Section 1 Solutions

Joanna Boyland

September 9th, 2020

Problem 1. For each of the following sets of numbers, add the letters to the tree that is the most efficient representation:
$\{\mathrm{E}, \mathrm{H}, \mathrm{G}, \mathrm{K}, \mathrm{Z}\},\{\mathrm{O}, \mathrm{I}, \mathrm{N}, \mathrm{D}, \mathrm{C}\},\{\mathrm{T}, \mathrm{L}, \mathrm{U}, \mathrm{M}, \mathrm{P}\}$.

Solution 1:

Problem 2. Show that we can transform any representation to a prefix-free one by a modification that takes a k bit string into a string of length at most $k+\log k+O(\log \log k)$.

Solution 2:

Proof. Assume the veracity of the practice problem (which was originally part (a) of this problem): that we can transform any representation to a prefix-free one that takes a k bit string of length at most $k+O(\log k)$.

Then, we can the same technique proven effective before, but instead of encoding the length using the standard C-style transformation, we use the transformation we assume: one that takes a k bit string of length at most $k+O(\log k)$.

Thus, our new transformation uses $(\log k)+O(\log (\log k))$ bits to represent the length, and k bits to replicate the string: in total, $k+\log k+O(\log \log k)$ bits, as desired.

Problem 3.

Let NtS be the function $\mathrm{NtS}: \mathbb{N} \rightarrow\{0,1\}^{*}$ that sends a number to its binary representation; more explicitly:

$$
N t S= \begin{cases}0 & n=0 \\ 1 & n=1 \\ N t S(\lfloor n / 2\rfloor) \text { parity }(n) & n>1\end{cases}
$$

where parity : $\mathbb{N} \rightarrow\{0,1\}^{*}$ is the function defined as $\operatorname{parity}(n)=0$ if n is even and $\operatorname{parity}(n)=1$ if n is odd, and as usual, for strings $x, y \in\{0,1\}^{*}, x y$ denotes the concatenation of x and y.
(a) Prove that NtS satisfies that for every $n \in \mathbb{N}$, if $x=N t S(n)$ then $|x|=1+\max \left(0,\left\lfloor\log _{2} n\right\rfloor\right)$.
(b) Prove that $N t S$ is in fact a representation, by showing that it is one-to-one: that is, find a function St $N:\{0,1\}^{*} \rightarrow \mathbb{N}$ such that $\operatorname{St} N(N t S(n))=n$.

Solution 3:

Proof.
(a) We will prove by (strong) induction that NtS satisfies that for every $n \in \mathbb{N}$, if $x=N t S(n)$ then $|x|=1+\max \left(0,\left\lfloor\log _{2} n\right\rfloor\right)$.
It's clear immediately from the definition that the base cases $x=0$ and $x=1$ satisfy $|x|=1+$ $\max \left(0,\left\lfloor\log _{2} n\right\rfloor\right)$.
For $n \geq 1$ we have that $\left\lfloor\log _{2} n\right\rfloor \geq 0$, so we must prove that $|x|=\left\lfloor\log _{2} n\right\rfloor$ exactly.
Suppose that we have some $n \in \mathbb{N}$ and $x=N t S(n)$. We have that $N t S(n)=N t S(\lfloor n / 2\rfloor)$ parity (n). We assume as our inductive hypothesis that the length of $N t S(m)$ for all $m<n$ (with $m \neq 0,1$) is $\left\lfloor\log _{2} m\right\rfloor$.
Thus we have that $N t S(n)=N t S(\lfloor n / 2\rfloor) \operatorname{parity}(n)$ has length

$$
\begin{aligned}
\left\lfloor\log _{2}(\lfloor n / 2\rfloor)\right\rfloor+1 & =\left\lfloor\log _{2} n\right\rfloor-1+1 \\
& =\left\lfloor\log _{2} n\right\rfloor
\end{aligned}
$$

as desired.
(b) We will prove that $N t S$ is in fact a representation, by showing that it is one-to-one: that is, we will find a function $S t N:\{0,1\}^{*} \rightarrow \mathbb{N}$ such that $\operatorname{StN}(N t S(n))=n$.
Let $\operatorname{St} N:\{0,1\}^{*} \rightarrow \mathbb{N}$ be the function that maps some string x to

$$
\sum_{i \in[|x|]} x[i] 2^{|x|-1-i}
$$

We will prove by induction that $S t N(N t S(n))=n$.
We will first observe that

$$
\begin{aligned}
S t N(N t S(0)) & =S t N(0) \\
& =0
\end{aligned}
$$

and that

$$
\begin{aligned}
\operatorname{St} N(N t S(1)) & =S t N(1) \\
& =1 \cdot 2^{0} \\
& =1
\end{aligned}
$$

as desired.
Then assume for strong induction that $S t N(N t S(m))=m$ for $m<n$. We will prove that $\operatorname{StN}(N t S(n))=$ n, which will conclude our proof.
Let $N t S(n)=x$. Note that $|N t S(\lfloor n / 2\rfloor)|=|x|-1$.
We have

$$
\begin{aligned}
\operatorname{St} N(N t S(n)) & =\operatorname{StN}(N t S(\lfloor n / 2\rfloor) \operatorname{parity}(n)) \\
& =\sum_{i \in[|x|-1]} x[i] 2^{|x|-1-i}+\operatorname{parity}(n) 2^{|x|-1-|x|+1} \\
& =2 \cdot \operatorname{StN}(N t S(\lfloor n / 2\rfloor))+\operatorname{parity}(n) \\
& =2 \cdot\lfloor n / 2\rfloor+\operatorname{parity}(n) \\
& =n
\end{aligned}
$$

as desired.

