CS121 Section 6: Turing Machines

Max Guo

Harvard University

October 13, 2020

CS121 Section 6 October 13, 2020 1/20

Definition of a Turing Machine (Barak)

A Turing Machine M, as defined in Barak’s textbook, contains the
following:

> k states
» Alphabet ¥ D {0,1,>, &}
» Transition function oy : [k] X £ — [k] x X x {L,R,S, H}.

CS121 Section 6 October 13, 2020

Definition of a Turing Machine (Barak) (cont.)

On input x € {0,1}*, the output of M on x, M(x), is the result of the
following:

» Initialize tape T to be the sequence

Dy X0s X1, -+ o3 Xn—1, 2, &, . ..

» Initialize i = 0 (head position), s = 0 (state).
» Repeat:

1. Let (s',0’, D) = 6m(s, T[i])-

2. Lets=5¢', T[i]=0".

3. Move i based on D: if D =R theni=i+1. If D=L then
i = max(i —1,0).

4. If D = H, then halt and return y = T[0]... T[i] € {0,1}*, where i
is the final head position.

» If the Turing Machine does not halt, denote M(x) =_L.

CS121 Section 6 October 13, 2020 3/20

Example Turing Machine

Consider the function f : {0,1}* — {0,1} such that f(x) = 1 if and only
if |x| is even. Construct a Turing Machine that computes f.

CS121 Section 6 October 13, 2020

Example Turing Machine (cont.)

States:
0. EVEN if the current number of inputs is even.
1. ODD if the current number of inputs is odd.

2. CLEAR; if we've found our answer - head back to the beginning and
output 0

3. CLEAR; same as state 2 but output 1.
4. OUTPUT, to output 0.
5. OUTPUT; to output 1.

CS121 Section 6 October 13, 2020 5/20

Example Turing Machine (cont.)

States/Inputs > 0 1 &z
0 (EVEN)
1 (ODD)
2 (CLEAR.0)
3 (CLEAR-1)
4 (OUTPUT.0)
5 (OUTPUT_1)

0. EVEN, ODD if the current number of inputs is even/odd.

1. CLEARy, CLEAR; if we've found our answer - head back to the
beginning and output 0/1.

2. OUTPUT,, OUTPUT; to output 0/1.

CS121 Section 6 October 13, 2020 6 /20

Example Turing Machine (cont.)

States/Inputs > 0 1 z
0 (EVEN) invalid ~ (1,0,R) (1, 1,R) (3,2 L)
1 (ODD) invalid (0,0, R) (0,1, R) (2 2, L)
2 (CLEARO) (4,5 R) (200,L) (2 1,L) invalid
3(CLEAR1) (5,5 R) (3,0,L) (3,1,L) invalid
4 (OUTPUT.0) invalid (-, 0,H) (- 0,H) (-0, H)
5 (OUTPUT.1) invalid (- L H) (- 1, H) (- 1, H)

October 13, 2020 7/20

CS121 Section 6

Definition of a Turing Machine (Sipser)

A Turing Machine as defined in Sipser's textbook is a 7-tuple
(Q; >, T, 63 40, Gaccept s qreject)y where:

» @ is the set of states

» 3 is the input alphabet, not containing the blank symbol &
» [is the tape alphabet, where @ € I and . CT.

> 0:QxI—=QxIx{L R}

» go € Q is the start state.

P Gaccept is the accept state

>

Greject 1S the reject state, where Greject 7# Gaccept-

CS121 Section 6 October 13, 2020 8 /20

Differences between Sipser and Barak

Barak Sipser
States [K] Q
Input Alphabet {0,1} General ¥
Directions D {L,R,S, H} {L, R}
Return Methods | Halt, T[0]... T[i] | Reach state gaccept OF Greject
Return Values {0,1}* {0,1}

Table 1: Differences between Barak and Sipser's definitions of Turing Machines

CS121 Section 6 October 13, 2020 9/20

Simulating Sipser TM with Barak TM

To simulate a Sipser TM with a Barak TM, we must expand upon the
corresponding states for Gaccept and Greject and also account for general
input alphabet.

CS121 Section 6 October 13, 2020 10 / 20

Simulating Sipser TM with Barak TM (cont.)

Consider the function f : {a, b, c}* — {0,1} that accepts expressions of
the form (abc)*. Write a Sipser TM that computes this function, and
then convert it to a Barak TM.

CS121 Section 6 October 13, 2020 11 /20

Simulating Sipser TM with Barak TM (cont.)

States | State Names/Inputs | > 0 1 i

0 Start invalid (1,O,R) | 7.1,R) | (8 & L)
1 a invalid (7,0,R) | (2,1, R) | (7, 2, L)
2 First_One_a invalid (4,0,R) | (7,1, R) | invalid

3 First_One_b invalid (7,0,R) | (5 1, R) | invalid

g b invalid 7.0,R) | 3. 1LR) | (7. 2 L)
5 Second_One_b invalid (6, 0, R) | invalid invalid

6 c invalid (1,O,R) | (7.1,R) | (8 =, L)
7 CLEARLO 9.>R) | (7.0,L) | (7.1, L) | (7. 2 L)
8 CLEAR1 (10,5, R) | (8,0,L) | (8,1, L) | (8 =, L)
9 OUTPUT.0 invalid (0, H) | (-0 H) | (0 H)
10 OUTPUT1 invalid GLH | LH | G1LH

CS121 Section 6 October 13, 2020 12 /20

NAND-TM

NAND-TM programs are sequences of lines consisting of:
» Scalar and array variables.
» Lines of the form. variable = NAND(variablel, variable2).
» A MODANDJUMP instruction at the end.
» Input and output array variables.

» Index variable /.

CS121 Section 6 October 13, 2020 13 /20

NAND-TM (cont.)

Theorem
For every F : {0,1}* — {0,1}*, F is computable by a NAND-TM
program P if and only if there is a Turing Machine M that computes F.

NAND-TM Syntactic Sugar:
P Inner loops: while and for loops
» Multiple index variables

» Arrays with higher dimensions.

CS121 Section 6 October 13, 2020 14 / 20

NAND-TM Syntactic Sugar

Show that NAND-TM can implement 2 dimensional arrays, so that we
can use them as syntactic sugar.

CS121 Section 6 October 13, 2020 15 /20

NAND-TM Syntactic Sugar (cont.)

1
embed(x,y) = §(X +y)(x+y+1)+x

AN wlnRo

CS121 Section 6 October 13, 2020 16 / 20

NAND-RAM

Theorem
For every F : {0,1}* — {0,1}*, F is computable by a NAND-TM
program P if and only if F is computable by a NAND-RAM program.

NAND-RAM properties:
» Everything that NAND-TM possesses, plus:
» Variables can be integer-valued
» Basic arithmetic operations

» Indexed access in arrays

CS121 Section 6 October 13, 2020 17 / 20

Using equivalence results such as those between Turing and RAM
machines, we can “have our cake and eat it too”.

» If we want to prove something can't be done, use a Turing machine

» If we want to prove something can be done, use a high level
language (e.g. NAND-RAM, Python, C).

CS121 Section 6 October 13, 2020 18 / 20

Practice Problem 1

Consider the function f : {0,1}* — {0,1} such that f(x) =1 if and only
if [x| = nis even and xp = x,/2. In other words, the first bit of x is equal
to the first bit of the second half of x. Construct a Turing Machine that
computes f.

CS121 Section 6 October 13, 2020 19 /20

Practice Problem 2

Suppose that F : {0,1}* — {0,1} is a computable function. Prove that
G is computable in each of the following situations:

1. Forevery n€ Nand x € {0,1}", G(x0 ... Xp—1) = F(Xp—1 - .. X0).

2. For every x € {0,1}*, G(x) = 1 iff there exists a list up, ..., us—1 of
non-empty strings such that F(u; = 1) for every i € [t] and
X = UplUy...Ut_7.

Hint: Use the “have our cake and eat it too” paradigm!

October 13, 2020 20 /20

CS121 Section 6

	Definition of Turing Machine
	Example Turing Machine
	Definition of Turing Machine (Sipser)
	Sipser TM vs. Barak TM

	NAND-TM and NAND-RAM
	Practice Problems

