Codes for Editing Errors

Madhu Sudan

Harvard University

Based on (1) Haeupler and Shahrasbi - FOCS 2017

(2) Haeupler, Shahrasbi, S. – ICALP 2018

- $X \in \Sigma^n$ and $Y \in \Sigma^m$:
 - $X \to_{\Delta,\Gamma} Y$: If <u>deleting</u> $\leq \Delta$ symbols from X and then <u>inserting</u> $\leq \Gamma$ symbols gives Y.

- $X \in \Sigma^n$ and $Y \in \Sigma^m$:
 - $X \to_{\Delta,\Gamma} Y$: If <u>deleting</u> $\leq \Delta$ symbols from X and then <u>inserting</u> $\leq \Gamma$ symbols gives Y.
 - **Example:** $010101010110110 \rightarrow_{1,2} 0110100101110$

- $X \in \Sigma^n$ and $Y \in \Sigma^m$:
 - $X \to_{\Delta,\Gamma} Y$: If <u>deleting</u> $\leq \Delta$ symbols from X and then <u>inserting</u> $\leq \Gamma$ symbols gives Y.
 - **Example:** $0101010101110 \rightarrow_{1,2} 0110100101110$

- $X \in \Sigma^n$ and $Y \in \Sigma^m$:
 - $X \to_{\Delta,\Gamma} Y$: If <u>deleting</u> $\leq \Delta$ symbols from X and then <u>inserting</u> $\leq \Gamma$ symbols gives Y.
 - **Example:** $0101010101110 \rightarrow_{1,2} 0110100101110$
 - Sanity check: $X \rightarrow_{\Delta,\Gamma} Y \Rightarrow Y \rightarrow_{\Gamma,\Delta} X$

- $X \in \Sigma^n$ and $Y \in \Sigma^m$:
 - $X \to_{\Delta,\Gamma} Y$: If <u>deleting</u> $\leq \Delta$ symbols from X and then <u>inserting</u> $\leq \Gamma$ symbols gives Y.
 - **Example:** $0101010101110 \rightarrow_{1,2} 0110100101110$
 - Sanity check: $X \rightarrow_{\Delta,\Gamma} Y \Rightarrow Y \rightarrow_{\Gamma,\Delta} X$
- (Δ, Γ)-Edit Distance Codes:
 - $E: \Sigma^k \to \Sigma^n ; D: \Sigma^* \to \Sigma^k$

- $X \in \Sigma^n$ and $Y \in \Sigma^m$:
 - $X \to_{\Delta,\Gamma} Y$: If <u>deleting</u> $\leq \Delta$ symbols from X and then <u>inserting</u> $\leq \Gamma$ symbols gives Y.
 - Example: $0101010101110 \rightarrow_{1,2} 0110100101110$
 - Sanity check: $X \rightarrow_{\Delta,\Gamma} Y \Rightarrow Y \rightarrow_{\Gamma,\Delta} X$
- (Δ, Γ)-Edit Distance Codes:

Unique decoding $E: \Sigma^k \to \Sigma^n \; ; \; D: \Sigma^* \to \Sigma^k$ $\forall \; X \in \Sigma^k, Y \in \Sigma^* \; \text{s. t. } E(X) \to_{\Delta,\Gamma} Y, \qquad D(Y) = X$

- $X \in \Sigma^n$ and $Y \in \Sigma^m$:
 - $X \to_{\Delta,\Gamma} Y$: If <u>deleting</u> $\leq \Delta$ symbols from X and then inserting $\leq \Gamma$ symbols gives Y.
 - **Example:** $0101010101110 \rightarrow_{1.2} 0110100101110$
 - Sanity check: $X \rightarrow_{\Delta,\Gamma} Y \Rightarrow Y \rightarrow_{\Gamma,\Delta} X$
- (Δ, Γ)-Edit Distance Codes:
 - $E: \Sigma^k \to \Sigma^n ; D: \Sigma^* \to \Sigma^k$ $\forall X \in \Sigma^k, Y \in \Sigma^* \text{ s. t. } E(X) \to_{\Delta,\Gamma} Y,$ D(Y) = X
 - $E: \Sigma^k \to \Sigma^n ; D: \Sigma^* \to {\Sigma^k \choose L}$ $\forall X \in \Sigma^k, Y \in \Sigma^* \ s. \ t. \ E(X) \rightarrow_{\Delta,\Gamma} Y$

Unique decoding

- Given family of code $E = (E_n: \Sigma^{k_n} \to \Sigma^n)_n$
 - Rate = $R = \lim_{n \to \infty} \frac{k_n}{n}$;

- Given family of code $E = (E_n: \Sigma^{k_n} \to \Sigma^n)_n$
 - Rate = $R = \lim_{n \to \infty} \frac{k_n}{n}$;
 - (δ, γ) -code if E_n is $(\delta n, \gamma n)$ -code $\forall n$

- Given family of code $E = (E_n: \Sigma^{k_n} \to \Sigma^n)_n$
 - Rate = $R = \lim_{n \to \infty} \frac{k_n}{n}$;
 - (δ, γ) -code if E_n is $(\delta n, \gamma n)$ -code $\forall n$
- Questions: what (δ, γ, R) achievable?

- Given family of code $E = (E_n: \Sigma^{k_n} \to \Sigma^n)_n$
 - Rate = $R = \lim_{n \to \infty} \frac{k_n}{n}$;
 - (δ, γ) -code if E_n is $(\delta n, \gamma n)$ -code $\forall n$
- Questions: what (δ, γ, R) achievable?
 - With list-decoding?
 - While $q = |\Sigma| = O(1)$
 - Algorithmically?

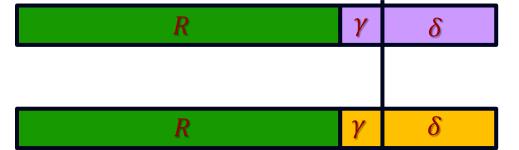
- Notion dates back to '70s: Levenstein
- [Schulman-Zuckerman '90s]:

$$q = poly(n)$$
, $R \to 1 - (\delta + \gamma)$ unique decoding

R

- Notion dates back to '70s: Levenstein
- [Schulman-Zuckerman '90s]:

$$q = poly(n)$$
, $R \to 1 - (\delta + \gamma)$ unique decoding



- Notion dates back to '70s: Levenstein
- [Schulman-Zuckerman '90s]:

$$q = poly(n)$$
, $R \to 1 - (\delta + \gamma)$ unique decoding

- Notion dates back to '70s: Levenstein
- [Schulman-Zuckerman '90s]:

$$q = poly(n)$$
, $R \to 1 - (\delta + \gamma)$ unique decoding

- Notion dates back to '70s: Levenstein
- [Schulman-Zuckerman '90s]:

$$q = poly(n)$$
, $R \to 1 - (\delta + \gamma)$ unique decoding

- Algorithmic!
- List-decoding? q = O(1)?

- Notion dates back to '70s: Levenstein
- [Schulman-Zuckerman '90s]:

$$q = poly(n)$$
, $R \to 1 - (\delta + \gamma)$ unique decoding

- Algorithmic!
- List-decoding? q = O(1)?
- [Haeupler-Shahrasbi'17]:
 - q = O(1); $R \to 1 (\delta + \gamma)$ unique decoding

- Notion dates back to '70s: Levenstein
- [Schulman-Zuckerman '90s]:

$$q = poly(n)$$
, $R \to 1 - (\delta + \gamma)$ unique decoding

- Algorithmic!
- List-decoding? q = O(1)?
- [Haeupler-Shahrasbi'17]:

•
$$q = O(1)$$
; $R \to 1 - (\delta + \gamma)$ unique decoding

- [Haeupler-Shahrasbi-S.'18]
 - $q = O_{\gamma,\delta,R}(1)$; $R \to 1 \delta$ list decoding

- $E: \Sigma^k \to \Sigma^n \to E': \Sigma^k \to (\Sigma \times [n])^n$
 - $E'(x)_i = (E(x)_i, i)$

- $E: \Sigma^k \to \Sigma^n \to E': \Sigma^k \to (\Sigma \times [n])^n$
 - $E'(x)_i = (E(x)_i, i)$
 - $Rate(E') = Rate(E) \frac{\log n}{\log |\Sigma|}$

- $E: \Sigma^k \to \Sigma^n \to E': \Sigma^k \to (\Sigma \times [n])^n$
 - $E'(x)_i = (E(x)_i, i)$
 - $Rate(E') = Rate(E) \frac{\log n}{\log |\Sigma|}$ $\Rightarrow n \ll |\Sigma|!$

- $E: \Sigma^k \to \Sigma^n \to E': \Sigma^k \to (\Sigma \times [n])^n$
 - $E'(x)_i = (E(x)_i, i)$
 - $Rate(E') = Rate(E) \frac{\log n}{\log |\Sigma|}$ $\Rightarrow n \ll |\Sigma|!$
 - Insertion (E') \Rightarrow Erasure (E)
 - Deletion (E') ⇒ Erasure (E)
 - Same location Ins.+Del. (E') \Rightarrow Error(E)

- $E: \Sigma^k \to \Sigma^n \to E': \Sigma^k \to (\Sigma \times [n])^n$
 - $E'(x)_i = (E(x)_i, i)$
 - $Rate(E') = Rate(E) \frac{\log n}{\log |\Sigma|}$ $\Rightarrow n \ll |\Sigma|!$
 - Insertion (E') \Rightarrow Erasure (E)
 - Deletion (E') ⇒ Erasure (E)
 - Same location Ins.+Del. (E') \Rightarrow Error(E)
 - *E* has distance $\gamma + \delta \Rightarrow E'$ is (δ, γ) -code.

Haeupler-Shahrasbi strategy

- Index with string $S = (S_1, ..., S_n) \in [c]^n$, w. $c = O(1) \ll n$
 - $E: \Sigma^k \to \Sigma^n \to E': \Sigma^k \to (\Sigma \times [c])^n$
 - $E'(x)_i = (E(x)_i, S_i)$

Haeupler-Shahrasbi strategy

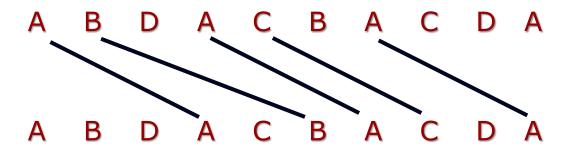
- Index with string $S = S_1, ..., S_n \in [c]^n$, w. $c = O(1) \ll n$
 - $E: \Sigma^k \to \Sigma^n \to E': \Sigma^k \to (\Sigma \times [c])^n$
 - $E'(x)_i = (E(x)_i, S_i)$
 - $Rate(E') = Rate(E) \frac{\log c}{\log |\Sigma|}$

Haeupler-Shahrasbi strategy

- Index with string $S = S_1, ..., S_n \in [c]^n$, w. $c = O(1) \ll n$
 - $E: \Sigma^k \to \Sigma^n \to E': \Sigma^k \to (\Sigma \times [c])^n$
 - $E'(x)_i = (E(x)_i, S_i)$
 - $Rate(E') = Rate(E) \frac{\log c}{\log |\Sigma|}$
- No longer have $i \neq j \Rightarrow S_i \neq S_j$
- What properties of S useful? Attainable? Verifiable/Constructible?

Synchronization Strings: Defn.

- ε-self-matching:
 - $M = \{(i_t, j_t) | 1 \le t \le m\} \subseteq [n] \times [n]$ is S-matching if
 - Matching: $i_1, ..., i_m$ distinct, $j_1, ..., j_m$ distinct
 - Non-trivially S-valid: $S_{i_t} = S_{i_t}$ but $i_t \neq j_t \ \forall t$
 - Monotone: $i_a < i_b \Rightarrow j_a < j_b$
 - $S \in S$ synch. string if $\forall S$ -matching M, $|M| \leq \epsilon \cdot n$



Synchronization Strings

■ Thm: $\forall \epsilon > 0 \exists c < \infty \forall n \exists S \in [c]^n \epsilon$ -synch. string.

Synchronization Strings

- Thm: $\forall \epsilon > 0 \; \exists \; c < \infty \; \forall n \; \exists \; S \in [c]^n \; \epsilon$ -synch. string.
- Random string is ∈-synch. string w.h.p.
- **Can** verify if S is ϵ -synch. string in poly time.
- [HS'17]+followups: Poly time explicit constructions.

Synchronization Strings

- Thm: $\forall \epsilon > 0 \; \exists \; c < \infty \; \forall n \; \exists \; S \in [c]^n \; \epsilon$ -synch. string.
- Random string is ∈-synch. string w.h.p.
- **Can** verify if S is ϵ -synch. string in poly time.
- [HS'17]+followups: Poly time explicit constructions.

How do they help correct decoding errors?

Ingredient: List-recoverable codes.

- Ingredient: List-recoverable codes.
 - $C \subseteq \Sigma^n$ is (δ, L) -list-decodable if for every $y = (y_1, ..., y_n) \in \Sigma^n$ if $S = \{x \in C \mid \#\{i \mid x_i \neq y_i\} \leq \delta.n\}$, then $|S| \leq L$ (and S can be computed efficiently given y)

- Ingredient: List-recoverable codes.
 - $C \subseteq \Sigma^n$ is (δ, L) -list-decodable if for every $y = (y_1, ..., y_n) \in \Sigma^n$ if $S = \{x \in C \mid \#\{i \mid x_i \neq y_i\} \leq \delta. n\}$, then $|S| \leq L$ (and S can be computed efficiently given y)

• $C \subseteq \Sigma^n$ is (ℓ, δ, L) -list-recoverable: if for every $Y_1 \times \cdots \times Y_n \subseteq \Sigma^n$ s.t. $|Y_i| \le \ell$ if $S = \{x \in C \mid \#\{i \mid x_i \notin Y_i\} \leq \delta . n\}$, then $|S| \leq L$ (S can be computed efficiently given $Y_1, ..., Y_n$)

- Ingredient: List-recoverable codes.
 - $C \subseteq \Sigma^n$ is (ℓ, δ, L) -list-recoverable: if for every $Y_1 \times \cdots \times Y_n \subseteq \Sigma^n$ s.t. $|Y_i| \le \ell$ if $S = \{x \in C \mid \#\{i \mid x_i \notin Y_i\} \le \delta, n\}$, then $|S| \le L$ (S can be computed efficiently given Y_1, \dots, Y_n)

- Ingredient: List-recoverable codes.
 - $C \subseteq \Sigma^n$ is (ℓ, δ, L) -list-recoverable: if for every $Y_1 \times \cdots \times Y_n \subseteq \Sigma^n$ s.t. $|Y_i| \le \ell$ if $S = \{x \in C \mid \#\{i \mid x_i \notin Y_i\} \le \delta, n\}$, then $|S| \le L$ (S can be computed efficiently given Y_1, \dots, Y_n)
 - Theorem [Guruswami-Rudra'06]+followups: $\forall \delta, \epsilon > 0, \ell \exists \Sigma, L \text{ s.t. } \exists \text{ a family of } (\ell, \delta, L)\text{-list-recoverable codes of rate } 1 \delta \epsilon$
 - "Folded-Reed-Solomon" codes + Guruswami-Indyk alphabet reduction.

(For
$$\ell = \frac{2(1+\gamma)}{\epsilon} \& \epsilon' = \frac{\epsilon}{2\ell}$$
)

Theorem: Let $E: \Sigma^k \to \Sigma^n$ be $(\ell, \delta + \epsilon, L)$ -list-recoverable. Let $S \in [c]^n$ be ϵ' -synch string. Then $E': \Sigma^k \to (\Sigma \times [c])^n$ given by $E'(x)_i = (E(x)_i, S_i)$ is (δ, γ) -list-decodable-code.

(For
$$\ell = \frac{2(1+\gamma)}{\epsilon} \& \epsilon' = \frac{\epsilon}{2\ell}$$
)

Proof by Algorithm: Given $(a_i, b_i)_{i \in [m]}$, $a_i \in \Sigma$, $b_i \in [c]$:

(For
$$\ell = \frac{2(1+\gamma)}{\epsilon} \& \epsilon' = \frac{\epsilon}{2\ell}$$
)

- Proof by Algorithm: Given $(a_i, b_i)_{i \in [m]}$, $a_i \in \Sigma$, $b_i \in [c]$:
 - Let $B = (b_1, ..., b_m)$; $Y_1 = \cdots = Y_n = \emptyset$

(For
$$\ell = \frac{2(1+\gamma)}{\epsilon} \& \epsilon' = \frac{\epsilon}{2\ell}$$
)

- Proof by Algorithm: Given $(a_i, b_i)_{i \in [m]}$, $a_i \in \Sigma$, $b_i \in [c]$:
 - Let $B = (b_1, 0, b_m)$; $Y_1 = \cdots = Y_n = \emptyset$
 - For ℓ iterations do:
 - Let M be largest monotone matching between B and S
 - Removed matched part from B; add matched a-symbols into Y_i s.

$$b_j \leftrightarrow S_i \Rightarrow Y_i \leftarrow Y_i \cup \{a_j\}$$

(For
$$\ell = \frac{2(1+\gamma)}{\epsilon} \& \epsilon' = \frac{\epsilon}{2\ell}$$
)

- Proof by Algorithm: Given $(a_i, b_i)_{i \in [m]}$, $a_i \in \Sigma$, $b_i \in [c]$:
 - Let $B = (b_1, ..., b_m)$; $Y_1 = \cdots = Y_n = \emptyset$
 - For ℓ iterations do:
 - Let M be largest monotone matching between B and S
 - Removed matched part from B; add matched a-symbols into Y_i s.
 - $b_j \leftrightarrow S_i \Rightarrow Y_i \leftarrow Y_i \cup \{a_j\}$
 - List-Recover from $Y_1, ..., Y_n$

- Say transmitted E'(x). Received $(a_j, b_j)_{j \in [m]}$
- $i = \text{"error"} \text{ if } E(x)_i \notin Y_i$.

- Say transmitted E'(x). Received $(a_j, b_j)_{j \in [m]}$
- $i = \text{"error"} \text{ if } E(x)_i \notin Y_i$.
- δn deletions $\Rightarrow \delta n$ errors. Any others?

- Say transmitted E'(x). Received $(a_j, b_j)_{j \in [m]}$
- $i = \text{"error"} \text{ if } E(x)_i \notin Y_i$.
- δn deletions $\Rightarrow \delta n$ errors. Any others?
- Say $E'(x)_i = (a_i, b_i)$ is not deleted. Why is $E(x)_i \notin Y_i$?

- Say transmitted E'(x). Received $(a_j, b_j)_{j \in [m]}$
- $i = \text{"error"} \text{ if } E(x)_i \notin Y_i$.
- δn deletions $\Rightarrow \delta n$ errors. Any others?
- Say $E'(x)_i = (a_i, b_i)$ is not deleted. Why is $E(x)_i \notin Y_i$?
 - Case 1: b_j matched to $S_{i'}$ for $i' \neq i$:
 - ϵ' -synch string $\Rightarrow \epsilon' n$ such errors per iteration.
 - ℓ -iterations $\Rightarrow \ell \epsilon' n \leq \frac{\epsilon n}{2}$ such errors.

- Say transmitted E'(x). Received $(a_j, b_j)_{j \in [m]}$
- $i = \text{"error"} \text{ if } E(x)_i \notin Y_i$.
- δn deletions $\Rightarrow \delta n$ errors. Any others?
- Say $E'(x)_i = (a_i, b_i)$ is not deleted. Why is $E(x)_i \notin Y_i$?
 - Case 1: b_i matched to $S_{i'}$ for $i' \neq i$:
 - ϵ' -synch string $\Rightarrow \epsilon' n$ such errors per iteration.
 - ℓ -iterations $\Rightarrow \ell \epsilon' n \leq \frac{\epsilon n}{2}$ such errors.
 - Case 2: b_i unmatched at end:
 - Let αn code symbols be unmatched at end. Then each iteration matched $\geq \alpha n$ symbols.

So
$$\ell \alpha n \le m \le (1+\gamma)n \Rightarrow \alpha n \le \frac{(1+\gamma)}{\ell} \le \frac{\epsilon n}{2}$$

- Say transmitted E'(x). Received $(a_j, b_j)_{j \in [m]}$
- $i = \text{"error"} \text{ if } E(x)_i \notin Y_i$.
- δn deletions $\Rightarrow \delta n$ errors. Any others?
- Say $E'(x)_i = (a_i, b_i)$ is not deleted. Why is $E(x)_i \notin Y_i$?
 - Case 1: b_i matched to $S_{i'}$ for $i' \neq i$:
 - ϵ' -synch string $\Rightarrow \epsilon' n$ such errors per iteration.
 - ℓ -iterations $\Rightarrow \ell \epsilon' n \leq \frac{\epsilon n}{2}$ such errors.
 - Case 2: b_i unmatched at end:
 - Let αn code symbols be unmatched at end. Then each iteration matched $\geq \alpha n$ symbols.

So
$$\ell \alpha n \le m \le (1+\gamma)n \Rightarrow \alpha n \le \frac{(1+\gamma)}{\ell} \le \frac{\epsilon n}{2}$$

Further work

- Editing + Interaction errors!
- Binary codes for edit distance: Positive rate limits known. [Guruswami-Haeupler-Shahrasbi]
- R vs. δ vs γ for binary codes?

Thank You!