
CS 229r Information Theory in Computer Science March 26, 2019

Lecture 15
Instructor: Madhu Sudan Scribe: Duncan Rheingans-Yoo

1 Topics For Today:

• Compressing Interactive Communication

• (Along the way): Correlated Sampling

2 Review of Protocol

Setup:

• Two communicators Alice, Bob

• Input (x, y) ∼ µ: x observed by Alice, y observed by Bob

Protocol:
Alice and Bob want a protocol in place to communicate about their inputs. They are allowed randomness:

• Public randomness R observed by both

• Private randomness RA observed by Alice and RB observed by Bob

Alice sends first bit of transcript π1(x,R,RA) ∈ {0, 1}. Bob observes π1 and sends second bit π2(y,R,RB , π1) ∈
{0, 1}. In general, πi is a function of:

• x,R,RA, π<i, i odd (Alice sends)

• y,R,RB , π<i, i even (Bob sends)

Such an interaction is illustrated by the diagram below:
INSERT DIAGRAM

3 Internal Information Complexity

Definition 1 (Internal Info Complexity). The internal information complexity of a protocol π is given by

ICintµ (π) =I(x;π|y,R) + I(y;π|x,R)

=

k∑
i=1

I(πi;x|y,R, π<i) + I(πi; y|x,R, π<i) =

k∑
i=1

Vi

Intuitively, it is the amount of information the protocol conveys to Alice and Bob about each others’ inputs.

Definition 2 (External Info Complexity). The external information complexity of a protocol π is given by

ICextµ (π) = I(xy;π|R)

Intuitively, it is the amount of information the protocol conveys to an outside observer about x and y.
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Exercise 3. Using the fact that only one of I(πi;x|y,R, π<i) and I(πi; y|x,R, π<i) can be nonzero for a
given i, show that ICintµ (π) ≤ ICextµ (π)

Exercise 4. Show that I(x;π,R|y) + I(y;π,R|x) = I(x;π|y,R) + I(y;π|x,R)

Definition 5 (Protocol Simulation). Protocol π′, consisting of public randomness R′, private randomness
R′A, R

′
B , functions π′i defined as before, and output functions OA, OB is said to simulate protocol π if:

• OA = OB = (R, π)

• The distributions of x, y, π,R are preserved

4 Today’s Main Compression Theorem

Theorem 6 (BBCR). ∀ π with CC(π) = k and IC(π) = I, ∃ π′ simulating π with CC(π′) = O(
√
I · k ·log k)

As an aside, there are a couple more theorems we will present without proof:

Theorem 7. ∃ π′ with CC(π′) = 2O(I)

Theorem 8. The above are tight.

The rest of today will be about building to a proof of Theorem 6.
Aside:

• CC(π⊗n) ≥ CC(π)
√
n

• CC(π⊗n) = h · IC(π)(1 +o(1)) (I don’t really understand what these two lines are; I just copied them)

5 Protocols, Priors, Information Cost

We now take a closer look at protocols, to get us to the point where we cam prove Theorem 6. Assume π
has no common randomness. We can conceptualize the interactive communication as progressing from the
root of a tree to a leaf, as visualized below:
INSERT TREE DIAGRAM
The position in the tree encodes π<i. For a node u, let PAu = πi|π<i, x be what Alice thinks will happen
next and let PBu = πi|π<i, y be what Bob thinks will happen next.

Let’s begin by thinking about the special case of I = 0.

Claim 9. I = 0 only if ∀ u, we have PAu = PBu . In this case, we can simulate the entire path from root to
leaf using common randomness R and zero communication

Now let’s think about I 6= 0.
Goal: Sample root to leaf path according to the {Pu}u, or equivalently, sample leaf according tyo the right
distribution on leaves.

6 Correlated Sampling

Consider the following setting:

• Alice observes the realization of a r.v. P , and Bob observes the realization of a r.v. Q.

• Alice and Bob can utilize some public randomness R
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• Without communicating, Alice must create output some ωA an Bob must create some output ωB

• Goal: Want ωA ∼ P , ωB ∼ Q, minPr[ωA 6= ωB ]

This is illustrated in the diagram below:
NEED DIAGRAM
If P and Q have disjoint supports, Pr[ωA 6= ωB ] = 1 necessarily. In the previous section, we saw that if P
and Q have the same distribution, common randomness gives minPr[ωA 6= ωB ] = 0. We are interested in
some interpolation between these special cases, where P and Q share support Ω but may not be exactly the
same.

Definition 10. δ(P,Q) = 1
2

∑
ω∈Ω |P (ω)−Q(ω)|

Exercise 11. Show that ∀ P,Q, minPr[ωA 6= ωB ] ≥ δ(P,Q)

Lemma 12. ∃ protocol s.t.

Pr[ωA 6= ωB ] ≤ 2δ(P,Q)

1 + δ(P,Q)
≤ 2δ(P,Q)

Proof Idea: Let the public randomness R sample from the Ω × [0, 1] grid many times. Each point given
by (ai, bi) for ai ∈ Ω and bi ∈ [0, 1]. Alice outputs ωA = ai for i the first point for which bi ≤ P (ai). Bob
outputs ωB = aj for j the first point for which bj ≤ Q(aj). This is illustrated by the diagram below:
NEED DIAGRAM
Note that if P,Q are very similar, ωA = ai = aj = ωB with high probability. In fact, the first inequality of
Lemma 12 will follow from this protocol.�

Let PAu = Bern( 1
2 − δ) and PBu = Bern( 1

2 ) for all u. Then by Union-Bound, the total variation distance
TV D(leafA, leafB) ≤ O(kδ) because there is at most δ difference for each node. Now assume kδ is tiny. So

we get the same leaf except w.p. O(kδ) = O(
√
k ·
√
kδ2). We have Vi = I(πi;x|y, π<i) + I(πi; y|x, π<i) = δ2

(in our case P ∗j = Bern( 1
2 − δ)), which implies that I = kδ2. So our probability of error is O(

√
k ·
√
kδ2) =

O(
√
I
√
k). This is not quite where we need to be to prove Theorem 6, so we’ll pick this up next lecture.

7 Ideas for Exercises

Exercise 13. Verify the claim in the proof idea of Lemma 12 that this protocol achieves the first inequality
of Lemma 12

Exercise 14. Find an example of protocol π′ simulating some π where the length of the simulated transcript
π′ is less than the entropy of the transcript H(π). Morally, why is this possible? (As we said, when I = 0
the length of π′ can be 0, so a non-trivial π will give us this result. Morally, the shared randomness R′ is
doing our communication for us)
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