
Section 8
Problem 1
Function F : {0, 1}∗ → {0, 1} checks whether the input encodes a TM that, on
every input for which it halts, outputs either a string with at most n 0s or a
string with length at least n. Prove that F is uncomputable using Rice’s theorem
or state why Rice’s theorem does not apply and show polynomial time algorithm.

Solution Rice’s Theorem does not apply, because a property is secretly trivial.
This is because if the output string has more than n 0s its length is also longer
than n. Therefore, for every input the returned value should be 1, which we can
trivially implement in polynomial time using Python.

Problem 2
Prove that if F, G : {0, 1}∗ → {0, 1} are in P then their composition F ◦ G,
which is the function H s.t. H(x) = F(G(x)), is also in P.

Solution Lemma: First, note that the composition of two polynomial functions
is polynomial: the composition of two functions f and g with degrees d1 and d2
respectively can have a maximum degree of d1 ∗ d2, which is still polynomial.

For the main proof, note that if F and G are in P, then there must be NAND-
RAM programs PF and PG that compute F and G respectively that run for
O(nk1) and O(nk2) steps of NAND-RAM respectively, where n is the length of
the input.

By the sequential composition theorem, we can construct a program PC that
computes F(G(x)) in the following way: Start with the program PG, and compute
G(x). Then ”paste in” the code for PF , changing the input to PF to the output
G(x) from PG. Note that because F is bounded by O(nk) NAND-RAM steps, it
can be written as a NAND program of O(poly(nk1)) lines, which means the size
of the output of PG can be at most poly(nk2). By our lemma, this upper bound
on the size of the output is still polynomial, so let the size of the output of the
polynomial be O(nc) for some constant c. This means that the length of the
input to the code for PF is at most O(nc), so the overall runtime is O((nc)k) =
O(nck), which is still polynomial.

Problem 3
Prove or disprove: F is uncomputable. Let F be the following function. On
input a (string representing a) pair (M, P) where M is a Turing Machine and P
is a NAND-TM program, F outputs 1 if and only if M and P are functionally
equivalent, in the sense that for every x ∈ {0, 1}∗, either both M and P don’t
halt on x, or M(x) = P(x).

Solution Assume for contradiction that F is computable. Reduce HALT to F.

1



Suppose a program T computes F. We construct a program PHALT that com-
putes HALT. Given a NAND-TM program P, create P’ by adding line return 0
at the end of the program.

Now we show we can compute HALT(Q), by creating program PHALT(P). This
program:

1. creates P’ as described above

2. creates M to be a TM that just returns 0

3. returns T (M,P’).

Suppose that P halts, then P’ halts and returns 0. Since M also halts and returns
0, T(Q,M) = 1 and PHALT returns 1, as desired.

Suppose that P does not halt, then P does not halt so T(Q,M) = 0. PHALT
returns 0, as desired.

Therefore we can compute HALT, which is a contradiction! Hence, F is uncom-
putable.

Other version of the proof uses Rice’s Theorem

2


	Section 8
	Problem 1
	Problem 2
	Problem 3


