CS 229r Information Theory in Computer Science March 25, 2016

Lecture 16
Lecturer: Madhu Sudan Scribe: Jack Murtagh

1 Streaming Lower Bounds - Introduction to Model

Streaming algorithms are typically used in settings where we want to compute or approximate a
function on data that is too large to fit in one computer. We should think of the data as so large
that the algorithm can only make one pass over the input, i.e. it is “streaming” in, one element at a
time. The goal of streaming algorithms is to minimize the space used (as a function of the input size)
while approximating the target function as best as possible. One example application of streaming
algorithms is a router, where we have a large amount of data flowing through a small device and we
may want to track some statistics about the data. We will survey some fundamental results in this
area and discuss lower bounds that can be proved with techniques from communication complexity.

To make this more precise, let x1,x2,..., 2, be the input, which we will imagine as very large
and streaming into our algorithm one element at a time. Our goal is to compute or approximate a
function f(z1,xa,...,%,) while only using O(log®m) space for some constant c¢. One of the great
surprises in streaming algorithms is that there is actually a relatively large collection of tasks for
which this task can be accomplished effectively.

2 Algorithms for Frequency Estimation

One of the seminal papers in the theory of streaming algorithms is due to Alon, Matias and Szegedy
[1] on the frequency estimation problem. Given input z1, o, ..., T, where x; € [n] for all i, define
the frequency vector (f1, f2,..., fn) where f; is the number of occurrences of ¢ in the data stream.
In other words

fi & i lwy =i}

The goal is to compute the kth frequency moment Fj, of the stream, defined as
n
Fk($1,$2, s ,.%'m) £ Zfzk
i=1

Note that
e F is always equal to m and this is trivially countable in logspace.

o Fy=|{i|3js.t ; =1i}| = the number of distinct elements in the stream. For this interpreta-
tion to really make sense, we should think of Fy = limy_,g F%. There is a known randomized
algorithm for approximating Fy [4].

Alon, Matias, Szegedy gave an elegant randomized algorithm for approximating Fs, which can be
thought of as the variance of the data stream. For all the algorithms presented here, we will solve
a weaker version of the problems by assuming that the streaming algorithms have access to some
very powerful hash function that is more or less random. Everything shown here can be cleaned up
though by using other hash function constructions. This is important because we do not want to use
a hash function that requires us to store a huge table because the whole point of these algorithms
is to conserve space.

16-1

The streaming algorithm works as follows. Associate with [n] random bits Ry, Rg, ..., R, with
R; € {—1,+1} for all i € [n]. Instead of directly computing Y 7, f2, we will compute

This is just a linear function and can clearly be computed efficiently assuming that we have oracle
access to the sequence of random bits. Then we just output A2. The point is that

2

A2 = inj * Ty
j=1

= Z R;Ry fifr

1<i,k<n

= Z P+ ZRikaifk

i=1 itk

The first term of the last line is exactly what we wish to compute and we can view the second
term as noise in our approximation. When you analyze the expectation and variance of the noise
quantity and apply Chebyshev’s inequality, you find that the term goes to zero. In [1] they also
show lower bounds for frequency estimation. For example, they prove that F), estimation for p > 2
requires Q(n'=2/ P) space, showing that estimating higher moments incurs higher space complexity.
Note that F), estimation is trivial using O(n) space because you can just store the entire frequency
vector.

In 1985, Flajolet and Martin gave a beautiful algorithm for Fj estimation [4]. Begin by picking
a random hash function

h: [n] —[0,1].

In the sequence h(x1), h(x2), ... h(xy), let

hmin = min h(z,
j€lml ()

and output L. This is easy to compute because as the stream comes in we compute h(z;) for all

1 and we onl};nﬁeed to maintain the minimum. If the hash value of the incoming element is smaller
than our current stored minimum, we just replace it with the new value. This works because if we
have say, elements from the set {1,2,...,10} then the expected minimum hash value in [0, 1] should
be around 1/10. Outputting the reciprocal of this then gives us the number of distinct elements in

the stream. The original versions of this algorithm got results of the form:

Pr |output & [- - Fp,c- Fo]| <

1 1

c c

We can actually do better if we don’t just track the minimum hash value but rather the ¢ smallest
hash values of the stream [2]. Then if h; is the tth smallest hash value, output hifm' This estimator
is more tightly concentrated around the target value than the first approach of just outputting the
minimum. It turns out that this algorithm gives a 6(1/v/t) approximation to Fy. Setting ¢ to
1/€? then gives us a (1 + €) approximation to Fy and the algorithm uses space O (6% . polylog(m)).
The latest results are able to shave the polylog(m) in the space complexity to a polyloglog(m) but
unfortunately we will show in the next section that the 1/e? factor for a (1 & €) approximation is
optimal.

16-2

3 Fy-Estimation Lower Bounds via Communication Complex-
ity
In general, lower bounds in communication complexity naturally translate to lower bounds in stream-
ing algorithms. These are often proved using the contrapostive - that upper bounds in streaming
imply upper bounds in communication complexity. To draw the connection between the two, think
of streaming as an m-player game where player x; sends s; to player xo, who sends sy to player
x3 etc. We want s, to be a good approximation of f(x1,...,%,,), the function we wish to com-
pute. Amazingly, we can simplify this to the case of just two player communication by splitting the
stream in half and we still get strong results. Specifically, we will think of Alice receiving as input
T1, .., Ty 2 and Bob receiving z,, /241, - - - Tm. Alice then computes some function of her inputs and
sends a message to Bob, who must then output a value for the function. This further restriction is

called one-way communication and the idea is that a space S algorithm for the streaming problem
implies an S bit protocol for the analogous communication problem.

3.1 Reduction to Gap Hamming

We will prove the desired lower bound by a reduction to the Gap Hamming Problem [5]. In this
problem, Alice recieves x € {—1,4+1}" and Bob receives y € {—1,+1}". The goal is to decide
whether:

(x,y) > +g
or <xay> S -9,

where (z,y) is the inner product between x and y:

n
=1

Obviously the inner product lies between —n and n and roughly what this question is asking is how
often the strings = and y agree. The larger the inner product, the more the two strings agree, the
smaller it is, the more they disagree, and the closer it is to 0, the less correlation the strings have.
There is a fairly straightforward reduction from the disjointness problem that implies that the Gap
Hamming Problem with g = 1 requires ©(n) communication.

For upper bounds, consider the extreme case where g = €-n. A reasonable protocol is to sample
a subset of the coordinates using correlated randomness and check the number of coordinates in the
sample on which z and y agree (Alice just sends the = values on these coordinates). If we pick a large
enough sample, the sample probability of agreement should closely approximate the total probability
of agreement between the strings. Choosing 1/€? coordinates suffices for good approximations so
the communication complexity is 1/ when g = €-n. In other words CC is O((n/g)?). We can also
always take the naive approach where Alice just sends z to Bob to get CC of min{O((n/g)?),n}.
This is an easy upper bound and it turns out this is actually tight, which means in the regime of
g = v/n, we get a communication complexity lower bound of Q(n) [5]. This linear lower bound was
for the one way version of the Gap Hamming Problem, which will suffice for our purposes but later on
it was proven that in fact the general two way version of the problem requires {2(n) communication
3, 6].

Now we show that a Gap Hamming lower bound implies a lower bound on Fj estimation. The
idea is that Alice has z € {—1,+1} and Bobhasy € {—1,+1}. Alice computes S C [n] = {i | z; = 1}
and Bob computes T' C [n] = {j | y; = 1}. We want to write (z,y) as a function of |S],|T|, and
|S UT|, which will imply that if we can compute Fy estimations, then we can approximate the sizes
of these sets, which in turn allows us to compute the inner product. Notice that:

(z,y) =1SNT|+ (n = |SUT|) = [S\T| = [T\ 5]

16-3

After expressing each of the terms above in terms of just |S|,|T|, and |S U T|, we get the desired
result and in fact our Fj estimation will be |S U T|. Now we just need to show how Alice and Bob
can estimate the size of |S U T|. The protocol starts with Alice sending |S| to Bob, only using

O(logn) bits. Then she creates a stream of elements of S followed by elements of T' and Bob can

calculate |S UT|. This is saying that if we can get a % approximation to |S U T| in space o(n), it
would imply a o(n) one-way communication protocol for the Gap Hamming Problem, which would

contradict the known lower bound.

3.2 Reduction to Indexing

Finally, we will show the one-way communication lower bound on the Gap Hamming Problem. The
idea is to reduce from the Indexing Problem. In this problem, Alice gets as input a string z € {0,1}"
and Bob gets an index i € [n]. Their goal is to output z;. This is clearly very easy to solve with
two-way communication. Bob simply sends his coordinate to Alice using logn bits and she can
output z;. It turns out that this problem is hard for one-way communication.

Given an instance of Indexing, we want to show how to solve it using a protocol for Gap Hamming.
Let R be a large n x n matrix of correlated randomness containing elements of {—1,+1}. Alice will
compute Rz = &, a column vector of length n and then convert this to a vector = by taking the sign
of each element in & (if a coordinate is 0, just call it +1). Bob does the same thing with the vector
e;, containing all zeroes except a one in the ¢th coordinate. He computes Re; = y. The claim is
that:

If z; =1 then (x,y) is large w.h.p
If z; =0 then (z,y) <0 w.p 1/2

To see this, we will start with the second case. Notice that y is just the ith column of R. So if z; =0
then z is completely independent of column ¢ in R. So x and y are independent and therefore their
inner product is negative with probability 1/2.

If z; = 1, then x now also picks up column ¢ in the multiplication and we are asking what the
probability is that the new vector x is correlated with column i = vector y. Let R be R with the
ith column removed and z(¥) be z with the ith coordinate removed. Now we can write & in the form

= (R-RM).z0 1y

Again we convert & to x by taking the sign of every element. We want to know how correlated this
is to y and with what probability. Another way of asking this question is, when we add column y
above, what is the probability that that flips the sign of coordinate j in 27 Each entry of x before
adding y is just the sum of independent random signs and so you expect the distribution to look
like a Gaussian. So the probability that we actually flip the sign of coordinate j when adding y is

n

1/4/n for every j. We are adding up n of these so we get that (x,y) = 7 with high probability.

3.3 Complexity of Indexing

To complete the lower bound on Fj estimation, we should observe the lower bound on the Indexing
problem. First consider what can be done with a deterministic protocol. Alice sends some a message
m to Bob. Suppose g is the optimal function for Bob to use on Alice’s message. Bob can compute
g(m,1) = z1,9(m,2) = Za,...,9(m,n) = Z,. Clearly the only way to guarantee that Bob learns
zi, is if Z; = z; for all j. So there must be a one to one correspondence between possible z vectors
and possible Z vectors. So if m < n then by the Pigeonhole principle, there cannot be such a
correspondence. This gives us the one-way deterministic lower bound of Q(n).

If we allow randomness and some error we still have to have the mutual information between z
and Z be large. Specifically I(z,Z) = Q(n). Since H(m) > I(z, %), we get that the length of Alice’s
message must be Q(n) bits.

16-4

References

[1]

2]

Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. Journal of Computer and System Sciences. 58(1):137147, 1999

Ziv Bar-Yossef, T.S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. Counting distinct
elements in a data stream. Randomization and Approzimation Techniques in Computer Science.
1-10, Springer Berlin Heidelberg, 2002

Amit Chakrabarti and Oded Regev. An optimal lower bound on the communication complexity
of gap-hamming-distance. SIAM Journal on Computing 41(5):1299-1317, 2012

Philippe Flajolet and Nigel G. Martin. Probabilistic counting algorithms for data base applica-
tions. Journal of computer and system sciences 31.2:182-209, 1985

Piotr Indyk and David P. Woodruff. Tight lower bounds for the distinct elements problem.
Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science 283289,
2003

Alexander A. Sherstov. The communication complexity of gap hamming distance. Theory of
Computing. 8(1):197-208, 2012.

16-5

	Streaming Lower Bounds - Introduction to Model
	Algorithms for Frequency Estimation
	 -Estimation Lower Bounds via Communication Complexity
	Reduction to Gap Hamming
	Reduction to Indexing
	Complexity of Indexing

