
CS 229r Information Theory in Computer Science Jan 28, 2016

Lecture 2
Lecturer: Madhu Sudan Scribe: Angela Fan

Overview

Today: formal definition of entropy, compression
Future Lectures: (email to sign up for topics)

1. entropy and counting

2. communication complexity

3. parallel repetition

4. algorithms with max entropy

5. differential privacy

Differential privacy note: Piazza polls are not actually private.

1 Probability Notation

Let:

• Ω represent the support of a probability distribution. In this course, Ω will be a finite set, for example
{1, 2, 3, ..., k}.

• probabilities p over Ω = (p(1), ..., p(k)) where
∑
i pi = 1

• the notation p(i) ≡ pr(x = i)

• We denote a random variable and its distribution like so: X ∼ p and refer to the distribution of X as
Px

Given a joint distribution on (X,Y), we notate the following:

• marginal distribution of x = Px so Px(a) =
∑
b PXY (a, b) (i.e. summing over all possible values of Y)

• conditional distribution Px|y=b = PXY (a,b)
PY (b) using Bayes Rule

• note that PX|Y is not a probability, but {PX|h}b represents a collection of probability distributions

2 Entropy

Definition 1 (Entropy) Given X ∼ Px, H(x) , Px(x) log2
1

Px(x)

Remark Where does log base 2 come from? Entropy is motivated by sending information via bits,
explaining the log base 2. Consider X ⊥⊥ Y , for which we would want H(X,Y) = H(X) +H(Y). Then note
that f(A •B) = f(A) + f(B), as product of sets implies logarithm.

2-1

Definition 2 (Conditional Entropy)

H(X | Y) , Ey∼Py
[H(X | Y = y)]

=
∑
y

Py(y)
∑
x∈Ω

Px|y(x) log
1

Px|y(x)

Given the above definitions, we can verify the axioms presented in the previous lecture:

1. H(x) ≤ log |supp P (x)| immediately following the above definition

2. H(x) ≤ log |supp P (x)| if Px is uniform over the support, immediately following the above definition

3. H(X,Y) = H(X) +H(Y | X) immediately following the above definition

4. H(Y | X) ≤ H(Y), which we will prove later

3 Compression

We will discuss three forms of compression, the first two in this lecture and the third more later:

1. Asymptotic, or n shot compression (often what is meant when referring to the original Shannon
paper)

2. Single Shot compression (Huffman coding)

3. Asymptotic prior free compression, also known as universal compression (Lempel-Ziv)

3.1 Asymptotic Compression

Premise: Allow x ∼ Px, known to both the sender and the receiver. The sender has a series of messages

x1, . . . , xn
iid∼ Px that s/he would like to send to the receiver, while minimizing the number of bits required.

We define:

• compression function C: Ωn → {0, 1}ln

• decompression function D: {0, 1}ln → Ωn

The compression/decompression process is slightly noisy, and the receiver cannot fully recover 100% of
the message, which can be measured by the probability of error:

Perror , Pr [D(C(X1, ..., Xn)) 6= (X1, ..., Xn)]

Goal: given a fixed error ε > 0 that the compression process is allowed to make, design an encod-
ing/decoding scheme that works ∀n

Definition 3 (Rate of Asymptotic Compression) lim
ε→0

lim
n→∞

{
ln
n

}
such that E,D function with Perror ≤

ε

Theorem 4 (Rate of Asymptotic Compression) Optimal rate of asymptotic compression = H(X)

Proof First, let us make a simplifying assumption. While we would want to prove Thm 4 for all distribu-
tions, let us work with the following:

• Ω = {0, 1}

• Px = (1− q, q)

2-2

In this case, H(X) = H(q) = q log 1
q + (1− q) log 1

1−q
Thm 4 implies:

1. ∃

E : {0, 1}n →{0, 1}(H(q)+δ)n

D : {0, 1}l →{0, 1}n

such that Perror ≤ ε. We denote the exponent (H(q) + δ)n as l for convenience.

2. H(x) is the best rate of asymptotic compression, i.e. ∀E,D, l < (H(q)− δ)n then Perror ≥ 1− ε

Consider what we can say about X1, . . . , Xn globally. By the Law of Large Numbers, or Chernoff bounds,
depending on how strict one would like to be:

#{i | Xi = 1} ≤ t ∈ [(q − ε′)n, (q + ε′)n] with probability ≥ 1− ε
2

We first prove 1:
In our special case, the sender must send t number of 1’s to the receiver, and thus can use the fol-

lowing inefficient algorithm. Generate a table of all possible combinations of indices containing t 1’s, and
communicate to the receiver the correct row of the table. In this case, the sender must send indices i ∈

(
n
t

)
.

Thus, the asymptotic length of compression

=
log
(
n
t

)
+ log n

n

≈
log
(
n
qn

)
n

as log n does not contribute to the leading order term

We now apply Stirling’s approximation: n! ≈ (ne)n, so:

(
n

qn

)
≈
(

1

q2(1− q)1−q

)n
taking the log =

log
(
n
qn

)
n

=
nH(q)

n
= H(q)

We now consider the second implication of Thm 4, or why we cannot do any better.

If E,D use l such that 2l � ε
2

(
n
t

)
, where t = (q − ε′)n, then the number of messages decoded

correctly is ≤ 2l, and all other messages are decoded incorrectly. For every message with t = #1′s,

P

(
message is chosen ≤ 1

(n
t)

)
by the symmetry of the uniform distribution. Then, P (correct decoding |

t) ≤ ε
2 .

Remark Note that with some changes of assumptions, t can be allowed to encompass the entire Chernoff
bounded range we established earlier.

2-3

Remark What about a general distribution, rather than our special case? We can use the
theorem below.

Theorem 5 (Asymptotic Equipartition Property (AEP)) Rough: if (X1, ..., Xn)
iid∼ Px then most

of the time (X1, ..., Xn) is chosen almost uniformly from a set of size 2H(x)n, where the exponent represents
the size of the best compression.

Precisely: ∃S ⊆ Ωn then | S |≤ 2(1+o(1))H(x)n such that:

1. P (X1, ..., Xn ∈ S) ≤ 1− o(1)

2. ∀(a1, ..., an) ∈ S, P ((X1, ..., Xn) = (a1, ..., an) ≤ 2O(n)

|S|

Given the asymptotic equipartition property, the compression follows.

Remark Where does this come from? We expect to see q fraction of 1’s, and S represents the set of
all orderings that contain that fraction. The size of S is roughly

(
n

p1n p2n ... pkn

)
, which is the multinomial

coefficient. By Stirling’s approximation, this is equal to 2H(X)n.

3.2 Single Shot Compression

Summary of differences between n shot and single shot compression:

1. single shot compression can use variable length strings

2. error free

3. objective function is to minimize expected length of string

4. prefix-free

Definition 6 (Prefix-free) C is prefix-free if ∀x 6= y ∈ Ω, C(X) is not a prefix of C(y)

We define:

• compression function C: Ωn → {0, 1}∗ but Ω can have variable length

• decompression function D: {0, 1}∗ → Ωn

Single shot compression should have no errors, so we want ∀x,D(C(x)) = x.

Goal: Since length is now variable, we want to minimize instead the expected length of the compression,
Ex∼Px

[|C(x)|].

Definition 7 (Pattern of C) Pattern of C = {lx} for x ∈ Ω such that C(x) ∈ {0, 1}lx

2-4

Using the pattern, we can tell if a message was from prefix-free code or not.

Remark Why does single shot compression want 0 error and want to be prefix free? Prefix-free
means that compression can be strung together, and 0 error implies that when we compress m things, we
still have an overall error probability of 0.

Remark The length of the message is bounded by the expected value of the length, not the length itself,
but we can show using Taylor expansion that the length of the message that is received is very close to the
expected length of the message theoretically.

Single shot compression can be solved using:

Theorem 8 (Kraft’s Inequality) {lx} is pattern of prefix-free code iff
∑
x∈Ω 2−lx ≤ 1

Proof
Let l = maxx lx. We’ll think of all possible binary sequences of bits as a balanced binary tree. Pick

C(1), C(2), . . . greedily and eliminate all parts of the binary tree underneath. We claim that each choice
rules out 2−lx portion of the length l strings beneath. If choices are made until one leaf is left, then only one
path is still alive, indicating that only one node at each level exists. As long as

∑
x∈Ω

1
2lx < 1, there exists

one string of each length uneliminated.

To prove the converse:

Randomly choose a leaf. Let εx be the event that C(X) is the prefix of a randomly chosen leaf. Note
that εx and εy are mutually exclusive by the definition of prefix free. P (εx) = 2−lx since the entire path
must be correct, and

∑
n

1
2ln =

∑
x P (εx) ≤ 1.

From this, we can derive an encoding scheme. Define lx =
⌈
log 1

Px(x)

⌉
, using the ceiling function as we

need integer based lengths. This satisfies Kraft’s inequality since lengths are admissible.

Ex(lx) = Ex
(⌈

log
1

px(x)

⌉)
which is at most

≤ Ex
(

1 + log
1

Px(x)

)
= 1 + Ex

(
log

1

Px(x)

)
= 1 +H(X)

Due to the presence of the 1, the expected length may be off by one bit, which is the subject of much
discussion.

Remark Natural question: Is there a lower bound for 1 shot compression? Answer is Yes! Can
use n shot lower bound to prove that you cannot do better in a single shot!

2-5

