
CS121 Section 6: Turing Machines

Max Guo
Harvard University

October 13, 2020

CS121 Section 6 Turing Machines October 13, 2020 1 / 20

Definition of a Turing Machine (Barak)

A Turing Machine M, as defined in Barak’s textbook, contains the
following:

I k states

I Alphabet Σ ⊇ {0, 1, .,�}

I Transition function δM : [k]× Σ→ [k]× Σ× {L,R,S ,H}.

CS121 Section 6 Turing Machines October 13, 2020 2 / 20

Definition of a Turing Machine (Barak) (cont.)

On input x ∈ {0, 1}∗, the output of M on x , M(x), is the result of the
following:

I Initialize tape T to be the sequence

., x0, x1, . . . , xn−1,�,�, . . .

I Initialize i = 0 (head position), s = 0 (state).

I Repeat:

1. Let (s ′, σ′,D) = δM(s,T [i]).

2. Let s = s ′, T [i] = σ′.

3. Move i based on D: if D = R then i = i + 1. If D = L then
i = max(i − 1, 0).

4. If D = H, then halt and return y = T [0] . . .T [i] ∈ {0, 1}∗, where i
is the final head position.

I If the Turing Machine does not halt, denote M(x) =⊥.

CS121 Section 6 Turing Machines October 13, 2020 3 / 20

Example Turing Machine

Consider the function f : {0, 1}∗ → {0, 1} such that f (x) = 1 if and only
if |x | is even. Construct a Turing Machine that computes f .

CS121 Section 6 Turing Machines October 13, 2020 4 / 20

Example Turing Machine (cont.)

States:

0. EVEN if the current number of inputs is even.

1. ODD if the current number of inputs is odd.

2. CLEAR0 if we’ve found our answer - head back to the beginning and
output 0

3. CLEAR1 same as state 2 but output 1.

4. OUTPUT0 to output 0.

5. OUTPUT1 to output 1.

CS121 Section 6 Turing Machines October 13, 2020 5 / 20

Example Turing Machine (cont.)

States/Inputs . 0 1 �

0 (EVEN)

1 (ODD)

2 (CLEAR 0)

3 (CLEAR 1)

4 (OUTPUT 0)

5 (OUTPUT 1)

0. EVEN,ODD if the current number of inputs is even/odd.

1. CLEAR0,CLEAR1 if we’ve found our answer - head back to the
beginning and output 0/1.

2. OUTPUT0, OUTPUT1 to output 0/1.

CS121 Section 6 Turing Machines October 13, 2020 6 / 20

Example Turing Machine (cont.)

States/Inputs . 0 1 �
0 (EVEN) invalid (1, 0, R) (1, 1, R) (3, �, L)
1 (ODD) invalid (0, 0, R) (0, 1, R) (2, �, L)

2 (CLEAR 0) (4, ., R) (2, 0, L) (2, 1, L) invalid
3 (CLEAR 1) (5, ., R) (3, 0, L) (3, 1, L) invalid

4 (OUTPUT 0) invalid (-, 0, H) (-, 0, H) (-, 0, H)
5 (OUTPUT 1) invalid (-, 1, H) (-, 1, H) (-, 1, H)

CS121 Section 6 Turing Machines October 13, 2020 7 / 20

Definition of a Turing Machine (Sipser)

A Turing Machine as defined in Sipser’s textbook is a 7-tuple
(Q,Σ, Γ, δ, q0, qaccept , qreject), where:

I Q is the set of states

I Σ is the input alphabet, not containing the blank symbol �

I Γ is the tape alphabet, where � ∈ Γ and Σ ⊆ Γ.

I δ : Q × Γ→ Q × Γ× {L,R}
I q0 ∈ Q is the start state.

I qaccept is the accept state

I qreject is the reject state, where qreject 6= qaccept .

CS121 Section 6 Turing Machines October 13, 2020 8 / 20

Differences between Sipser and Barak

Barak Sipser
States [k] Q

Input Alphabet {0, 1} General Σ
Directions D {L,R,S ,H} {L,R}

Return Methods Halt, T [0] . . .T [i] Reach state qaccept or qreject
Return Values {0, 1}∗ {0, 1}

Table 1: Differences between Barak and Sipser’s definitions of Turing Machines

CS121 Section 6 Turing Machines October 13, 2020 9 / 20

Simulating Sipser TM with Barak TM

To simulate a Sipser TM with a Barak TM, we must expand upon the
corresponding states for qaccept and qreject and also account for general
input alphabet.

CS121 Section 6 Turing Machines October 13, 2020 10 / 20

Simulating Sipser TM with Barak TM (cont.)

Consider the function f : {a, b, c}∗ → {0, 1} that accepts expressions of
the form (abc)∗. Write a Sipser TM that computes this function, and
then convert it to a Barak TM.

CS121 Section 6 Turing Machines October 13, 2020 11 / 20

Simulating Sipser TM with Barak TM (cont.)

States State Names/Inputs . 0 1 �
0 Start invalid (1, 0, R) (7, 1, R) (8, �, L)
1 a invalid (7, 0, R) (2, 1, R) (7, �, L)
2 First One a invalid (4, 0, R) (7, 1, R) invalid
3 First One b invalid (7, 0, R) (5, 1, R) invalid
4 b invalid (7, 0, R) (3, 1, R) (7, �, L)
5 Second One b invalid (6, 0, R) invalid invalid
6 c invalid (1, 0, R) (7, 1, R) (8, �, L)
7 CLEAR 0 (9, ., R) (7, 0, L) (7, 1, L) (7, �, L)
8 CLEAR 1 (10, ., R) (8, 0, L) (8, 1, L) (8, �, L)
9 OUTPUT 0 invalid (-, 0, H) (-, 0, H) (-, 0, H)
10 OUTPUT 1 invalid (-, 1, H) (-, 1, H) (-, 1, H)

CS121 Section 6 Turing Machines October 13, 2020 12 / 20

NAND-TM

NAND-TM programs are sequences of lines consisting of:

I Scalar and array variables.

I Lines of the form. variable = NAND(variable1, variable2).

I A MODANDJUMP instruction at the end.

I Input and output array variables.

I Index variable i .

CS121 Section 6 Turing Machines October 13, 2020 13 / 20

NAND-TM (cont.)

Theorem
For every F : {0, 1}∗ → {0, 1}∗, F is computable by a NAND-TM
program P if and only if there is a Turing Machine M that computes F .

NAND-TM Syntactic Sugar:

I Inner loops: while and for loops

I Multiple index variables

I Arrays with higher dimensions.

CS121 Section 6 Turing Machines October 13, 2020 14 / 20

NAND-TM Syntactic Sugar

Show that NAND-TM can implement 2 dimensional arrays, so that we
can use them as syntactic sugar.

CS121 Section 6 Turing Machines October 13, 2020 15 / 20

NAND-TM Syntactic Sugar (cont.)

embed(x , y) =
1

2
(x + y)(x + y + 1) + x .

0 1 2 3 4
0
1
2
3
4

CS121 Section 6 Turing Machines October 13, 2020 16 / 20

NAND-RAM

Theorem
For every F : {0, 1}∗ → {0, 1}∗, F is computable by a NAND-TM
program P if and only if F is computable by a NAND-RAM program.

NAND-RAM properties:

I Everything that NAND-TM possesses, plus:

I Variables can be integer-valued

I Basic arithmetic operations

I Indexed access in arrays

CS121 Section 6 Turing Machines October 13, 2020 17 / 20

Big Idea

Using equivalence results such as those between Turing and RAM
machines, we can “have our cake and eat it too”.

I If we want to prove something can’t be done, use a Turing machine

I If we want to prove something can be done, use a high level
language (e.g. NAND-RAM, Python, C).

CS121 Section 6 Turing Machines October 13, 2020 18 / 20

Practice Problem 1

Consider the function f : {0, 1}∗ → {0, 1} such that f (x) = 1 if and only
if |x | = n is even and x0 = xn/2. In other words, the first bit of x is equal
to the first bit of the second half of x . Construct a Turing Machine that
computes f .

CS121 Section 6 Turing Machines October 13, 2020 19 / 20

Practice Problem 2

Suppose that F : {0, 1}∗ → {0, 1} is a computable function. Prove that
G is computable in each of the following situations:

1. For every n ∈ N and x ∈ {0, 1}n, G (x0 . . . xn−1) = F (xn−1 . . . x0).

2. For every x ∈ {0, 1}∗, G (x) = 1 iff there exists a list u0, . . . , ut−1 of
non-empty strings such that F (ui = 1) for every i ∈ [t] and
x = u0u1 . . . ut−1.

Hint: Use the “have our cake and eat it too” paradigm!

CS121 Section 6 Turing Machines October 13, 2020 20 / 20

	Definition of Turing Machine
	Example Turing Machine
	Definition of Turing Machine (Sipser)
	Sipser TM vs. Barak TM

	NAND-TM and NAND-RAM
	Practice Problems

