CS121 Section 6: Turing Machines

Max Guo

Harvard University

October 13, 2020

イロト イヨト イヨト イヨ

A Turing Machine M, as defined in Barak's textbook, contains the following:

- ► k states
- ► Alphabet $\Sigma \supseteq \{0, 1, \triangleright, \varnothing\}$
- Transition function $\delta_M : [k] \times \Sigma \rightarrow [k] \times \Sigma \times \{L, R, S, H\}.$

Definition of a Turing Machine (Barak) (cont.)

On input $x \in \{0,1\}^*$, the output of M on x, M(x), is the result of the following:

► Initialize tape *T* to be the sequence

 $\triangleright, x_0, x_1, \ldots, x_{n-1}, \varnothing, \varnothing, \ldots$

• Initialize i = 0 (head position), s = 0 (state).

► Repeat:

- 1. Let $(s', \sigma', D) = \delta_M(s, T[i])$.
- 2. Let s = s', $T[i] = \sigma'$.
- 3. Move *i* based on *D*: if D = R then i = i + 1. If D = L then i = max(i 1, 0).
- If D = H, then halt and return y = T[0]... T[i] ∈ {0,1}*, where i is the final head position.

▶ If the Turing Machine does not halt, denote $M(x) = \bot$.

ヘロト ヘロト ヘヨト ヘヨト

Consider the function $f : \{0,1\}^* \to \{0,1\}$ such that f(x) = 1 if and only if |x| is even. Construct a Turing Machine that computes f.

イロト イ団ト イヨト イヨト

States:

- 0. EVEN if the current number of inputs is even.
- 1. ODD if the current number of inputs is odd.
- 2. $CLEAR_0$ if we've found our answer head back to the beginning and output 0
- 3. $CLEAR_1$ same as state 2 but output 1.
- 4. $OUTPUT_0$ to output 0.
- 5. $OUTPUT_1$ to output 1.

Image: A math the second se

Example Turing Machine (cont.)

States/Inputs	\triangleright	0	1	ø
0 (EVEN)				
1 (ODD)				
2 (CLEAR_0)				
3 (CLEAR_1)				
4 (OUTPUT₋0)				
5 (OUTPUT_1)				

- 0. EVEN, ODD if the current number of inputs is even/odd.
- 1. $CLEAR_0$, $CLEAR_1$ if we've found our answer head back to the beginning and output 0/1.
- 2. $OUTPUT_0$, $OUTPUT_1$ to output 0/1.

イロト イボト イヨト イヨ

States/Inputs	\triangleright	0	1	ø
0 (EVEN)	invalid	(1, 0, R)	(1, 1, R)	(3, ø, L)
1 (ODD)	invalid	(0, 0, R)	(0, 1, R)	(2, ø, L)
2 (CLEAR_0)	(4, ⊳, R)	(2, 0, L)	(2, 1, L)	invalid
3 (CLEAR_1)	(5, ⊳, R)	(3, 0, L)	(3, 1, L)	invalid
4 (OUTPUT_0)	invalid	(-, 0, H)	(-, 0, H)	(-, 0, H)
5 (OUTPUT_1)	invalid	(-, 1, H)	(-, 1, H)	(-, 1, H)

3

メロト メロト メヨト メ

A Turing Machine as defined in Sipser's textbook is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, where:

- ► Q is the set of states
- $\blacktriangleright\ \Sigma$ is the input alphabet, not containing the blank symbol ø
- Γ is the tape alphabet, where $\emptyset \in \Gamma$ and $\Sigma \subseteq \Gamma$.
- $\blacktriangleright \ \delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$
- $q_0 \in Q$ is the start state.
- ► *q_{accept}* is the accept state
- q_{reject} is the reject state, where $q_{reject} \neq q_{accept}$.

Image: A math the second se

	Barak	Sipser
States	[<i>k</i>]	Q
Input Alphabet	$\{0,1\}$	General Σ
Directions D	$\{L, R, S, H\}$	$\{L, R\}$
Return Methods	Halt, $T[0]T[i]$	Reach state q_{accept} or q_{reject}
Return Values	$\{0,1\}^*$	$\{0,1\}$

Table 1: Differences between Barak and Sipser's definitions of Turing Machines

Image: A math the second se

To simulate a Sipser TM with a Barak TM, we must expand upon the corresponding states for q_{accept} and q_{reject} and also account for general input alphabet.

• • • • • • • • • • •

Consider the function $f : \{a, b, c\}^* \to \{0, 1\}$ that accepts expressions of the form $(abc)^*$. Write a Sipser TM that computes this function, and then convert it to a Barak TM.

Simulating Sipser TM with Barak TM (cont.)

States	State Names/Inputs	⊳	0	1	ø
0	Start	invalid	(1, 0, R)	(7, 1, R)	(8, ø, L)
1	а	invalid	(7, 0, R)	(2, 1, R)	(7, ø, L)
2	First_One_a	invalid	(4, 0, R)	(7, 1, R)	invalid
3	First_One_b	invalid	(7, 0, R)	(5, 1, R)	invalid
4	b	invalid	(7, 0, R)	(3, 1, R)	(7, ø, L)
5	Second_One_b	invalid	(6, 0, R)	invalid	invalid
6	с	invalid	(1, 0, R)	(7, 1, R)	(8, ø, L)
7	CLEAR_0	(9, ⊳, R)	(7, 0, L)	(7, 1, L)	(7, ø, L)
8	CLEAR_1	(10, ⊳, R)	(8, 0, L)	(8, 1, L)	(8, ø, L)
9	OUTPUT_0	invalid	(-, 0, H)	(-, 0, H)	(-, 0, H)
10	OUTPUT_1	invalid	(-, 1, H)	(-, 1, H)	(-, 1, H)

イロト イヨト イヨト イヨ

NAND-TM programs are sequences of lines consisting of:

- Scalar and array variables.
- ► Lines of the form. variable = NAND(variable1, variable2).
- ► A MODANDJUMP instruction at the end.
- Input and output array variables.
- ► Index variable *i*.

Theorem

For every $F : \{0,1\}^* \to \{0,1\}^*$, F is computable by a NAND-TM program P if and only if there is a Turing Machine M that computes F.

NAND-TM Syntactic Sugar:

- ► Inner loops: while and for loops
- Multiple index variables
- ► Arrays with higher dimensions.

Show that NAND-TM can implement 2 dimensional arrays, so that we can use them as syntactic sugar.

イロト イ団ト イヨト イヨ

$$embed(x, y) = \frac{1}{2}(x + y)(x + y + 1) + x.$$

	0	1	2	3	4
0					
1					
2					
3					
4					

メロト メタト メヨト メヨト

Theorem

For every $F : \{0,1\}^* \to \{0,1\}^*$, F is computable by a NAND-TM program P if and only if F is computable by a NAND-RAM program.

NAND-RAM properties:

- Everything that NAND-TM possesses, plus:
- ► Variables can be integer-valued
- Basic arithmetic operations
- Indexed access in arrays

Using equivalence results such as those between Turing and RAM machines, we can "have our cake and eat it too".

- ▶ If we want to prove something can't be done, use a Turing machine
- If we want to prove something can be done, use a high level language (e.g. NAND-RAM, Python, C).

< □ > < 同 > < 回 > < 回 >

Consider the function $f : \{0,1\}^* \to \{0,1\}$ such that f(x) = 1 if and only if |x| = n is even and $x_0 = x_{n/2}$. In other words, the first bit of x is equal to the first bit of the second half of x. Construct a Turing Machine that computes f.

Suppose that $F : \{0,1\}^* \to \{0,1\}$ is a computable function. Prove that G is computable in each of the following situations:

- 1. For every $n \in \mathbb{N}$ and $x \in \{0,1\}^n$, $G(x_0 \dots x_{n-1}) = F(x_{n-1} \dots x_0)$.
- 2. For every $x \in \{0,1\}^*$, G(x) = 1 iff there exists a list u_0, \ldots, u_{t-1} of non-empty strings such that $F(u_i = 1)$ for every $i \in [t]$ and $x = u_0 u_1 \ldots u_{t-1}$.

Hint: Use the "have our cake and eat it too" paradigm!

(日) (四) (日) (日) (日)