CS 229R - LECTURE 20

4/6/17

TODAY:
1) Finish High Rate LDPCs
2) LTC constructions
 2.1) Redundant LDPCs
 2.2) Tensor codes & Testing \(\Rightarrow \) RM-lift perf.
 2.3) Zig-Zag codes & Testing \(\Rightarrow \) polylog locality

LDC: See notes for Lecture 19

Terminology: LDPC codes: Low Density Parity Check

\(\Rightarrow \) \text{Gallager codes}

\(\Rightarrow \) \text{Tanner codes}

\(\Rightarrow \) \text{Sipser-Spielman codes}

Low Density: Parity Check Matrix = Sparse

\(\Rightarrow \) Underlying graph sparse

\(\Rightarrow \) average constant degree
Contrast: LDPC & LTCs

LTC: Pick \(S \subseteq [n] \); \(|S| \leq \ell \)

& verify \(\chi_S \in V_S \subseteq \mathbb{F}_2^{\leq |S|} \)

(i) \(\text{LTC} \Rightarrow \text{LDPC} \)

\[X_1 \circ \]
\[X_2 \circ \]
\[\vdots \]
\[X_n \circ \]

"Strong Soundness" \(\Rightarrow \) \(\forall S \subseteq V_S \exists x \in \mathbb{C} \)

\[\mathbb{P}[x \neq v_S] \geq \epsilon \cdot S(x, c) \]

\(\Rightarrow S(x, c) = 0 \Rightarrow x \in \mathbb{C} \).

(ii) But \(\text{LDPC} \not\Rightarrow \text{LTC} \) [Bengtsson Harsh Raskhodnikova]
- Key issue: Need redundant local constraints.

1. Removing $\frac{1}{12}$ one or few or constant fraction of constraints should not change the code.

- How can we get redundancy.

 o Ans 1: By building code with many symmetries.
 E.g. RM codes have constraint for each line.

 # coordinates = $n = 2^m$
 # constraints = $\binom{2^m}{2} \approx n^2 \gg n$.

 o Ans 2: Tensor Products [Ben-Sasson-Sudan]

 Tensor Product Code

 $C_1 = [n_1, k, d_1]_q$ & $C_2 = [n_2, k_2, d_2]_q$

 $C \otimes C_2 = [n_1 n_2, k_1 k_2, d_1 d_2]_q$ code with codewords

 \[
 \begin{bmatrix}
 n_1 & \ell \\
 \ell & n_2 \\
 \end{bmatrix}
 \in C_2
 \]

 with every column in C_1 and every row in C_2.
Exercise: Prove dimension & distance

Redundancy in Tensor Product Codes

Let $C_1 = C_2 = C$.

- Code has length n^2.
- But specified by $2n$ constraints; assume C is a systematic code with first k coordinates being message.

Then given $k \times k$ matrix M, its encoding may be obtained by expanding rows into codewords of C giving matrix $M' \in \mathbb{F}^{k \times n}$

Then expanding columns into codewords of C giving $n \times n$ matrix M''.

$$M \rightarrow M' \hspace{1cm} \rightarrow \hspace{1cm} M''$$

- Redundant constraints: bottom $n-k$ rows of $M'' \in C$!

Code specified by taking top k rows in $M'' \{C\}$ & all columns in M''.
Basic Testing Question

If $\Pr \left[\text{random row } \in C \right] \geq \frac{\alpha}{2} - 1 - \varepsilon$

and $\Pr \left[\text{random column } \in C \right] \geq 1 - \varepsilon$

then $S(M, C \otimes C) \leq 1 - \varepsilon$?

Robust Testing Question

If $\frac{1}{2} \left[\mathbb{E}_{\text{row}} \left[S(M_{\text{row}}, C) \right] + \mathbb{E}_{\text{column}} \left[S(M_{\text{column}}, C) \right] \right] \leq \varepsilon \Rightarrow \varepsilon \in \beta$

$\Rightarrow S(M, C \otimes C) \leq \varepsilon \Rightarrow \alpha \in \beta$

Why Robustness?

If $C \otimes C$ - test is α-robust

and C is (ε, δ)-locally testable,

then $C \otimes C$ is $(\frac{\varepsilon}{\alpha}, \varepsilon)$-locally testable.

\uparrow Proposition \uparrow

Hope: $\forall S \exists \delta \text{ s.t. if } C \text{ is a code } \delta \text{ dist } S$

[BSS] then $C \otimes C$ - test for $C \otimes C$ is α-robust.

Example [Paul Valiant]: No.
Generalizing: \(C^\otimes m = C \otimes C \otimes \ldots \otimes C \)

1. **Test of \(C^\otimes m \):** Pick random \(l \)-dim axis parallel surface \(S \)
 Verify \((M \mid S, C^{\otimes l}) \leq \alpha_{\text{smal}} \)

Theorem [Ben-Sasson, S., Viderman]

\[\forall m \geq 3 \exists \alpha \quad \text{s.t. if } S(C) \geq \alpha \text{ then } \]

\(C^{\otimes m-1} \) test for \(C^\otimes m \) is \(\alpha \)-robust.

Corollary

\[\forall m \geq 3 \forall S \exists \alpha' \quad \text{s.t. if } S(C) \geq \alpha' \text{ then } \]

\(C^{\otimes 2} \) test for \(C^\otimes m \) is \(\alpha \)-robust.

Proposition:

- Test for \(B \) is \(\alpha_1 \)-robust
- Test for \(C \) is \(\alpha_2 \)-robust

\[\Rightarrow \text{ Test for } C \text{ is } (\alpha_1 \cdot \alpha_2) \text{-robust}. \]
Using Tensor Codes directly

Thm [Viderman]: \(\forall \alpha, \beta > 0 \exists S \text{ s.t. for large } N \exists
\text{ codes of length } N, \text{ Rate } \geq 1 - \alpha, \text{ Locality } \leq N^\beta, \text{ distance } \geq S \)

Proof: Exercise (analogous to Kopparty-Saraf, Yekhanin).

But dependence of \(S \) on \(\alpha, \beta \) much worse (\(S = (\alpha^\beta)^{1/\beta} \)).

Tensor Codes + Distance Amplification

Thm [KMRS1]: \(\exists n^{o(1)} \) function \(c(n) \) st. \(\forall S \exists
\text{ codes of rate } 1 - S - o(1) \text{ that are } c(n) \text{-locally testable.} \)

But: Can do much better:
We have two operations:

- **Tensor Product**: Makes code longer; Preserves locality; Makes distance worse; Makes rate worse.

- **A-L Transform**: Code longer; Loses locality; Improves distance; Makes rate worse.

Idea: Will pick $s_0 = o(1)$

m repetitions of Tensor Product followed by A-L Transform

<table>
<thead>
<tr>
<th>Rate</th>
<th>$R \rightarrow R^2 \rightarrow R^2 - s_0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>dist</td>
<td>$s_0 \rightarrow s_0^2 \rightarrow s_0$</td>
</tr>
<tr>
<td>locality</td>
<td>$l \rightarrow l \rightarrow l/s_0$</td>
</tr>
<tr>
<td>length</td>
<td>$n_i \rightarrow n_i^2 \rightarrow n_i^{2i} = n_{i+1}$</td>
</tr>
</tbody>
</table>

After start with $n_0 = \text{near const.} \over poly(\sqrt{s_0})$; $R = 1 - s_0$

$n_i = n_0^{2i}; R_i = R - 2^i s_0; \ell_i = \ell / s_i$

Yields codes of length N with $R = 1 - o(1); \ell_i = (\log N)$
(Need some care)

Tensor products testable only by \square's But can work this out. Details omitted.

Concluding:

LTCs \rightarrow very strong performance
LDCs \rightarrow weaker but substantially $o(n)$ for no-cost!
LRCs \rightarrow \equiv

Other concepts

Relaxed LDCs: Either recover a bit or say "Here are too many errors".

Usually as good as LTCs...