
1 Format

The exam will be 90 minutes (60 minutes to solve, 30 minutes to LATEX) and will
consist of TRUE/FALSE with no explanation, TRUE/FALSE with explanation,
and open response problems. You are allowed to have a cheat sheet which you
will have to submit with the exam.

2 Topics Covered

This is a list of some of the topics covered in the course. You may want to add
some of them to your cheat sheet.

2.1 Math

• Functions: Know the definitions for functions, injectivity, surjectivity,
bijectivity, and what these imply for the caridinality between the domain
and codomain. Also know the pigeon hole principle.

• Big-O notation: Know the definitions for o,O, ω,Ω,Θ and how to
identify the relation between two functions.

2.2 Data Representation

• Representation Schemes: Know the definition of a representation scheme
(also known as an encoding), the definition of a prefix-free encoding, and
ways to make any encoding prefix-free.

2.3 Circuits

• Representation: Know the different representations of a circuit: di-
rected graph, straight-line program, and tuple representation.

• Universality and EVAL: Know that we can compute every function
with a NAND-CIRC and the implications of being able to compute the
EVAL functions.

The exact implementation of the circuit that computes EVAl isn’t super
important for this exam.

• SIZE(n) and Size Hierarchy Theorem: Know the definition of
SIZE(n) and result of the size hierarchy theorem.

• Comparing Languages: Know what it means to compare the power
of different languages and how to do it.

1



2.4 Deterministic Finite Automata & Regular Expressions

• DFAs and NFAs: Know the definition of a DFA, how to express one in
a transition table, how to understand DFAs and NFAs, how to create one
for a given language

• Regular Expressions: Know the definition of a regular expression, how
to understand regular expressions, how to create one for a given language

• DFA/NFA/Regex Equivalence: Know that Regular Expressions and
DFAs (and NFAs) are equivalent: for every given DFA we have a regular
expression that accepts the same language, and vice-versa; also, for every
NFA we can express it as a DFA.

• Regular languages and their limitations: Know the definition of a
regular language, know that DFA and regular expressions can’t compute

3 Practice Problems

Disclaimer: If some topics are covered here more than others, that doesn’t
mean they will be covered more or less on the midterm.

3.1 TRUE/FALSE

Write whether the following statements are true or false. No need to provide
justification but you should justify it to yourself.
(About 2 minutes each)

1. Let f(x) =
(
x
4

)
and g(x) = 2x

x10 .

(a) f = o(g)

(b) f = O(g)

(c) f = θ(g)

(d) f = Ω(g)

(e) f = ω(g)

2. The function EQUALS : {0, 1}2n → {0, 1}, which takes as input x, x′ ∈
{0, 1}n and outputs 1 iff x = x′, is in SIZE(10n).

2



3.2 TRUE/FALSE with justification

Write whether the following statements are true or false and provide a short
justification.
(About 4 minutes each)

1. Consider two functions f, g. If f = O(g) then f 6= Ω(g).

2. The set of circuits made from NOT and OR gates universal.

3. Let f(x) =
(
x
4

)
and g(x) = x4 − 2x3 + 3x2 + 1.

(a) f = o(g)

(b) f = O(g)

(c) f = θ(g)

(d) f = Ω(g)

(e) f = ω(g)

3.3 Short Answer

1. Prove or Disprove: There exists a regular expression that computes the
function that returns 1 on the binary string x ∈ {0, 1}∗ if and only if x
has strictly more 1s than 0s.

3



2. Create an encoding function E : DFAn → {0, 1}10n
2

(for every sufficiently
large n) where DFAn is the set of DFAs with n states.

4


