CS121 Section 8: Rice's Theorem, Reduction, P, EXP

Zuzanna Skoczylas
A function F is called nontrivial iff there are two inputs x and y such that $F(x)=0$ and $F(y)=1$.

$$F(x) = \begin{cases}
1 & |x| > 10 \\
0 & o/w
\end{cases}$$
Semantic property

A pair of Turing machines M and M' are *functionally equivalent* if for every $x \in \{0,1\}^*$, $M(x) = M'(x)$. (In particular, M halts on x iff M' halts on x for all x.) A function $F:\{0,1\}^* \rightarrow \{0,1\}$ is *semantic* if for every pair of strings M, M' that represent functionally equivalent Turing machines, $F(M) = F(M')$. Example: ZEROFUNC

$$\text{ZEROFUNC}: \{0,1\}^* \rightarrow \{0,1\}$$

1 iff M represents TM such that M outputs 0 for all $x \in \{0,1\}^*$

$$\text{ZEROFUNC}(M) =$ $\text{ZEROFUNC}(M')$$
Rice's Theorem

Let $F: \{0,1\}^* \rightarrow \{0,1\}$. If F is semantic and non-trivial then it is uncomputable.
Rice's Theorem Example

Prove that CONST in uncomputable. CONST: \{0,1\}^* \rightarrow \{0,1\} is a function that on every input M representing Turning Machine returns 1 iff M computes a constant 0 or constant 1 function.

\[
M \, - \, TM \, that \, is \, constant \, 0 \, function
\]

\[
M' \, - \, TM \, that \, returns \, 1 \, iff \, \exists \, a \, path \, in \, the \, graph \, from \, s \, to \, t
\]

\[
\text{CONST (M)} = 1 \quad \text{CONST (M')} = 0
\]
Rice's Theorem Example

\[Q, Q' \]

\[\forall x \in \{0, 1\}^* \quad Q(x) = Q'(x) \]

\[\text{CONST}(Q) = \text{CONST}(Q') \]
Reduction

Steps to prove F is uncomputable:

1. Assume for contradiction that F is computable, so there exists program P that computes it.
2. Create program compHALT or compHALTONZERO, that using P computes HALT or HALTONZERO. Here you usually have to modify the input to P.
3. This implies that HALT or HALTONZERO is computable, which is a contradiction proved in the book.
4. Therefore F cannot be computable.
Prove that ACCEPT is uncomputable. ACCEPT(P) returns 1 if P halts on any \{0,1\}^* string and 0 otherwise.

1. Assume for contradiction that ACCEPT is computable, so there exists program E that computes it.

2. Create the program compHALT, that using E computes HALT.

\[
\text{compHALT}(M,x) : \\
1. \text{Construct NAND-\text{TM} program } M' : \\
\text{runs } M \text{ on } x \\
\text{return 1 if } M' \text{ halted} \\
2. \text{return } E(M')
\]
Prove that\(\text{ACCEPT} \) is uncomputable. \(\text{ACCEPT}(P) \) returns 1 if \(P \) halts on any \(\{0,1\}^* \) string and 0 otherwise.

3. This implies that \(\text{HALT} \) is computable, which is a contradiction proved in the book.

4. Therefore \(\text{ACCEPT} \) cannot be computable.

\[
\begin{align*}
\varepsilon(M') &= 1 \implies \text{HALT}(M,x) = 1. \\
\varepsilon(M') &= 0 \implies \text{HALT}(M_1,x) = 0
\end{align*}
\]
A propositional formula φ involves n variables x_1, \ldots, x_n and the logical operators AND (\land), OR (\lor), and NOT (\neg). We say that such a formula is in conjunctive normal form (CNF for short) if it is an AND of ORs of variables or their negations. For example, this is a CNF formula

$$ (x_7 \lor \neg x_{22} \lor x_{15}) \land (x_{37} \lor x_{22}) \land (x_{55} \lor \neg x_7) $$

The satisfiability problem is the task of determining, given a CNF formula φ, whether or not there exists a satisfying assignment for φ. A satisfying assignment for φ is a string $x \in \{0,1\}^n$ such that φ evaluates to True if we assign its variables the values of x.
We say that a formula is a k-CNF if it is an AND of ORs where each OR involves exactly k literals. The k-SAT problem is the restriction of the satisfiability problem for the case that the input formula is a k-CNF.

In particular, the 2SAT problem is to find out, given a 2-CNF formula ϕ, whether there is an assignment $x \in \{0, 1\}^n$ that satisfies ϕ, in the sense that it makes it evaluate to 1.

\[
(\chi_1 \lor \chi_2) \land (\chi_1) \iff (\chi_1 \lor \chi_2) \land (\chi_1 \lor \chi_1)
\]
2SAT in EXP

\[(\bar{x} \lor y) \land (\bar{y} \lor z) \land (x \lor \bar{z}) \land (z \lor y)\]
2SAT IN P

\[(\overline{x} \lor y) \land (\overline{y} \lor z) \land (x \lor \overline{z}) \land (z \lor y) \lor (a \lor \overline{b}) \]

\[
\begin{align*}
\overline{y} \lor 2 \\
y \Rightarrow 2 \\
\overline{2} \Rightarrow \overline{y} \\
x \lor \overline{y} \\
x \Rightarrow \overline{y} \\
\overline{y} \Rightarrow \overline{x}
\end{align*}
\]
2SAT IN P

$x \Rightarrow \overline{x}$

$x = TRUE$

$x = FALSE$

$\overline{x} = \overline{y}$

$\overline{y} \Rightarrow y$

$y = TRUE$

$y = x = 2 = TRUE$

$O(n \cdot m)$
P is a subset of EXP!
Section problems

1. Function \(F : \{0,1\}^* \rightarrow \{0, 1\} \) checks whether the input encodes a TM that, on every input for which it halts, outputs either a string with at most \(n \) 0s or a string with length at least \(n \). Prove that \(F \) is uncomputable using Rice's theorem or state why Rice's theorem does not apply and show polynomial time algorithm.

2. Prove that if \(F, G : \{0,1\}^* \rightarrow \{0, 1\} \) are in P then their composition \(F \circ G \), which is the function \(H \) s.t. \(H(x) = F(G(x)) \), is also in P.

3. Prove or disprove: \(F \) is uncomputable. Let \(F \) be the following function. On input a (string representing a) pair \((M, P)\) where \(M \) is a Turing Machine and \(P \) is a NAND-TM program, \(F \) outputs 1 if and only if \(M \) and \(P \) are functionally equivalent, in the sense that for every \(x \in \{0,1\}^* \), either both \(M \) and \(P \) don’t halt on \(x \), or \(M(x) = P(x) \).