CS 121 Section 3

Code as Data, Data as Code \& Deterministic Finite Automaton

Big Ideas

Big Idea 6: A program is a piece of text, and so it can be fed as input to other programs.

Big Idea 7: Some functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$ cannot be computed by a Boolean circuit using fewer than exponential (in n) gates.

Big Idea 8: $F:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ specifies the computational task mapping an input $x \in\{0,1\}^{*}$ into the output $F(x)$.

Tuple Representation

Let P be a NAND-CIRC program on n inputs, m outputs, and s lines, and let t be the number of distinct variables used by P. The list of tuples representation of P is the triple (n, m, L) where L is a list of triples of the form (i, j, k) for $i, j, k \in[t]$.

We assign a number for variable of P as follows:

- For every $i \in[n]$, the variable $\mathrm{X}[i]$ is assigned the number i.
- For every $j \in[m]$, the variable $\mathrm{Y}[j]$ is assigned the number $t-m+j$.
- Every other variable is assigned a number in $\{n, n+1, \ldots, t-m-1\}$ in the order in which the variable appears in the program P.

Example 1

How would you represent a AND gate in tuple representation?

Example 2

What does the function does the following tuple represent?

$$
(2,1,((2,0,0),(3,1,1),(4,0,1),(5,2,3),(6,4,5)))
$$

$\mathrm{EVAL}_{\mathrm{s}, \mathrm{n}, \mathrm{m}}$ function

For every natural number $s, m, n>0$ we define the function EVAL_ $\{s, n, m\}:\{0$, $1\}^{\mathrm{S}(s)+n} \rightarrow\{0,1\}^{m}$ as follows. $\mathrm{EVAL}_{s, n, m}(p x)=P(x)$ if $p \in\{0,1\}^{\mathrm{S}(s)}$ represents a size-s program P with n inputs and m outputs. Otherwise it outputs 0^{m} (Some junk output).

Circuit that computes $\mathrm{EVAL}_{\mathrm{s}, \mathrm{n}, \mathrm{m}}$

```
<EVAL(x, L)>
for i in [n]:
    table = UPDATE(table, i, X[i])
for (i, j, k) in L:
    a = LOOKUP(table, j)
    b = LOOKUP(table, k)
    c = NAND(a, b)
    table = UPDATE(table, i, c)
for j in [m]:
    Y[j] = LOOKUP(table, t - m + j)
```

```
<UPDATE(table, i, b)>
```

<UPDATE(table, i, b)>
for j in [|table|]:
for j in [|table|]:
a = EQUALS(j, i)
a = EQUALS(j, i)
c = LOOKUP(table, j)
c = LOOKUP(table, j)
Y[0] = IF(a, b, c)

```
    Y[0] = IF(a, b, c)
```


Deterministic Finite Automaton (DFA)

A deterministic finite automaton (DFA) with C states over $\{0,1\}$ is a pair (T, S) with $T:[C] \times\{0,1\} \rightarrow[C]$ and $S \subseteq[C]$. The finite function T is known as the transition function of the DFA. The set S is known as the set of accepting states.

Let $F:\{0,1\}^{*} \rightarrow\{0,1\}$ be a Boolean function with the infinite domain $\{0,1\}^{*}$. We say that (T, S) computes a function $\mathrm{F}:\{0,1\}^{*} \rightarrow\{0,1\}$ if for every $n \in \mathbb{N}$ and $x \in\{0,1\}^{n}$, if we define $s_{0}=0$ and $s_{i+1}=T\left(s_{i}, x_{i}\right)$ for every $i \in[n]$, then:

$$
s_{n} \in S \Leftrightarrow F(x)=1
$$

Example

Consider a DFA with the set of states $\{0,1,2\}$, the set of accepting states $\{0\}$, and the transition function shown below. Run this DFA on the string 10101011101. What is the result? What function does this DFA compute?

State	Input Bit	Resulting State
0	0	0
0	1	1
1	0	1
2	1	2
2	1	2

Practice Problems

Practice Problem 1

I. Write a tuple representation for a program that computes the following functions: NAND, OR, XOR, ONE. (If you like building circuits check out http://nandgame.com/)
II. What common boolean circuits do the following tuple representations of a NAND-CIRC program correspond to.

```
A. (1, 1, ((1,0,0)))
B. (1, 1, ((1, 0, 0), (2, 1, 0)))
C. (3, 1, ((3, 2, 2), (4, 1, 1), (5, 3, 4), (6, 2, 1), (7, 6, 6), (8, 0, 0), (9, 7, 8), (10, 5, 0), (11, 9, 10)))
```


Practice Problem 2

I. For every $k \in \mathbb{N}$, show that there is an $\mathrm{O}(k)$ line NAND-CIRC program that computes the function EQUALS $_{k}:\{0,1\}^{2 k} \rightarrow\{0,1\}$ where $\operatorname{EQUALS}_{k}\left(x, x^{\prime}\right)=1$ if and only if $x=x^{\prime}$.
II. For every $k \in \mathbb{N}$ and $x^{\prime} \in\{0,1\}^{\mathrm{k}}$, show that there is an $\mathrm{O}(k)$ line NAND-CIRC program that computes the function $\operatorname{EQUALS}_{x}:\{0,1\}^{k} \rightarrow\{0,1\}$ that on input $x \in$ $\{0,1\}^{\mathrm{k}}$ outputs 1 if and only if $x=x^{\prime}$.

Practice Problem 3

Design a DFA that computes the following functions.
I. Outputs 1 if and only if the input length is divisible by 3 .
II. Outputs 1 if and only if the input starts and ends with 01.

