March 26, 2019

Lecture 15

Instructor: Madhu Sudan

Scribe: Duncan Rheingans-Yoo

1 Topics For Today:

- Compressing Interactive Communication
- (Along the way): Correlated Sampling

2 Review of Protocol

Setup:

- Two communicators Alice, Bob
- Input $(x, y) \sim \mu$: x observed by Alice, y observed by Bob

Protocol:

Alice and Bob want a protocol in place to communicate about their inputs. They are allowed randomness:

- Public randomness R observed by both
- Private randomness R_A observed by Alice and R_B observed by Bob

Alice sends first bit of transcript $\pi_1(x, R, R_A) \in \{0, 1\}$. Bob observes π_1 and sends second bit $\pi_2(y, R, R_B, \pi_1) \in \{0, 1\}$. In general, π_i is a function of:

- $x, R, R_A, \pi_{<i}, i \text{ odd (Alice sends)}$
- $y, R, R_B, \pi_{< i}, i \text{ even (Bob sends)}$

Such an interaction is illustrated by the diagram below: INSERT DIAGRAM

3 Internal Information Complexity

Definition 1 (Internal Info Complexity). The *internal information complexity* of a protocol π is given by

$$IC_{\mu}^{int}(\pi) = I(x; \pi | y, R) + I(y; \pi | x, R)$$

= $\sum_{i=1}^{k} I(\pi_i; x | y, R, \pi_{< i}) + I(\pi_i; y | x, R, \pi_{< i}) = \sum_{i=1}^{k} V_i$

Intuitively, it is the amount of information the protocol conveys to Alice and Bob about each others' inputs. **Definition 2** (External Info Complexity). The *external information complexity* of a protocol π is given by

$$IC^{ext}_{\mu}(\pi) = I(xy;\pi|R)$$

Intuitively, it is the amount of information the protocol conveys to an outside observer about x and y.

CS 229r Information Theory in Computer Science-1

Exercise 3. Using the fact that only one of $I(\pi_i; x|y, R, \pi_{\leq i})$ and $I(\pi_i; y|x, R, \pi_{\leq i})$ can be nonzero for a given *i*, show that $IC_{\mu}^{int}(\pi) \leq IC_{\mu}^{ext}(\pi)$

Exercise 4. Show that $I(x; \pi, R|y) + I(y; \pi, R|x) = I(x; \pi|y, R) + I(y; \pi|x, R)$

Definition 5 (Protocol Simulation). Protocol π' , consisting of public randomness R', private randomness R'_A , R'_B , functions π'_i defined as before, and output functions O_A, O_B is said to simulate protocol π if:

- $O_A = O_B = (R, \pi)$
- The distributions of x, y, π, R are preserved

4 Today's Main Compression Theorem

Theorem 6 (BBCR). $\forall \pi \text{ with } CC(\pi) = k \text{ and } IC(\pi) = I, \exists \pi' \text{ simulating } \pi \text{ with } CC(\pi') = O(\sqrt{I \cdot k} \cdot \log k)$

As an aside, there are a couple more theorems we will present without proof:

Theorem 7. $\exists \pi' \text{ with } CC(\pi') = 2^{O(I)}$

Theorem 8. The above are tight.

The rest of today will be about building to a proof of Theorem 6. Aside:

- $CC(\pi^{\otimes n}) \ge CC(\pi)\sqrt{n}$
- $CC(\pi^{\otimes n}) = h \cdot IC(\pi)(1+o(1))$ (I don't really understand what these two lines are; I just copied them)

5 Protocols, Priors, Information Cost

We now take a closer look at protocols, to get us to the point where we can prove Theorem 6. Assume π has no common randomness. We can conceptualize the interactive communication as progressing from the root of a tree to a leaf, as visualized below:

INSERT TREE DIAGRAM

The position in the tree encodes $\pi_{<i}$. For a node u, let $P_u^A = \pi_i | \pi_{<i}, x$ be what Alice thinks will happen next and let $P_u^B = \pi_i | \pi_{<i}, y$ be what Bob thinks will happen next.

Let's begin by thinking about the special case of I = 0.

Claim 9. I = 0 only if $\forall u$, we have $P_u^A = P_u^B$. In this case, we can simulate the entire path from root to leaf using common randomness R and zero communication

Now let's think about $I \neq 0$.

Goal: Sample root to leaf path according to the $\{P_u\}_u$, or equivalently, sample leaf according tyo the right distribution on leaves.

6 Correlated Sampling

Consider the following setting:

- Alice observes the realization of a r.v. P, and Bob observes the realization of a r.v. Q.
- Alice and Bob can utilize some public randomness R

- Without communicating, Alice must create output some ω_A and Bob must create some output ω_B
- Goal: Want $\omega_A \sim P$, $\omega_B \sim Q$, min $Pr[\omega_A \neq \omega_B]$

This is illustrated in the diagram below: NEED DIAGRAM

If P and Q have disjoint supports, $Pr[\omega_A \neq \omega_B] = 1$ necessarily. In the previous section, we saw that if P and Q have the same distribution, common randomness gives min $Pr[\omega_A \neq \omega_B] = 0$. We are interested in some interpolation between these special cases, where P and Q share support Ω but may not be exactly the same.

Definition 10. $\delta(P,Q) = \frac{1}{2} \sum_{\omega \in \Omega} |P(\omega) - Q(\omega)|$

Exercise 11. Show that $\forall P, Q, \min Pr[\omega_A \neq \omega_B] \geq \delta(P, Q)$

Lemma 12. \exists protocol s.t.

$$Pr[\omega_A \neq \omega_B] \le \frac{2\delta(P,Q)}{1+\delta(P,Q)} \le 2\delta(P,Q)$$

Proof Idea: Let the public randomness R sample from the $\Omega \times [0, 1]$ grid many times. Each point given by (a_i, b_i) for $a_i \in \Omega$ and $b_i \in [0, 1]$. Alice outputs $\omega_A = a_i$ for i the first point for which $b_i \leq P(a_i)$. Bob outputs $\omega_B = a_j$ for j the first point for which $b_j \leq Q(a_j)$. This is illustrated by the diagram below: NEED DIAGRAM

Note that if P, Q are very similar, $\omega_A = a_i = a_j = \omega_B$ with high probability. In fact, the first inequality of Lemma 12 will follow from this protocol.

Let $P_u^A = Bern(\frac{1}{2} - \delta)$ and $P_u^B = Bern(\frac{1}{2})$ for all u. Then by Union-Bound, the total variation distance $TVD(leaf^A, leaf^B) \leq O(k\delta)$ because there is at most δ difference for each node. Now assume $k\delta$ is tiny. So we get the same leaf except w.p. $O(k\delta) = O(\sqrt{k} \cdot \sqrt{k\delta^2})$. We have $V_i = I(\pi_i; x|y, \pi_{<i}) + I(\pi_i; y|x, \pi_{<i}) = \delta^2$ (in our case $P_j^* = Bern(\frac{1}{2} - \delta)$), which implies that $I = k\delta^2$. So our probability of error is $O(\sqrt{k} \cdot \sqrt{k\delta^2}) = O(\sqrt{I}\sqrt{k})$. This is not quite where we need to be to prove Theorem 6, so we'll pick this up next lecture.

7 Ideas for Exercises

Exercise 13. Verify the claim in the proof idea of Lemma 12 that this protocol achieves the first inequality of Lemma 12

Exercise 14. Find an example of protocol π' simulating some π where the length of the simulated transcript π' is less than the entropy of the transcript $H(\pi)$. Morally, why is this possible? (As we said, when I = 0 the length of π' can be 0, so a non-trivial π will give us this result. Morally, the shared randomness R' is doing our communication for us)