INTERACTIVE CODING II

[Braverman-Rao] Coding Scheme

- States of A are

Terminology: Alice's Input = set of edges in binary tree of depth N;
one edge out of every node at level i for even i going to level $(i+1)$.

Bob: Similar.

States Alice: $S_1 \subseteq S_2 \subseteq S_3 \ldots$

$S_i = \text{subset of Alice's Edges; ones she thinks are relevant.}$

Evolution of S_i: Alice remembers S_i;
Compute $\hat{T}_i = \text{guards of Bob's State}$
Uses $S_i \cup \hat{T}_i$ to determine S_{i+1}.

... gives unique path from root (not isolated edges/path).

$V(S_i \cup \hat{T}_i) = \text{bottom vertex.}$

If V is even vertex then add edge out of V to S_i to get S_{i+1} else $C = C$.
Encoding of S_i:

1. Obvious idea: $S_i = S_{i_{-1}} \cup e_i$

 Need to send only e_i in round i: $\Omega(n)$ bits!

2. Can encode e_i as (j, b_1, b_2) s.t.
 - e_j = grandparent edge of e_i
 - b_1, b_2: specify e_i given e_j
 - $\Theta(\log n)$ bits.

3. Final Encoding

 - $\Delta_i = i - j$ where $e_j = \text{grandparent of } e_i$.
 - Send Δ_i,
 - Still uses $O(\log n)$ bits to send Δ_i in worst case.
 - But amortized complexity for correct

 $\text{good path} = O(\log n)$

 Need some care.

 - If # rounds $= R = C \cdot n$, then $\leq \Delta_i \leq R$

 $\Rightarrow \leq \log \Delta_i \leq n \log C$ (convexity) $\leq C \cdot n$.

 i on correct path

 i on incorrect path
Full Protocol

State: \(S_i = A_i + E_i \) pending prefix (decoding \(E_i \))

Use \(A_i \cup B_i \) to determine next edge to send. If next edge = \(e_i \) then send few more bits about \(e_i \);
else abort \(e_i \), start sending next edge;
if \(c_i \) completely sent then \(A_{i+1} = A_i \cup \{c_i\} \).

Abort crucial to analysis

Analysis: key notions:

\(C_{A_i}(t) \triangleq \) Decode length \((a_2, a_4, a_6 \ldots a_{2t}) = \) largest \(l \) s.t.
\((a_2, a_4 \ldots a_{2t}) = (b_2, b_4, \ldots b_{2t}) \).

\(C_{B_i}(t) \triangleq \) Decode length \((b_1, b_3, b_5 \ldots b_{2t}) = \) largest \(l \) s.t.
\((b_1 \ldots b_{2t}) = (a_1 \ldots a_{2t}) \).

\(m(t) \triangleq \min \{ C_{A_i}(t), C_{B_i}(t) \} \).

Note: \(m(t) \) not monotone with \(t \); but as \(t \to \infty \)
\(m(t) \to \infty \).

\((m^{-1}(e) = t \iff 4 \cdot t' \geq t \cdot m(t') \geq e)\).
- $t(i) =$ smallest round i for which first i edges of P are in $A^E \cup U^{BE}$.

- $N(t_1, t_2) = \# \text{ errors in rounds } (t_1, t_2)$

Key Observations:
1. Once $t > t(i)$, only a matter of time till the $(i+1)^{st}$ edge enters $A^E \cup U^{BE}$.
2. If $t - m(\ell)$ large then $N(m(\ell) + 1, t)$ large.
 [purely function of tree code, not protocol]
3. If $t < t(k)$ then $N(t, t) \geq (\bar{N})^{\ell} \geq \left(\frac{\ell}{2} \right)$

[follows from (1) + (2)]

$(t - k + 1 - \varepsilon \log \Delta s) \left(\frac{\ell}{2} \right)$

[exists Δ_i s.t. $\Delta_i \leq t$]
Schulman vs. Braverman-Rao (in joke form)

A) Suppose you ask me "Proof of Fermat's Theorem = ?"
B) I start filling the board with "Group Theory", "Galois Groups"
 "Modular Forms", "Semistable Representations"
C) You stop me (after 3 hours) and say "I mean Fermat's Little Theorem"

Schulman approach:
1. Be embarrassed
2. Erase the board and start again

Braverman Rao approach:
1. Be shameless and continue [use existing content on board "Group Theory"]
2. Focus more on "Basic Group Theory",
 "Pigeonhole Principle" etc.
3. Just in case I misheard you on round 2
 Throw in a few more steps if I last T.
 "Semistable Representation",
 "Galois Cohomology" ...

Shocking: Latter is the right approach? 😊
Main deficiency with Schulman / Braverman-Rao

1. Tree codes not explicit
2. Decoding of Tree Codes not explicit.

Fixed (to some extent) by

[Brakerski-Kalai] ; [Ghaithari-Heuerbr].

Key Idea: Sender A + B use private randomness.

1. Hash then check.

Recall Alice have states $S_1^A, S_2^A, \ldots, S_t^A \ldots$

2. Bob \ldots $S_1^B, S_2^B, \ldots, S_t^B$

At round t Alice hopes to have communicated S_t^A to Bob; and recovered S_t^B.

Brakerski-Kalai Idea: Start with both players knowing

$$(S_t^A, S_t^B)$$

Use hash function h & hash values to check equality $h, h(S_t^A, S_t^B)$.
if $|S_A, S_B| = n$, $h, h(\cdot)| = \log n$.

- But $|S_{A|S_{A-1}}| \approx O(1)$? (in Schulman, B-R)

- take every $(\log n)^n$ round state in \n;

so $1/n^* (S_A | S_{A-1}) = O(\log n)$;

so hashing cost $= O(\text{State Progress})$.

- Use Schulman-like progress measure to roll back interaction or make progress.

Theorems: [Braverman-Kalai] Randomized efficient communication scheme with positive rate & error

[Ghaffari, Haeupler]

& error $\rightarrow \frac{1}{4}$.

[Haeupler] Randomized scheme (without tree coding) with rate $1 - O(\varepsilon^2)$, error ε.