
CS 121 Section 3
Code as Data, Data as Code

& Deterministic Finite Automaton

Big Ideas
Big Idea 6: A program is a piece of text, and so it can be fed as input to other
programs.

Big Idea 7: Some functions f:{0,1}n→{0,1} cannot be computed by a Boolean
circuit using fewer than exponential (in n) gates.

Big Idea 8: F:{0,1}*→{0,1}* specifies the computational task mapping an input
x∈{0,1}* into the output F(x).

Tuple Representation
Let P be a NAND-CIRC program on n inputs, m outputs, and s lines, and let t be
the number of distinct variables used by P. The list of tuples representation of P is
the triple (n, m, L) where L is a list of triples of the form (i, j, k) for i, j, k ∈ [t].

We assign a number for variable of P as follows:

● For every i ∈ [n], the variable X[i] is assigned the number i.
● For every j ∈ [m], the variable Y[j] is assigned the number t - m + j.
● Every other variable is assigned a number in {n, n + 1, … , t - m - 1} in the

order in which the variable appears in the program P.

Example 1
How would you represent a AND gate in tuple representation?

Example 2
What does the function does the following tuple represent?

(2, 1, ((2, 0, 0), (3, 1, 1), (4, 0, 1), (5, 2, 3), (6, 4, 5)))

EVALs,n,m function
For every natural number s, m, n > 0 we define the function EVAL_{s, n, m} : {0,
1}S(s) + n→{0, 1}m as follows. EVALs,n,m(px) = P(x) if p ∈ {0,1}S(s) represents a size-s
program P with n inputs and m outputs. Otherwise it outputs 0m (Some junk
output).

Circuit that computes EVALs, n, m

<EVAL(x, L)>
for i in [n]:
 table = UPDATE(table, i, X[i])
for (i, j, k) in L:
 a = LOOKUP(table, j)
 b = LOOKUP(table, k)
 c = NAND(a, b)
 table = UPDATE(table, i, c)
for j in [m]:
 Y[j] = LOOKUP(table, t - m + j)

<UPDATE(table, i, b)>
for j in [|table|]:
 a = EQUALS(j, i)
 c = LOOKUP(table, j)
 Y[0] = IF(a, b, c)

Deterministic Finite Automaton (DFA)
A deterministic finite automaton (DFA) with C states over {0,1} is a pair (T, S) with
T:[C] ✕ {0,1}→[C] and S ⊆ [C]. The finite function T is known as the transition
function of the DFA. The set S is known as the set of accepting states.

Let F:{0,1}*→{0,1} be a Boolean function with the infinite domain {0,1}*. We say
that (T, S) computes a function F:{0,1}*→{0,1} if for every n ∈ ℕ and x ∈ {0,1}n, if
we define s0 = 0 and si + 1 = T(si, xi) for every i ∈ [n], then:

sn ∈ S ⇔ F(x) = 1

Example
Consider a DFA with the set of states {0,1,2}, the set of accepting states {0}, and
the transition function shown below. Run this DFA on the string 10101011101. What
is the result? What function does this DFA compute?

State Input Bit Resulting
State

0 0 0

0 1 1

1 0 1

1 1 2

2 0 2

2 1 0

Practice Problems

Practice Problem 1
I. Write a tuple representation for a program that computes the following

functions: NAND, OR, XOR, ONE. (If you like building circuits check out
http://nandgame.com/)

II. What common boolean circuits do the following tuple representations of a
NAND-CIRC program correspond to.
A. (1, 1, ((1, 0, 0)))
B. (1, 1, ((1, 0, 0), (2, 1, 0)))
C. (3, 1, ((3, 2, 2), (4, 1, 1), (5, 3, 4), (6, 2, 1), (7, 6, 6), (8, 0, 0), (9, 7, 8), (10, 5, 0), (11, 9, 10)))

http://nandgame.com/

Practice Problem 2
I. For every k ∈ ℕ, show that there is an O(k) line NAND-CIRC program that

computes the function EQUALSk:{0,1}2k→{0,1} where EQUALSk(x, x') = 1 if
and only if x = x'.

II. For every k ∈ ℕ and x' ∈{0,1}k, show that there is an O(k) line NAND-CIRC
program that computes the function EQUALSx':{0,1}k→{0,1} that on input x ∈
{0,1}k outputs 1 if and only if x = x'.

Practice Problem 3
Design a DFA that computes the following functions.

I. Outputs 1 if and only if the input length is divisible by 3.
II. Outputs 1 if and only if the input starts and ends with 01.

