
CS 229r Information Theory in Computer Science Feb 7, 2019

Lecture 4
Instructor: Madhu Sudan Scribe: Daniel Chiu

1 Miscellaneous

1.1 Schedule for today

• Single Shot Compression

• Universal Compression

• Markovian Sources

1.2 Logistics

Problemset 1 is due at 8pm on Friday 2/8. You can use a total of 3 late days over the semester, but only at
most 2 can be used on a single problemset.

2 Single Shot Compression

Up to now, we’ve been thinking of compression as measuring something. For instance, entropy is a measure-
ment; information is a measurement. Now, we will think of compression as a problem - e.g. ”you have a file,
you want to compress it [map it to a more transmittable form] right away”.

Definition 1 (Single Shot Compression). In the Single Shot Compression problem, there are two parties,
a sender and a receiver. They both know some distribution P = (p1, · · · , pm) over the possible inputs to
the encoding. Sender additionally knows some X ∼ P , and wants to transmit it using the encoder E. The
encoder E : [m]→ {0, 1}∗ should give rise to a prefix-free encoding, which implies the existence of a decoder
D : {0, 1}∗ → [m] ∪ {?} (where ? denotes an unknown input). The goal is to minimize the expected length,
over the distribution P , of the encoding:

min
E
{EX∼P [|E(x)|]} (1)

It turns out that there exists an optimal algorithm for Single Shot Compression - giving an encoder that
minimizes the expected length of the encoding for any distribution P . This is the Huffman Encoding.

How do we bring entropy into this? Shannon Encoding solves the problem using at most H(X) + 1
bits. Note that entropy by definition tells us that we need at least H(X) bits - this is the Shannon Lower
Bound (which we’ve already seen), so Shannon Encoding is within 1 bit of the [a priori] best possible
solution.

2.1 Huffman Coding

To understand Huffman coding, we first describe the Encoding Tree.

CS 229r Information Theory in Computer Science-1

Example 2. Suppose we have the mapping

A→ 0

B → 1011

C → 100

D → 1010

E → 11

We can represent this as a binary tree, where a 0 representing taking a left edge, and 1 a right edge. If
we mark each node which is the terminus of an output of the encoder, the prefix-free condition means that
for any marked node, none of its ancestors are also marked.

“”

0(A) 1

10

100(C) 101

1010(D) 1011(B)

11(E)

Definition 3 (Huffman Encoding). Given P = (p1, · · · , pm), the encoding function E for the Huffman
Encoding is obtained by the following recursive algorithm:

1. If m = 1, encode E(1) = “” (the empty string) and return. This is the base case.

2. Sort the pi. For the remaining steps, assume p1 ≥ · · · ≥ pm.

3. Merge pm, pm−1 to get Q = (q1, · · · , qm−1) where qi = pi except qm−1 = pm−1 + pm.

4. We build up the encoding for Q recursively. Given E′ defined on [m − 1], define E which encodes
1, · · · ,m − 2 as E′ does, but let E(m − 1) = E′(m − 1) ◦ 0, E(m) = E′(m − 1) ◦ 1 (where ◦ denotes
concatenation). Note that this preserves prefix-free-ness.

Here’s a sketch of the proof of optimality:

Proof. Suppose E is some optimal encoding of P = (p1, · · · , pm). Without loss of generality, p1 ≥ · · · ≥ pm,
and define `i = |E(i)| for 1 ≤ i ≤ m.

If we didn’t have `1 ≤ `2 ≤ · · · ≤ `m, then consider any pair (i, j) such that pi > pj but `i > `j . Swapping
the two encodings for i and j reduces the cost by (pi − pj)(`i − `j), which is positive, contradiction. Thus,
modulo equal probabilities, we have that the `’s are nondecreasing, and we can swap encodings for elements
with equal probability without cost to get this in general.

Consider the encoding tree of E. Since lm is maximal, the encoding E(m) must be a leaf node N of
the encoding tree. Unless m = 1, then N has a sibling N ′, and N ′ must be an encoding as well (why?).
Thus, merge m,m−1 in the same way as the algorithm above does, and find the optimal tree for that string
(P1, · · · , Pm−1 + Pm). Inductively, that tree must also be optimal, and we are basically done.

Exercise 4. Complete and formalize the above proof.

CS 229r Information Theory in Computer Science-2

Solution: We omit most of the formalization since it follows from the sketch above, and just answer the
“why?” above.

If N ′ above was not an encoding, then since N is a node with maximal depth, then N ′ has no children
that are encodings either. This is impossible as m would’ve been encoded by node N instead.

When discussing Huffman codes, normal algorithm classes stop here. However, we’ll go further to show
that the expected encoding length that Huffman coding achieves is bounded by H(x) + 1. Note that this
is surprisingly good, because this is for Single Shot Compression, whereas entropy is defined based on the
limit of encoding more and more copies of the base text.

2.2 Shannon Encoding

To do so, we move on to...

Definition 5 (Shannon Encoding). Shannon Encoding also takes in P = (p1, · · · , pm). We’ll say upfront
that to encode i, we will use |E(i)| = `i = dlog 1

pi
e bits. Since

∑
i pi = 1, we have

∑
i 2−`i ≤

∑
i pi ≤ 1 by

our definition of `i. Thus, Kraft’s inequality holds, and an encoding function exists with these `1, · · · , `m.

Remark: Note that depending on how you prove Kraft’s inequality, this might be entirely nonconstructive.
However, it does have the interesting property that given any one pi, we can immediately determine the
length of its encoding E(i) without knowing the other probabilities.

We can immediately analyze the performance (expected encoding length) of Shannon encoding:

EX∼P [|E(x)|] =
∑
i

pi`i =
∑
i

pidlog
1

pi
e ≤

∑
i

pi

(
log

1

pi
+ 1

)
= H(X) + 1

Remark: Since Huffman encoding is optimal and thus at least as good as Shannon, Huffman (which is
harder to analyze) achieves at most H(X) + 1 as well. It’s quite remarkable that entropy captures optimal
encoding length so well.

Further Exploration: Is the gap of 1 between entropy and Shannon/Huffman tight? We know

H(X) ≤ Huffman length ≤ Shannon length ≤ H(X) + 1

There’s a total gap of 1 between H(X) and H(X) + 1. Try to find distributions X that maximize the gap
between each pair of adjacent quantities (one gap at a time - maximize Huffman length−H(X), and so on).

Interlude: A long time ago, people we trying to build the first fax machine, and thought about compression.
To compress, they had to have a distribution of the input, and they found frequencies of small strings
manually. This was the state of the art in fax machines for 20 years.

3 Universal Compression

Unfortunately, uses of Single Shot Compression are uncommon in the real world. For instance, if you use
gzip and feed it a new file, it’ll work regardless of language or of having some prior on the distribution you’re
feeding in. This leads to the idea of Universal Compression - compression that works for any distribution
and any source of information.

Definition 6 (Universal Compression). The Universal Compression problem takes an input string w ∈ Σn

(Σ is the alphabet) and compresses w to {0, 1}∗. The result should be invertible and prefix-free. Similar to
the single shot version, we can define an expected length of encoding which should be minimized.

CS 229r Information Theory in Computer Science-3

3.1 Lempel-Ziv

Lempel-Ziv gave an algorithm that was relatively effective empirically. There are some theorems for certain
classes of probabilistic sources of w, which we will investigate more later in the semester. Today, we will
describe the algorithm and some potential probabilistic sources.

What are we hoping for? We wish to find some repetitive structure; some self-similarity to exploit.

Definition 7 (Lempel-Ziv). Lempel-Ziv compression begins by splitting the input string into encode-able
pieces. Given w, we desire to split it into m small chunks “” = s0, s1, s2, · · · , sm, so that w is the concatena-
tion s0 ◦ s1 ◦ . . . ◦ sm. For all i, let si = sji · bi for some ji < i and bi ∈ Σ. In other words, each chunk should
be a previous chunk with some extra character (except the last chunk). Furthermore, all chunks should be
unique.

Exercise 8. The above uniquely determines the chunking. Why?

Solution: One observation is that if c is a chunk, then every prefix of c must have been a previous chunk.
We prove the above observation and the uniqueness of chunking by induction on the number of chunks

so far. For the base case, the only possible first chunk is the first character, since each chunk must be a
previous chunk with one extra character. For future chunks, consider the longest substring s that is equal to
a previous chunk. No chunk shorter than |s|+ 1 is legal, since all such substrings are prefixes of s and thus
previous chunks. No chunk longer than |s| + 1 is legal, because it wouldn’t be a previous chunk plus one
character. Thus, the only legal next chunk is the substring of length |s|+ 1, and each prefix of this chunk is
a previous chunk, as desired.

Example 9.

w = 010111001101111101

w = 0|1|01|11|00|110|111|1101

Definition 10 (Lempel-Ziv (continued)). Finally, the encoding is simply E(w) = PF ((j1, bi), · · · , (jm, bm)),
where the j’s and b’s are encoded in some prefix-free manner (denoted PF above). Each j will encode to
about log(n) bits and each b to about log(Σ) bits long, so the total encoding is of length approximately
m(log(n) + log(Σ) ≤ n(log(n) + log(Σ)).

Exercise 11. Apply Lempel Ziv to the following sequence:

W = 010011000111000011110000011111

In addition, what would you conjecture are the worst and best case strings for the effectiveness of Lempel Ziv
compression?

Solution: We decompose the string as follows:

W = 010011000111000011110000011111

= [0] [1] [00] [11] [000] [111] [0000] [1111] [00000] [11111]

⇒ (λ, 0), (λ, 1), (A, 0), (B, 1), (C, 0), (D, 1), (E, 0), (F, 1), (G, 0), (H, 1)

From this, we can observe that, for every length k, the more substrings Si of that length k, the longer our
resulting encoding must be, since we must send along more combinations of length k, rather than strings of
length greater than k that are built off of k. Thus, we conjecture that the worst case strings are those which
contain (in increasing k order) all 2k substrings of each length k, while the best case strings are those which
contain exactly one substring of each length k, all using the same single character.

CS 229r Information Theory in Computer Science-4

Exercise 12. Find a prefix-free encoding of Z+ that encodes n using log n+O(log log n) bits.

Solution: The prefix free encoding will look like

[bits of length] 01 [bits of n]

To make the encoding decodable, the first segment will be encoded with pairs of bits. In other words,
for each bit in dlog ne, the encoding will have two copies of that bit. Then, the “01” indicates the end of the
first segment, and the length can be recovered from the bits read. Then, the next length bits are just n in
binary.

This is prefix-free since otherwise one encoding is a prefix of another. However, that first encoding
specifies how long the rest of the encoding after the “01” can be, contradiction.

The overall length is 2dlog ne+ 2 + dlog ne which is log n+O(log log n) bits.

Example 13. Continuing Example 10, we have that the pairs (j, b) are

(0, 0), (0, 1), (1, 1), (2, 1), (1, 0), (4, 0), (4, 1), (6, 1)

Remark: Lempel-Ziv can often actually expand short strings. It doesn’t “get going” until it builds up
enough structure in the beginning of the string.

Remark: Can we iterate compression? Generally, no, because compression schemes usually aim to be
approximately uniformly distributed on their output length (which is a consequence of being of length
approximately equal to the entropy).

3.2 Markovian sources

Now, we aim to analyze the performance of Lempel-Ziv. To do so, we let the strings be drawn from some
distribution PX .

Theorem 14. If W = w1 ◦ . . . ◦ wn where each is i.i.d. sampled from wi ∼ PX , then as n→∞, with high
probability the length of the compression is (H(X) + o(1))n.

Note that another approach to this is Huffman coding - finding the sample frequency of each alphabet
character, sending this distribution information so the decoder can be constructed, and then performing
Huffman using this distribution. More surprisingly, Lempel-Ziv can effectively compress Markovian sources.

Definition 15 ((Time-invariant) Markov Chain). A sequence Z1, · · · , Zn is a Markov chain if

∀n : Zn|Z1, · · · , Zn−1 ∼ Zn|Zn−1.

By the ∼ notation, we mean the conditional distributions are the same. It is additionally [time-invariant] if

∀n,m : Zn|Zn−1 ∼ Zm|Zm−1.

One piece of terminology - Zi is called the “state” at time i. Furthermore, we can classify Markov chains
where each state comes from a finite set:

Definition 16 (k-state Markov chain). Suppose that for all i, Zi ∈ Γ = {1, · · · , k}.
Then, a k-state Markov chain is given by a k× k matrix M where Mij = Pr[Z2 = j|Z1 = i]. In essence,

this is a finite automaton.

We will only consider k-state Markov chains that are

1. Irreducible (strongly connected): there’s a path from every state to every other state.

CS 229r Information Theory in Computer Science-5

2. Aperiodic: the greatest common divisor of all cycle lengths is 1.

This implies the existence of the stationary distribution Π, such that Zi ∼ Π =⇒ Zi+1 ∼ Π if the initial
distribution is Π.

Definition 17 (Entropy of Markov chain). We can simplify the definition of entropy using properties of the
Markov chains we’re considering:

H(M) = lim
n→∞

H(Zn|Z1, · · · , Zn−1)

= lim
n→∞

H(Zn|Zn−1)

= H(Z2|Z1)

where the last equality holds when Z1 is drawn from the stationary distribution Π.

Exercise 18. Given the above, find the entropy of a k-state time-invariant Markov chain given the transition
matrix M and the stationary distribution Π.

Solution: Use the formula for conditional entropy.

Furthermore, we can hide the Markov chain in the background:

Definition 19 (Hidden Markov Model). A Hidden Markov Model (HMM) has an underlying Markov chain
Z1, · · · , Zn. Given a distribution Pσ for each of the possible states σ ∈ Γ, this induces a second sequence
X1, · · · , Xn drawn from the first, where Xi ∼ PZi . This sequence {Xi} is the observed output of the model.

It turns out that Lempel-Ziv can compress HMMs, and this is one of the nicest classes Lempel-Ziv can
compress. We will see this later.

CS 229r Information Theory in Computer Science-6

