1 Format

The exam will be 90 minutes (60 minutes to solve, 30 minutes to I¥TEX) and will
consist of TRUE/FALSE with no explanation, TRUE/FALSE with explanation,
and open response problems. You are allowed to have a cheat sheet which you
will have to submit with the exam.

2

Topics Covered

This is a list of some of the topics covered in the course. You may want to add
some of them to your cheat sheet.

2.1

2.2

2.3

Math

Functions: Know the definitions for functions, injectivity, surjectivity,
bijectivity, and what these imply for the caridinality between the domain
and codomain. Also know the pigeon hole principle.

Big-O notation: Know the definitions for 0,0,w,Q,© and how to
identify the relation between two functions.

Data Representation

Representation Schemes: Know the definition of a representation scheme
(also known as an encoding), the definition of a prefix-free encoding, and
ways to make any encoding prefix-free.

Circuits

Representation: Know the different representations of a circuit: di-
rected graph, straight-line program, and tuple representation.

Universality and EVAL: Know that we can compute every function
with a NAND-CIRC and the implications of being able to compute the
EVAL functions.

The exact implementation of the circuit that computes EVAI isn’t super
important for this exam.

SIZE(n) and Size Hierarchy Theorem: Know the definition of
SIZE(n) and result of the size hierarchy theorem.

Comparing Languages: Know what it means to compare the power
of different languages and how to do it.



2.4

3

Deterministic Finite Automata & Regular Expressions

DFAs and NFAs: Know the definition of a DFA, how to express one in
a transition table, how to understand DFAs and NFAs, how to create one
for a given language

Regular Expressions: Know the definition of a regular expression, how
to understand regular expressions, how to create one for a given language

DFA /NFA /Regex Equivalence: Know that Regular Expressions and
DFAs (and NFAs) are equivalent: for every given DFA we have a regular
expression that accepts the same language, and vice-versa; also, for every
NFA we can express it as a DFA.

Regular languages and their limitations: Know the definition of a
regular language, know that DFA and regular expressions can’t compute

Practice Problems

Disclaimer: If some topics are covered here more than others, that doesn’t
mean they will be covered more or less on the midterm.

3.1

TRUE/FALSE

Write whether the following statements are true or false. No need to provide
justification but you should justify it to yourself.
(About 2 minutes each)

1.

2.

Let f(z) = (%) and g(z) = Z5.
(a) f=o(g)
(b) f=0(9)
(c) f=10(9)
(d) f=%(g)
(e) f=wlg)

The function EQUALS : {0,1}?>" — {0,1}, which takes as input z,2’ €
{0,1}™ and outputs 1 iff x = 2/, is in SIZE(10n).



3.2 TRUE/FALSE with justification

Write whether the following statements are true or false and provide a short
justification.
(About 4 minutes each)

1. Consider two functions f,g. If f = O(g) then f # Q(g).
2. The set of circuits made from NOT and OR gates universal.

3. Let f(z) = (}) and g(z) = o* — 223 + 322 + 1.

(a) f=o(g)
(b) f=0(g)
(c) f=10(9)
(d) f=292g)
(e) f=wlg)

3.3 Short Answer

1. Prove or Disprove: There exists a regular expression that computes the
function that returns 1 on the binary string € {0,1}* if and only if x
has strictly more 1s than Os.



2. Create an encoding function E : DF A, — {0,1}1%" (for every sufficiently
large n) where DF'A,, is the set of DF As with n states.



