Section 8

Problem 1

Function $\mathrm{F}:\{0,1\}^{*} \rightarrow\{0,1\}$ checks whether the input encodes a TM that, on every input for which it halts, outputs either a string with at most n 0 s or a string with length at least n. Prove that F is uncomputable using Rice's theorem or state why Rice's theorem does not apply and show polynomial time algorithm.

Solution Rice's Theorem does not apply, because a property is secretly trivial. This is because if the output string has more than n 0 s its length is also longer than n. Therefore, for every input the returned value should be 1 , which we can trivially implement in polynomial time using Python.

Problem 2

Prove that if $\mathrm{F}, \mathrm{G}:\{0,1\}^{*} \rightarrow\{0,1\}$ are in P then their composition $\mathrm{F} \circ \mathrm{G}$, which is the function H s.t. $H(x)=F(G(x))$, is also in P.

Solution Lemma: First, note that the composition of two polynomial functions is polynomial: the composition of two functions f and g with degrees $d 1$ and $d 2$ respectively can have a maximum degree of $d_{1} * d_{2}$, which is still polynomial.

For the main proof, note that if F and G are in P , then there must be NANDRAM programs PF and PG that compute F and G respectively that run for $O\left(n^{k_{1}}\right)$ and $O\left(n^{k_{2}}\right)$ steps of NAND-RAM respectively, where n is the length of the input.

By the sequential composition theorem, we can construct a program PC that computes $\mathrm{F}(\mathrm{G}(\mathrm{x}))$ in the following way: Start with the program PG , and compute $\mathrm{G}(\mathrm{x})$. Then "paste in" the code for PF, changing the input to PF to the output $\mathrm{G}(\mathrm{x})$ from PG. Note that because F is bounded by $O\left(n^{k}\right)$ NAND-RAM steps, it can be written as a NAND program of $O\left(\operatorname{poly}\left(n^{k_{1}}\right)\right)$ lines, which means the size of the output of PG can be at most poly $\left(n^{k_{2}}\right)$. By our lemma, this upper bound on the size of the output is still polynomial, so let the size of the output of the polynomial be $O\left(n^{c}\right)$ for some constant c. This means that the length of the input to the code for PF is at most $O\left(n^{c}\right)$, so the overall runtime is $O\left(\left(n^{c}\right)^{k}\right)=$ $O\left(n^{c k}\right)$, which is still polynomial.

Problem 3

Prove or disprove: F is uncomputable. Let F be the following function. On input a (string representing a) pair (M, P) where M is a Turing Machine and P is a NAND-TM program, F outputs 1 if and only if M and P are functionally equivalent, in the sense that for every $x \in\{0,1\}^{*}$, either both M and P don't halt on x , or $\mathrm{M}(\mathrm{x})=\mathrm{P}(\mathrm{x})$.

Solution Assume for contradiction that F is computable. Reduce HALT to F.

Suppose a program T computes F. We construct a program PHALT that computes HALT. Given a NAND-TM program P, create P^{\prime} by adding line return 0 at the end of the program.

Now we show we can compute HALT(Q), by creating program PHALT(P). This program:

1. creates P^{\prime} as described above
2. creates M to be a TM that just returns 0
3. returns $T\left(M, P^{\prime}\right)$.

Suppose that P halts, then P^{\prime} halts and returns 0 . Since M also halts and returns $0, \mathrm{~T}(\mathrm{Q}, \mathrm{M})=1$ and PHALT returns 1 , as desired.

Suppose that P does not halt, then P does not halt so $\mathrm{T}(\mathrm{Q}, \mathrm{M})=0$. PHALT returns 0, as desired.

Therefore we can compute HALT, which is a contradiction! Hence, F is uncomputable.

Other version of the proof uses Rice's Theorem

