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Context for today

● Where did we come from?
○ P vs. EXP
○ Uncomputability: reductions and Rice’s Theorem

● Where are we now?
○ Revisiting reductions with the added notion of time complexity

■ Chapter 14: “Polynomial time reductions” (link to text)

○ NP, NP completeness, and Cook Levin Theorem
■ Chapter 15 (link to text)

● Where are we going?
○ Explore more classes of Functions and algorithms

■ Randomized algorithms
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https://files.boazbarak.org/introtcs/lec_12_NP.pdf
https://files.boazbarak.org/introtcs/lec_13_Cook_Levin.pdf


Polynomial-time 
Reductions

3



Past: Reductions to prove Uncomputability

Ex: Reducing HALT to HALTONZERO.

In order to prove that HALTONZERO is 
uncomputable, we show HALT ≤ HALTONZERO : 

1. Compute HALT using HALTONZERO
a. HALT(M,x) = HALTONZERO(M)
b. HALT(M,x) = HALTONZERO(G(M,x)) 

where G is a reduction function to 
transform the inputs of HALTONZERO to 
HALT

2. Show correctness 
a. Soundness and completeness
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Polynomial-time Reductions

In order to show A ≤ B: 

1. Compute A using B
a. A(M,x) = B(M)
b. A(M,x) = B(G(M,x)) where G is a 

reduction function to transform the 
inputs of B to A

2. Show correctness 
a. Soundness and completeness

In order to show A ≤p B: 

1. Compute A using B
a. A(M,x) = B(M)
b. A(M,x) = B(R(M,x)) where R is a 

polynomial-time computable reduction 
function that transforms the inputs of B 
to A

2. Show correctness 
a. Soundness and completeness
b. Show R can be computed in 

polynomial-time
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Formal Definition
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Why do we care?

Proving A ≤p B leads to this stipulation:

If B can be computed with a poly-time algorithm,
Then A is also computable in poly-time.

(Concept check: why can’t we say this with the regular reduction A ≤ B?)
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NP 

8



Class of NP Functions

Non-mathematical explanation: 

● NP is the class of functions that are efficiently verifiable. 

NP := Non-deterministic Polynomial-time

NP ≠ Not Polynomial-time
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Concept Check: Prove NP ⊆ EXP
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All Functions F: {0,1}* → {0,1}

R Computable Functions

EXP

NP
P 3SAT

MAXCUT

2SAT

MINCUT



NP Hardness and Completeness

NP-hard
● A function F is NP-hard if all functions in NP can be reduced to it

○ F is “at least as hard” as all functions in NP;

NP-complete
● A function F is NP-complete if 

1. F is in NP
2. F is NP-hard
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Cook-Levin 
Theorem
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Cook-Levin Theorem

Once we prove A ≤p B, we know that:

● If B is in NP then A is also in NP.
● If A is NP-hard then B is also NP-hard.

=> 3SAT is NP-complete

Key Concept: Given F and x, we use VF and x to get a small circuit 
C s.t. C(w) = 1 iff VF (x,w) = 1.
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Example 
Reductions
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Zero-One Linear Equations Problem

Problem: show that there is no efficient polynomial-time algorithm to compute the 
Zero-One Linear Equations Problem.

Ideas?
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Zero-One Linear Equations Problem

Problem: show that there is no efficient polynomial-time algorithm to compute the 
Zero-One Linear Equations Problem.

To prove this, we can reduce a known NP-Hard problem (i.e. 3SAT) to Zero-One 
Linear Equations to show 3SAT ≤p 01EQ.
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Steps
for a Poly-time 
Reduction Proof

1. Describe a reduction 
function R to transform 
the inputs

2. Show R can be computed 
in polynomial time

3. Show Correctness
a. Completeness
b. Soundness
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Step 1: Describe a reduction function R

We want to convert the inputs of 3SAT to the inputs of 01EQ

   - -> system of 01 linear equations

We need to constrain each variable.

Hint: make each clause an equation. Any ideas on approaching this?
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Step 1: Describe a reduction algorithm R

We want to convert the inputs of 3SAT to the inputs of 01EQ

   -> system of 01 linear equations
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Step 2: Show R runs in polynomial time

● Initial loop of n steps to set up constraint for each variable
○ Each iteration takes constant time

● Another loop of m steps
○ Each iteration also taking constant time to convert a clause into an 

equation
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Step 3a: Show Completeness

21



Step 3b: Show soundness
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Another 
Example
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Clique 

Definition: Given an undirected graph G = (V, E), a clique is a subset V’ ⊆V s.t. (v1 , 
v2) ∈ E for all v1 , v2 ∈ V’. 

Consider the function CLIQUE(G, k) = 1 iff G has a clique of size k, and 0 otherwise. 

Is CLIQUE NP-complete? Prove it or show why not.
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Clique

Reminder: To prove NP-completeness, we need to: 

1. Show CLIQUE ∈ NP 

2. Show CLIQUE is NP-hard by reducing another NP-hard problem to CLIQUE 
(e.g. 3SAT ≤p CLIQUE).
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Clique

Reminder: To prove NP-completeness, we need to: 

1. Show CLIQUE ∈ NP. 
2. Show CLIQUE is NP-hard by reducing another NP-hard problem to CLIQUE 

(e.g. 3SAT ≤p CLIQUE).

Some NP-hard problems:

1. 3SAT
2. Min. k-cut
3. ISET
4. HALT 26



Steps
for a Poly-time 
Reduction Proof

1. Describe a reduction 
function R to transform 
the inputs

2. Show R can be computed 
in polynomial time

3. Show Correctness
a. Completeness
b. Soundness
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Step 1: Describe a reduction function R

We want to convert the inputs of ISET to the inputs of CLIQUE

ISET(G(V,E), k)=1 iff G contains an indep. set of size ≥ k.

CLIQUE(G’(V’,E’), k)=1 iff G’ contains a clique of size ≥ k.
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Step 1: Describe a reduction function R

We want to convert the inputs of ISET to the inputs of CLIQUE

ISET(G(V,E), k)= CLIQUE(R(G,k)) 

where R(G,k) returns the complement of G and keeps k the same
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Step 2: Show R runs in polynomial time

● Converting G to its complement G’ takes O(|V| + |E|) time.
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Show: if ISET(G, k) = 1 then CLIQUE(G’, k) = 1.

Step 3a: Show Completeness
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Step 3b: Show soundness
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Show: if CLIQUE(G’, k) = 1 then ISET(G, k) = 1.



Implications of All 
of This
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Reminder: Uncomputability

Once proven A ≤ B: If A is uncomputable then B is also uncomputable.
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Source
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https://gist.github.com/anonymous/418834


What if P = NP?

● Difference between proving P = NP and actually 
discovering / constructing a “fast” algorithm

● Public-key cryptography
○ Passwords are verifiable in poly-time

● Automating discovery of mathematical proofs
● Videos to check out

○ Richard Karp on difficulty of proving P=NP
○ Donald Knuth’s intuition on P=NP
○ Scott Aaronson on what happens if P=NP
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https://www.youtube.com/watch?v=GDX8F3yxGEg
https://www.youtube.com/watch?v=XDTOs8MgQfg
https://www.youtube.com/watch?v=i1W23nPWZEo


More 
Problems
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1. Transitivity of Poly-time Reductions
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2. Vertex-Cover 
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Given an undirected graph G = (V, E), a vertex-cover is a subset V’ ⊆V s.t. for all     
(v1 , v2) ∈ E, either v1 ∈ V’ or v2 ∈ V’. Consider the function VERTEX-COVER(G, k) = 
1 iff G has a vertex cover of size k, and 0 otherwise. Is VERTEX-COVER 
NP-complete? Prove it or show why not.



3. Set-Cover NP-Completeness
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4. Say if P, NP, or Uncomputable:
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Thank You!
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Appendix
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coNP
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Show that coNP = NP
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