Section 8

Problem 1

Function \(F : \{0,1\}^* \rightarrow \{0,1\} \) checks whether the input encodes a TM that, on every input for which it halts, outputs either a string with at most \(n \) 0s or a string with length at least \(n \). Prove that \(F \) is uncomputable using Rice’s theorem or state why Rice’s theorem does not apply and show polynomial time algorithm.

Solution Rice’s Theorem does not apply, because a property is secretly trivial. This is because if the output string has more than \(n \) 0s its length is also longer than \(n \). Therefore, for every input the returned value should be 1, which we can trivially implement in polynomial time using Python.

Problem 2

Prove that if \(F, G : \{0,1\}^* \rightarrow \{0,1\} \) are in P then their composition \(F \circ G \), which is the function \(H \) s.t. \(H(x) = F(G(x)) \), is also in P.

Solution Lemma: First, note that the composition of two polynomial functions is polynomial: the composition of two functions \(f \) and \(g \) with degrees \(d_1 \) and \(d_2 \) respectively can have a maximum degree of \(d_1 \ast d_2 \), which is still polynomial.

For the main proof, note that if \(F \) and \(G \) are in P, then there must be NAND-RAM programs \(PF \) and \(PG \) that compute \(F \) and \(G \) respectively that run for \(O(n^{k_1}) \) and \(O(n^{k_2}) \) steps of NAND-RAM respectively, where \(n \) is the length of the input.

By the sequential composition theorem, we can construct a program \(PC \) that computes \(F(G(x)) \) in the following way: Start with the program \(PG \), and compute \(G(x) \). Then ”paste in” the code for \(PF \), changing the input to \(PF \) to the output \(G(x) \) from \(PG \). Note that because \(F \) is bounded by \(O(n^k) \) NAND-RAM steps, it can be written as a NAND program of \(O(poly(n^{k_1})) \) lines, which means the size of the output of \(PG \) can be at most \(poly(n^{k_2}) \). By our lemma, this upper bound on the size of the output is still polynomial, so let the size of the output of the polynomial be \(O(n^c) \) for some constant \(c \). This means that the length of the input to the code for \(PF \) is at most \(O(n^c) \), so the overall runtime is \(O((n^c)^k) = O(n^{ck}) \), which is still polynomial.

Problem 3

Prove or disprove: \(F \) is uncomputable. Let \(F \) be the following function. On input a (string representing a) pair \((M, P) \) where \(M \) is a Turing Machine and \(P \) is a NAND-TM program, \(F \) outputs 1 if and only if \(M \) and \(P \) are functionally equivalent, in the sense that for every \(x \in \{0,1\}^* \), either both \(M \) and \(P \) don’t halt on \(x \), or \(M(x) = P(x) \).

Solution Assume for contradiction that \(F \) is computable. Reduce HALT to \(F \).
Suppose a program \(T \) computes \(F \). We construct a program \(\text{PHALT} \) that computes HALT. Given a NAND-TM program \(P \), create \(P' \) by adding line return 0 at the end of the program.

Now we show we can compute HALT(Q), by creating program \(\text{PHALT}(P) \). This program:

1. creates \(P' \) as described above
2. creates \(M \) to be a TM that just returns 0
3. returns \(T(M,P') \).

Suppose that \(P \) halts, then \(P' \) halts and returns 0. Since \(M \) also halts and returns 0, \(T(Q,M) = 1 \) and \(\text{PHALT} \) returns 1, as desired.

Suppose that \(P \) does not halt, then \(P \) does not halt so \(T(Q,M) = 0 \). \(\text{PHALT} \) returns 0, as desired.

Therefore we can compute HALT, which is a contradiction! Hence, \(F \) is uncomputable.

Other version of the proof uses Rice’s Theorem