CS121 Section 6: Turing Machines

Max Guo

Harvard University

October 13, 2020

Definition of a Turing Machine (Barak)

A Turing Machine M, as defined in Barak's textbook, contains the following:

- k states
- Alphabet $\Sigma \supseteq\{0,1, \triangleright, \varnothing\}$
- Transition function $\delta_{M}:[k] \times \Sigma \rightarrow[k] \times \Sigma \times\{L, R, S, H\}$.

Definition of a Turing Machine (Barak) (cont.)

On input $x \in\{0,1\}^{*}$, the output of M on $x, M(x)$, is the result of the following:

- Initialize tape T to be the sequence

$$
\triangleright, x_{0}, x_{1}, \ldots, x_{n-1}, \varnothing, \varnothing, \ldots
$$

- Initialize $i=0$ (head position), $s=0$ (state).
- Repeat:

1. Let $\left(s^{\prime}, \sigma^{\prime}, D\right)=\delta_{M}(s, T[i])$.
2. Let $s=s^{\prime}, T[i]=\sigma^{\prime}$.
3. Move i based on D : if $D=R$ then $i=i+1$. If $D=L$ then $i=\max (i-1,0)$.
4. If $D=H$, then halt and return $y=T[0] \ldots T[i] \in\{0,1\}^{*}$, where i is the final head position.

- If the Turing Machine does not halt, denote $M(x)=\perp$.

Example Turing Machine

Consider the function $f:\{0,1\}^{*} \rightarrow\{0,1\}$ such that $f(x)=1$ if and only if $|x|$ is even. Construct a Turing Machine that computes f.

Example Turing Machine (cont.)

States:
0 . EVEN if the current number of inputs is even.

1. $O D D$ if the current number of inputs is odd.
2. $C L E A R_{0}$ if we've found our answer - head back to the beginning and output 0
3. $C L E A R_{1}$ same as state 2 but output 1 .
4. OUTPUT 0 to output 0 .
5. OUTPUT 1 to output 1 .

Example Turing Machine (cont.)

$\begin{array}{lllll}\text { States/Inputs } \quad \triangleright & 0 & 1 & \varnothing\end{array}$

0 (EVEN)

1 (ODD)
2 (CLEAR_0)
3 (CLEAR_1)
4 (OUTPUT_0)
5 (OUTPUT_1)
0. EVEN, ODD if the current number of inputs is even/odd.

1. $C L E A R_{0}, C_{E E A R}^{1}$ if we've found our answer - head back to the beginning and output $0 / 1$.
2. OUTPUT, OUTPUT $_{1}$ to output $0 / 1$.

Example Turing Machine (cont.)

States/Inputs	\triangleright	$\mathbf{0}$	$\mathbf{1}$	\varnothing
0 (EVEN)	invalid	$(1,0, \mathrm{R})$	$(1,1, \mathrm{R})$	$(3, \varnothing, \mathrm{~L})$
1 (ODD)	invalid	$(0,0, \mathrm{R})$	$(0,1, \mathrm{R})$	$(2, \varnothing, \mathrm{~L})$
2 (CLEAR_0)	$(4, \triangleright, \mathrm{R})$	$(2,0, \mathrm{~L})$	$(2,1, \mathrm{~L})$	invalid
3 (CLEAR_1)	$(5, \triangleright, \mathrm{R})$	$(3,0, \mathrm{~L})$	$(3,1, \mathrm{~L})$	invalid
4 (OUTPUT_0)	invalid	$(-, 0, \mathrm{H})$	$(-, 0, \mathrm{H})$	$(-, 0, \mathrm{H})$
5 (OUTPUT_1)	invalid	$(-, 1, \mathrm{H})$	$(-, 1, \mathrm{H})$	$(-, 1, \mathrm{H})$

Definition of a Turing Machine (Sipser)

A Turing Machine as defined in Sipser's textbook is a 7-tuple ($Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}$), where:

- Q is the set of states
- Σ is the input alphabet, not containing the blank symbol \varnothing
- Γ is the tape alphabet, where $\varnothing \in \Gamma$ and $\Sigma \subseteq \Gamma$.
- $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$
- $q_{0} \in Q$ is the start state.
- $q_{\text {accept }}$ is the accept state
- $q_{\text {reject }}$ is the reject state, where $q_{\text {reject }} \neq q_{\text {accept }}$.

Differences between Sipser and Barak

	Barak	Sipser
States	$[k]$	Q
Input Alphabet	$\{0,1\}$	General Σ
Directions D	$\{L, R, S, H\}$	$\{L, R\}$
Return Methods	Halt, $T[0] \ldots T[i]$	Reach state $q_{\text {accept }}$ or $q_{\text {reject }}$
Return Values	$\{0,1\}^{*}$	$\{0,1\}$

Table 1: Differences between Barak and Sipser's definitions of Turing Machines

Simulating Sipser TM with Barak TM

To simulate a Sipser TM with a Barak TM, we must expand upon the corresponding states for $q_{\text {accept }}$ and $q_{\text {reject }}$ and also account for general input alphabet.

Simulating Sipser TM with Barak TM (cont.)

Consider the function $f:\{a, b, c\}^{*} \rightarrow\{0,1\}$ that accepts expressions of the form $(a b c)^{*}$. Write a Sipser TM that computes this function, and then convert it to a Barak TM.

Simulating Sipser TM with Barak TM (cont.)

States	State Names/Inputs	\triangleright	$\mathbf{0}$	$\mathbf{1}$	\varnothing
0	Start	invalid	$(1,0, \mathrm{R})$	$(7,1, \mathrm{R})$	$(8, \varnothing, \mathrm{~L})$
1	a	invalid	$(7,0, \mathrm{R})$	$(2,1, \mathrm{R})$	$(7, \varnothing, \mathrm{~L})$
2	First_One_a	invalid	$(4,0, \mathrm{R})$	$(7,1, \mathrm{R})$	invalid
3	First_One_b	invalid	$(7,0, \mathrm{R})$	$(5,1, \mathrm{R})$	invalid
4	b	invalid	$(7,0, \mathrm{R})$	$(3,1, \mathrm{R})$	$(7, \varnothing, \mathrm{~L})$
5	Second_One_b	invalid	$(6,0, \mathrm{R})$	invalid	invalid
6	c	invalid	$(1,0, \mathrm{R})$	$(7,1, \mathrm{R})$	$(8, \varnothing, \mathrm{~L})$
7	CLEAR_0	$(9, \triangleright, \mathrm{R})$	$(7,0, \mathrm{~L})$	$(7,1, \mathrm{~L})$	$(7, \varnothing, \mathrm{~L})$
8	CLEAR_1	$(10, \triangleright, \mathrm{R})$	$(8,0, \mathrm{~L})$	$(8,1, \mathrm{~L})$	$(8, \varnothing, \mathrm{~L})$
9	OUTPUT_0	invalid	$(-, 0, \mathrm{H})$	$(-, 0, \mathrm{H})$	$(-, 0, \mathrm{H})$
10	OUTPUT_1	invalid	$(-, 1, \mathrm{H})$	$(-, 1, \mathrm{H})$	$(-, 1, \mathrm{H})$

NAND-TM

NAND-TM programs are sequences of lines consisting of:

- Scalar and array variables.
- Lines of the form. variable $=\operatorname{NAND}($ variable1, variable2).
- A modandjump instruction at the end.
- Input and output array variables.
- Index variable i.

NAND-TM (cont.)

Theorem
For every $F:\{0,1\}^{*} \rightarrow\{0,1\}^{*}, F$ is computable by a NAND-TM program P if and only if there is a Turing Machine M that computes F.

NAND-TM Syntactic Sugar:

- Inner loops: while and for loops
- Multiple index variables
- Arrays with higher dimensions.

NAND-TM Syntactic Sugar

Show that NAND-TM can implement 2 dimensional arrays, so that we can use them as syntactic sugar.

NAND-TM Syntactic Sugar (cont.)

$\operatorname{embed}(x, y)=\frac{1}{2}(x+y)(x+y+1)+x$.

	0	1	2	3	4
0					
1					
2					
3					
4					

NAND-RAM

Theorem
For every $F:\{0,1\}^{*} \rightarrow\{0,1\}^{*}, F$ is computable by a NAND-TM program P if and only if F is computable by a NAND-RAM program.

NAND-RAM properties:

- Everything that NAND-TM possesses, plus:
- Variables can be integer-valued
- Basic arithmetic operations
- Indexed access in arrays

Big Idea

Using equivalence results such as those between Turing and RAM machines, we can "have our cake and eat it too".

- If we want to prove something can't be done, use a Turing machine
- If we want to prove something can be done, use a high level language (e.g. NAND-RAM, Python, C).

Practice Problem 1

Consider the function $f:\{0,1\}^{*} \rightarrow\{0,1\}$ such that $f(x)=1$ if and only if $|x|=n$ is even and $x_{0}=x_{n / 2}$. In other words, the first bit of x is equal to the first bit of the second half of x. Construct a Turing Machine that computes f.

Practice Problem 2

Suppose that $F:\{0,1\}^{*} \rightarrow\{0,1\}$ is a computable function. Prove that G is computable in each of the following situations:

1. For every $n \in \mathbb{N}$ and $x \in\{0,1\}^{n}, G\left(x_{0} \ldots x_{n-1}\right)=F\left(x_{n-1} \ldots x_{0}\right)$.
2. For every $x \in\{0,1\}^{*}, G(x)=1$ iff there exists a list u_{0}, \ldots, u_{t-1} of non-empty strings such that $F\left(u_{i}=1\right)$ for every $i \in[t]$ and $x=u_{0} u_{1} \ldots u_{t-1}$.

Hint: Use the "have our cake and eat it too" paradigm!

