prove that HALTONZERO is
uncomputable, we show HALT ≤ HALTONZERO :

1. Compute HALT using HALTONZERO
a. HALT(M,x) = HALTONZERO(M)
b. HALT(M,x) = HALTONZERO(G(M,x))

where G is a reduction function to
transform the inputs of HALTONZERO to
HALT

2. Show correctness
a. Soundness and completeness

4

Polynomial-time Reductions

In order to show A ≤ B:

1. Compute A using B
a. A(M,x) = B(M)
b. A(M,x) = B(G(M,x)) where G is a

reduction function to transform the
inputs of B to A

2. Show correctness
a. Soundness and completeness

In order to show A ≤p B:

1. Compute A using B
a. A(M,x) = B(M)
b. A(M,x) = B(R(M,x)) where R is a

polynomial-time computable reduction
function that transforms the inputs of B
to A

2. Show correctness
a. Soundness and completeness
b. Show R can be computed in

polynomial-time

5

Formal Definition

6

Why do we care?

Proving A ≤p B leads to this stipulation:

If B can be computed with a poly-time algorithm,
Then A is also computable in poly-time.

(Concept check: why can’t we say this with the regular reduction A ≤ B?)

7

NP

8

Class of NP Functions

Non-mathematical explanation:

● NP is the class of functions that are efficiently verifiable.

NP := Non-deterministic Polynomial-time

NP ≠ Not Polynomial-time
9

F
F

F

Concept Check: Prove NP ⊆ EXP

10

All Functions F: {0,1}* → {0,1}

R Computable Functions

EXP

NP
P 3SAT

MAXCUT

2SAT

MINCUT

NP Hardness and Completeness

NP-hard
● A function F is NP-hard if all functions in NP can be reduced to it

○ F is “at least as hard” as all functions in NP;

NP-complete
● A function F is NP-complete if

1. F is in NP
2. F is NP-hard

11

Cook-Levin
Theorem

12

Cook-Levin Theorem

Once we prove A ≤p B, we know that:

● If B is in NP then A is also in NP.
● If A is NP-hard then B is also NP-hard.

=> 3SAT is NP-complete

Key Concept: Given F and x, we use VF and x to get a small circuit
C s.t. C(w) = 1 iff VF (x,w) = 1.

13

Example
Reductions

14

Zero-One Linear Equations Problem

Problem: show that there is no efficient polynomial-time algorithm to compute the
Zero-One Linear Equations Problem.

Ideas?

15

Zero-One Linear Equations Problem

Problem: show that there is no efficient polynomial-time algorithm to compute the
Zero-One Linear Equations Problem.

To prove this, we can reduce a known NP-Hard problem (i.e. 3SAT) to Zero-One
Linear Equations to show 3SAT ≤p 01EQ.

16

Steps
for a Poly-time
Reduction Proof

1. Describe a reduction
function R to transform
the inputs

2. Show R can be computed
in polynomial time

3. Show Correctness
a. Completeness
b. Soundness

17

Step 1: Describe a reduction function R

We want to convert the inputs of 3SAT to the inputs of 01EQ

 - -> system of 01 linear equations

We need to constrain each variable.

Hint: make each clause an equation. Any ideas on approaching this?

18

Step 1: Describe a reduction algorithm R

We want to convert the inputs of 3SAT to the inputs of 01EQ

 -> system of 01 linear equations

19

Step 2: Show R runs in polynomial time

● Initial loop of n steps to set up constraint for each variable
○ Each iteration takes constant time

● Another loop of m steps
○ Each iteration also taking constant time to convert a clause into an

equation

20

Step 3a: Show Completeness

21

Step 3b: Show soundness

22

Another
Example

23

Clique

Definition: Given an undirected graph G = (V, E), a clique is a subset V’ ⊆V s.t. (v1 ,
v2) ∈ E for all v1 , v2 ∈ V’.

Consider the function CLIQUE(G, k) = 1 iff G has a clique of size k, and 0 otherwise.

Is CLIQUE NP-complete? Prove it or show why not.

24

Clique

Reminder: To prove NP-completeness, we need to:

1. Show CLIQUE ∈ NP

2. Show CLIQUE is NP-hard by reducing another NP-hard problem to CLIQUE
(e.g. 3SAT ≤p CLIQUE).

25

Clique

Reminder: To prove NP-completeness, we need to:

1. Show CLIQUE ∈ NP.
2. Show CLIQUE is NP-hard by reducing another NP-hard problem to CLIQUE

(e.g. 3SAT ≤p CLIQUE).

Some NP-hard problems:

1. 3SAT
2. Min. k-cut
3. ISET
4. HALT 26

Steps
for a Poly-time
Reduction Proof

1. Describe a reduction
function R to transform
the inputs

2. Show R can be computed
in polynomial time

3. Show Correctness
a. Completeness
b. Soundness

27

Step 1: Describe a reduction function R

We want to convert the inputs of ISET to the inputs of CLIQUE

ISET(G(V,E), k)=1 iff G contains an indep. set of size ≥ k.

CLIQUE(G’(V’,E’), k)=1 iff G’ contains a clique of size ≥ k.

28

Step 1: Describe a reduction function R

We want to convert the inputs of ISET to the inputs of CLIQUE

ISET(G(V,E), k)= CLIQUE(R(G,k))

where R(G,k) returns the complement of G and keeps k the same

29

Step 2: Show R runs in polynomial time

● Converting G to its complement G’ takes O(|V| + |E|) time.

30

Show: if ISET(G, k) = 1 then CLIQUE(G’, k) = 1.

Step 3a: Show Completeness

31

Step 3b: Show soundness

32

Show: if CLIQUE(G’, k) = 1 then ISET(G, k) = 1.

Implications of All
of This

33

Reminder: Uncomputability

Once proven A ≤ B: If A is uncomputable then B is also uncomputable.

34

Source
35

https://gist.github.com/anonymous/418834

What if P = NP?

● Difference between proving P = NP and actually
discovering / constructing a “fast” algorithm

● Public-key cryptography
○ Passwords are verifiable in poly-time

● Automating discovery of mathematical proofs
● Videos to check out

○ Richard Karp on difficulty of proving P=NP
○ Donald Knuth’s intuition on P=NP
○ Scott Aaronson on what happens if P=NP

36

https://www.youtube.com/watch?v=GDX8F3yxGEg
https://www.youtube.com/watch?v=XDTOs8MgQfg
https://www.youtube.com/watch?v=i1W23nPWZEo

More
Problems

37

1. Transitivity of Poly-time Reductions

38

2. Vertex-Cover

39

Given an undirected graph G = (V, E), a vertex-cover is a subset V’ ⊆V s.t. for all
(v1 , v2) ∈ E, either v1 ∈ V’ or v2 ∈ V’. Consider the function VERTEX-COVER(G, k) =
1 iff G has a vertex cover of size k, and 0 otherwise. Is VERTEX-COVER
NP-complete? Prove it or show why not.

3. Set-Cover NP-Completeness

40

4. Say if P, NP, or Uncomputable:

41

Thank You!

42

Appendix

43

coNP

44

Show that coNP = NP

45

