Lecture 12

Instructor: Madhu Sudan

Scribe: Albert Chalom

1 Book Keeping

1.1 Admin

- Project link on Canvas.
- Express interest

1.2 Today

- Set disjointness
- Information complexity

1.3 References

We'll focus on:

• [Bar-Yossef, Jayram, Kumar, Sivakumar]

Previous work:

- [Babai, Frankl, Simon]
- [Kalyanasundaram, Schnitger]
- [Raz Barov]

2 Disjointness

 $\text{Disj}^n(\mathbf{X},\mathbf{Y}) = 1$ if $\exists i \text{ st } X_i = Y_i = 1$ and 0 otherwise

Exercise 1. $\forall X \perp Y, \forall \mu = \mu_x \times \mu_y$ show a protocol with error $\leq \varepsilon$ and $\tilde{O}(\sqrt{n})$

This implies that hardness needs $X \not\perp Y$, and for information complexity \exists Distribution μ on inputs but not distributional lower bounds.

3 Conditional Mutual Information

Definition 2. For (X, Y, Z) jointly distributed, I(X, Y|Z) is the information about X from Y conditioned on Z.

We can rigorously measure this as $I(X, Y|Z) = E_{Z \sim P_z}[I(X|_{Z=z}, Y|_{Z=z}] = H(X|Z) - H(X|Y,Z)$. Recall that with entropy we had a property that $H(X|Z) \leq H(X)$. However, there is no definitive relationship between I(X, Y) and I(X, Y|Z).

Example 3. Consider the distribution, X = Y = Z with $Z \in 0, 1^n$

I(X,Y) = n, I(X,Y|Z) = 0 so here conditioning reduced information.

CS 229r Information Theory in Computer Science-1

Example 4. Consider $X \perp Y, Z = X \oplus Y$, with $X, Y \in Unif\{0, 1\}^n$ There here I(X, Y) = 0, I(X, Y|Z) = n so here conditioning increased information.

Example 5. Consider $X \leftrightarrow Y \leftrightarrow Z$ as a Markov Chain such that $X|Y \perp Z|Y$, then $I(X,Y) \ge I(X,Y|Z)$ and I(X,Z|Y) = 0.

Exercise 6. Prove the above example. Hint use that H(X|Y,Z) = H(X|Y)

3.1 Motivation

For a protocol Π with error $\leq \varepsilon$ on all inputs while computing f, fix some distribution μ . Goal: How much does an observer learn about the inputs from watching the interaction?

3.2 Example protocol

Consider the following protocol with R as public randomness.

 $\begin{array}{ccc} Alice & Bob\\ x, R & y, R\\ & \xrightarrow{R \oplus X} \\ & \swarrow \\ & \xrightarrow{f(x,y)} \end{array}$

In this case, $I((X,Y)|R \oplus X, f(X,Y)) \leq H(f(X,Y))$ so the observer learns little because they can't see the randomness that Alice and Bob both see.

Therefore we should condition on public Randomness R, but not on any private randomness R_A or R_B

4 Information Complexity

Definition 7. For a protocol, $IC_{\mu}(\Pi) = I(XY, \Pi|R)$. For a function $IC_{\mu}(f) = \min_{\Pi st.\Pi \in \text{-computes } f}(IC_{\mu}(\pi))$

If Π is a k-bit protocol that ε -computes f, $IC_{\mu}(f) \leq k$

4.1 Plan

 $IC_{\mu_n}(Disj^n) = \Omega(n)$ (we will prove) Intuition we won't prove

- $IC_{\mu_n}(Dsij^n) \ge nIC_{\mu_1}(Disj^1)$
- $IC_{\mu_1}(Disj^1) = \Omega(1)$

4.2 One dimensional binary disjointness

 $Disj^1(u,v) = u \wedge v$

Example 8. An intuitive protocol for computing And would be

 $\begin{array}{ccc} Alice & Bob \\ u & v \\ & \stackrel{u}{\xrightarrow{}} \\ & \stackrel{u\wedge v}{\xleftarrow{}} \end{array}$

If u = 0 then an observer only learns one bit (u), but if u = 1 then both bits are revealed to an observer, so on average $\frac{3}{2}$ bits are revealed.

This raises the question can we do better? If u = v = 1 then both bits are revealed, so ideal is when u or v are zero, the ideal case is we don't learn anything about the other bit.

CS 229r Information Theory in Computer Science-2

Example 9. Now consider the following randomized protocol.

Alice picks $t_a \in [0,1]$ at random, and Bob picks $t_b \in [0,1]$ at random. Then at time t_a Alice sends 0 to Bob if U = 0, and at time t_b Alice sends 0 to Alice if v = 0.

The idea here is if (uv) = 00, 01, or 10 then we only learn one of u or v, but if (uv) = 11 we learn both u and v, so on average $\frac{5}{4}$ bits are learned.

This analysis is a bit loose because after we wait for longer, we would bias the other bit to be more likely to be 1.

Exercise 10. Come up with a tight bound for the protocol.

4.3 Proof of $IC_{\mu}(Disj^n) = \Omega^n$

Let μ be the following distribution with (X_i, Y_i) iid with

 $(X_i, Y_i) = \begin{cases} 00 & \text{with prob } 1/2 \\ 01 & \text{with prob } 1/4 \\ 10 & \text{with prob } 1/4 \end{cases}$

Next consider the following way of sampling this distribution with (X, Y, Z) with $Z \sim Unif(\{0, 1\}^n)$

for i = 1 to n do
if Z[i] = 0 then X[i] = 0, Y[i] ~ Unif{0,1}
if Z[i] = 1 then Y[i] = 0, X[i] ~ Unif{0,1}

4.3.1 CIC (Conditional Information Cost)

 $CIC_{\mu}(\Pi) = I((X, Y), \Pi | R, Z).$

We will prove the following two statements

- 1. $CIC_{\mu}(Disj^n) \ge n \times CIC_{\mu}(Disj^1) \text{ (today)}$
- 2. $CIC_{\mu}(Disj^1) = \Omega(1)$ (next class, non-trivial)

Observation 11. Consider a Markov Chain $\Pi \leftrightarrow (X, Y) \leftrightarrow Z$), then $\Pi | X, Y \perp Z | X, Y$. Then $IC_{\mu}(\Pi) \geq CIC_{\mu}(\Pi)$

To see this we know $I((X,Y),\Pi)|R) \ge I((X,Y),\Pi|R,Z)$ and $IC_{\mu}(\Pi) = I((X,Y),\Pi)|R)$ and $CIC_{\mu}(\Pi) = I((X,Y),\Pi|R,Z)$

$$\begin{split} &I((X,Y),\Pi|R,Z) = H(X,Y|R,Z) - H(X,Y|\Pi,R,Z) \\ &H(X,Y|R,Z) = \sum_{i=1}^{n} H(X_{i},Y_{i}|R,Z,X_{ CIC(Disj^{1}) \end{split}$$

Let us now consider the following two protocols

4.3.2 Protocol A

Consider both Alice and Bob to have access to $w \sim Bern(.5)$ and R', and private randomness R_a, R_b . Alice will create a random variable U, and Bob will create a random variable V according to the following distribution:

if w = 0 then U= 0, V is random if w = 1 then V = 0, U is random The goal of this protocol, Π' is to compute $U \wedge V$

 $\begin{array}{ccc} Alice & Bob \\ w, R', R_a & w, R', R_b \\ \text{computes } U, & \text{computes } V \\ & \rightarrow \\ & \leftarrow \\ & \cdot \\ & \cdot \\ & \vdots \\$

This protocol reveals $I((U, V), \Pi' | R', W)$.

4.3.3 Protocol B

Now let Z, R, be shared randomness for Alice and Bob, and again give them private randomness R_a , R_b . Using Z Alice and Bob can compute X and Y according to the distribution μ using their shared randomness, and consider the following protocol Π .

Then this protocol reveals information $I((X_i, Y_i), \Pi | R, Z)$

4.3.4 Combining Protocols

We now want to show $I((X_i, Y_i), \Pi | R, Z) \ge I((U, V), \Pi' | R', W) = CIC(Disj^1)$ by showing how we can reduce protocol A to protocol B.

We can let $X_i = U, Y_i = V$ and use R' to generate Z and R, allowing Alice and Bob to generate their remaining X_j and Y_j s. Then because for all $j \neq i, X_j \wedge Y_j = 0$ by construction, this will output $X_i \wedge Y_i$ computing $Disj^1$.

Therefore we have shown $I((X_i, Y_i), \Pi | R, Z) \ge CIC(Disj^1)$, which shows $CIC_{\mu}(Disj^n) \ge n \times CIC_1(Disj^1)$