
CS 121 Section 7: Solutions

Problem 1: Let TIMEDHALT : {0, 1}∗ → {0, 1} be the function that on input (a string
representing) a triple (M,x, t), TIMEDHALT (M,x, t) = 1 iff the Turing machine M , on input x,
halts within at most t steps (where a step is defined as one sequence of reading a symbol from the
tape, updating the state, and writing a new symbol and (potentially) moving the head.)

Prove that TIMEDHALT is computable.

Solution 1: To show that this function is computable, we’ll write a program to compute it. By
the “have your cake and eat it too” principle, we can use Python-esque pseudocode to do so.

Think of the simulateOneStep program as similar to what’s described in 7.2 of Barak’s book. It
takes the description of a Turing machine, the current tape, the current state, and the current
index within the tape, and outputs the new state, new index in the tape, updated tape, and last
move made (L, R, H, S) based on the transition function of M .

def computesTIMEDHALT(M, x, t):

i = 0

state = 0

tape_index = 0

tape = x

while (i < t):

state, tape_index, tape, last_move = simulateOneStep(M, tape, state, tape_index)

if (last_move is HALT):

return 1

i = i + 1

return 0

Correctness: we claim that a correct Python-esque program simulateOneStep exists due to the
equivalence of Turing machines and such programming languages. Our program therefore simulates
one step of Turing machine M on input x, t times. If M has halted after any one of these t steps,
we return 1, as TIMEDHALT is supposed to do. If we have not halted after t steps we return 0.

Problem 2: Let IS-TM -ONE: {0, 1}∗ → {0, 1} be the function that takes as input a string
representation of a Turing machine M and outputs 1 iff M(x) = 1 for every x ∈ {0, 1}∗. Prove or
disprove: IS-TM -ONE is computable.

Solution 2: This function is uncomputable.

Assume toward a contradiction that IS-TM -ONE is computable.

We will now reduce HALTONZERO to IS-TM -ONE.

Reduction: Given a TM M , take the TM N that runs M on 0 and then outputs 1 and halts.
HALTONZERO(M) = IS-TM -ONE(N).

Can also think of the reduction as follows:
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def computesHOZ(M):

N = description of TM that runs M(0) and then outputs 1 and halts

return computesISTMONE(N)

Proof of correctness for our reduction requires two cases:

1. HALTONZERO(M) = 1. Since M halts on 0, N will always halt and output 1. Thus
IS-TM -ONE(N) = 1.

2. HALTONZERO(M) = 0. Since M doesn’t halt on zero, N will not halt. Since N does not
halt, it does not output 1, so IS-TM -ONE(N) = 0.

We’ve therefore correctly reduced HALTONZERO to IS-TM -ONE. By our original assumption,
IS-TM -ONE is computable, so HALTONZERO must be too. This is a contradiction, since we
proved in class and lecture that HALTONZERO is uncomputable. So our assumption is wrong
and IS-TM -ONE is uncomputable.

Problem 3: Prove that the following function is uncomputable:

COMPUTES − PARITY (P ) =

{
1 P computes the parity function

0 otherwise

Solution 3:

Assume toward a contradiction that COMPUTES-PARITY is computable.

We will now reduce HALTONZERO to COMPUTES-PARITY .

Reduction: Given a TM M , construct TM N that runs M on 0, then counts the number of 1s in
the input, and returns 1 if that number of 1s is odd. If the number of 1s is even, N returns 0.
HALTONZERO(M) = COMPUTES-PARITY (N).

Proof of correctness for our reduction requires two cases:

1. HALTONZERO(M) = 1. Since M halts on 0, N will also halt; it will return 1 if there are an
odd number of 1s in the input and 0 otherwise, by construction. This is exactly what computing
parity is (returns 1 iff there’s an odd number of 1s in input.) Thus COMPUTES-PARITY (N) = 1

2. HALTONZERO(M) = 0. Since M doesn’t halt on zero, N will not halt (since it tries to run
M on 0). Since N does not halt, it does not ever output anything, so it definitely does not compute
the parity function. So COMPUTES-PARITY (N) = 1.

We’ve therefore correctly reduced HALTONZERO to COMPUTES-PARITY (N). By our orig-
inal assumption, COMPUTES-PARITY (N) is computable, so HALTONZERO must be too.
This is a contradiction, since we proved in class and lecture that HALTONZERO is uncomputable.
So our assumption is wrong and COMPUTES-PARITY (N) is uncomputable.
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