Lecture 16

Today
Polar codes

- Motivation: Shannon \& Gap to Capacity
- Construction:
O. Reduction to Linear Compression

1. Polarizing Tranformation $+\ln t$. Th.
2. Polarization + Theorem basis.
3. Encoding + Decoding
4. Proof of Polarization Theorem. (some skipped)

Admin

- PS 4 Due this week
- Weekly reports every week during lectures I
- PS5 out tomorrow
- "Practive PS6" might be released later
- 4 best PS ont of 6 .
- Ask if you have questions.

Motivation

$$
\operatorname{Pr}[\hat{m}=m] \geqslant 1-0(1)
$$

- Can do the with Rate $(k / n) \rightarrow 1-H(p)$ $p \triangleq$ Bit flip Rob.
- if we want to be at rate $1-H(p)-t$ then can achieve enor prob $\exp \left(-t^{\prime} \cdot n\right)$
- Sharon - Non constructive
- PS 3? - Can make this poly time.... Concatenation "disappeared" the problem?
- Running are now poly (n) But there is a constant in front which depends on ϵ.
- e.g. $2^{1 / t^{2}} \cdot n^{2} \Leftarrow$ needed because blocks are of size $1 / \epsilon^{2} \ldots$ exponential in black.

Problem Formulation: Given ϵ, determine k, n

$$
\begin{aligned}
& \text { s.t. } \quad \frac{k}{n} \geqslant 1-1(p)-\epsilon \\
& \text { L. } E_{k}:\{0,1\}^{k} \rightarrow\{0,1\}^{n} \\
& \operatorname{D}_{k}:\{0,1\}^{n} \rightarrow\{0,1\}^{k} \\
& \text { s.t. } \operatorname{Pr}_{m, B S C}[D(B S C(E(m))) \neq m] \leqslant 1-o(1)
\end{aligned}
$$

\& running time of E_{x}, D_{k} are poly $(1 / \epsilon)$
x
History: Q. raised by Luby, Mitzenmacher, Shokrollahi, Spielman ' 95

- 2008 : Arikan - proposed Polar lones
- 2013: - Guruswami,

Xia

- Hassani, Alishahi, Urbanke $\}$ wing parr codes.

Codes specified by $G={ }_{k}$

or by

Or is generator of a ...good code (corectsenos)
$\Leftrightarrow H$ is a good linear compressor of $\operatorname{Bem}(p)^{n}$

$$
\begin{aligned}
\operatorname{Rem}(p)=z & =0 & \text { w.p. } & 1-p \\
& =1 & \text { w.p. } & p
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Bern}(p)^{n}=n \quad \text { independent copies } & Z_{1} \ldots Z_{n} \\
Z_{i} & \sim \operatorname{Bem}(p) .
\end{aligned}
$$

is It a good compressor?
good
4. compresses $\operatorname{Bom}(p)^{n}$ if
(1) $H=n \times m$ with $m \leq(H(P)+\epsilon) \cdot n$
(2) \exists Dendirs aly. D

$$
\begin{aligned}
& H \equiv G \\
& \text { puinty genetor }
\end{aligned}
$$

$$
\operatorname{Pr}_{z}\left[D\left(\frac{Z H}{7}\right) \neq Z\right]=0(1)
$$

(3) D shand omenn in time poly (1/6)

$$
X \xrightarrow{\text { Enc }} \times G \xrightarrow{\text { Chumed }} \underbrace{X G+Z}_{Y} \rightarrow \begin{aligned}
& \text { Can get } \\
& Z \\
& \text { e hence } \\
& x \\
& c_{x} \text { whp. }
\end{aligned}
$$

Ex.
(1) $Y \cdot H=X \underset{G H}{G H}+Z H=Z H$
(2) $D(2 H)=\hat{z}=z$ whp casy
(3) $y-\hat{2}=$ whp our cocleword.

Aside: Linear compresion equivatent to our problem if we want linear code.

Reot of Polar Coding: Linear Comprssion.

Arikan's

- Two bits \& compress them:

$$
(u, v) \longrightarrow(u+v, v)
$$

- Move entropy around

Crercuise Determine Dist of $u+V$, given U~Bem (i_{1})
$y \sim \operatorname{sem}\left(P_{2}\right)$
$U+V$ more "uncertain" than U or V $H(u+r)>H(u)$

- V no morellos entropic V ?
"Conditional Entropy" $H(V \mid U+V)<H(V) U)$ $=H(v)$

Entropy: of random variable X dist. on $[M$]
wit $\quad P_{r}[x=i]=P_{i}$

$$
H(x) \triangleq \sum_{i=1}^{M} p_{i} \log _{2} \frac{1}{p_{i}}
$$

Entropy says how effectively we can compress n ind. copies of X; amortized
[Desering $X_{1} \ldots X_{n} \quad X_{j} \sim X$ iii.d. takes roughly $H(x) \cdot n$ bits]

- Suppose U,V~Bem $(\cdot 01)$
$-U+V \sim \operatorname{Bem}(.01999)$

$$
\begin{aligned}
-U+V= & 0 \Rightarrow \operatorname{Rr}[U=1 \mid U+V=0]=000101 \ldots \\
& \Rightarrow \operatorname{Pr}[-9] \approx \cdot 98 \\
& \Rightarrow \operatorname{Pr}[U=1 / U+V=1]=\frac{1}{2} \\
& \operatorname{Rr}[] \approx .02
\end{aligned}
$$

But in expectation U will be "less ranclom" given U+V.
Conditioral Entropy

- (x, y) jointly dist over $[M] \times[N]$

$$
\begin{array}{r}
\operatorname{Pr}[x=i \wedge y=j]=P_{i j} ; \quad P_{x} \text { marginal } \\
-H(y \mid x)=\underset{x}{ } \underset{x}{\sim}[H(y \mid x=x)] \quad P_{y} \text { on } x
\end{array}
$$

(1)Chain Rnte

$$
H(x, y)=H(x)+\underbrace{A(y \mid x)}_{Y \text { bits neoded to descinbe }}
$$

(2) "Condtrioning "reducs" entropy: $H(y \mid x) \leq H(y)$.

- $f:$ is a one-to-one function

$$
\begin{align*}
& H(x)=H(f(x)) \\
& \text { - } H(u, v)=H(u+v, v) \tag{1}\\
& \text { - (By call / Exeriux): } H(U+v)>H(U) \text { - (2) } \tag{2}\\
& \text { - } H(V \backslash U+V)=H(U+V, V)-H(U+V) \quad \begin{array}{c}
\text { Chain } \\
\text { Rue }
\end{array} \\
& =H(u, v)-H(u+v) \text { by (1) } \\
& <H(u, v)-H(u) \text { by (2) } \\
& =H(V \mid U) \\
& \text { Chain } \\
& =H(V) \text { [since } V \& U \text { indenipent]. }
\end{align*}
$$

Polar coding idea

- Lets iterate this process many times, moving conditional entropies around.
- "Polarization": At end every bit will conditional Entropy close to 0 , or 1.
- Compression : throw away all bits with 0 entropy.

$H\left(w_{i} \mid w_{1} \ldots w_{i-1}\right)=$ very close to 0
or very close to 1

$$
S \triangleq\left\{i \mid H\left(w_{i} \mid w_{<i}\right) \rightarrow 1\right\}
$$

Compression of $Z=\left.W\right|_{S}$
(1) This is linear
(2) $|S| \approx H(p) \cdot n \rightarrow$ follows from all
(3) Given $W l_{s}$ can compute W and then Z ? effiently.
All together \Rightarrow Polarization prows good compos
\Rightarrow Gives our throes.

