# Codes for Editing Errors 

## Madhu Sudan

Harvard University

Based on (1) Haeupler and Shahrasbi - FOCS 2017
(2) Haeupler, Shahrasbi, S. - ICALP 2018

## Edit Distance \& Codes

- $X \in \Sigma^{n}$ and $Y \in \Sigma^{m}$ :
- $X \rightarrow_{\Delta, \Gamma} Y$ : If deleting $\leq \Delta$ symbols from $X$ and then inserting $\leq \Gamma$ symbols gives $Y$.


## Edit Distance \& Codes

- $X \in \Sigma^{n}$ and $Y \in \Sigma^{m}$ :
- $X \rightarrow_{\Delta, \Gamma} Y$ : If deleting $\leq \Delta$ symbols from $X$ and then inserting $\leq \Gamma$ symbols gives $Y$.
- Example: $010101010110 \rightarrow_{1,2} 0110100101110$


## Edit Distance \& Codes

- $X \in \Sigma^{n}$ and $Y \in \Sigma^{m}$ :
- $X \rightarrow_{\Delta, \Gamma} Y$ : If deleting $\leq \Delta$ symbols from $X$ and then inserting $\leq \Gamma$ symbols gives $Y$.
- Example: $010101010110 \rightarrow_{1,2} 011010010110$


## Edit Distance \& Codes

- $X \in \Sigma^{n}$ and $Y \in \Sigma^{m}$ :
- $X \rightarrow_{\Delta, \Gamma} Y$ : If deleting $\leq \Delta$ symbols from $X$ and then inserting $\leq \Gamma$ symbols gives $Y$.
- Example: $010101010110 \rightarrow_{1,2} 011010010110$
- Sanity check: $X \rightarrow_{\Delta, \Gamma} Y \Rightarrow Y \rightarrow_{\Gamma, \Delta} X$


## Edit Distance \& Codes

- $X \in \Sigma^{n}$ and $Y \in \Sigma^{m}$ :
- $X \rightarrow_{\Delta, \Gamma} Y:$ If deleting $\leq \Delta$ symbols from $X$ and then inserting $\leq \Gamma$ symbols gives $Y$.
- Example: $010101010110 \rightarrow_{1,2} 011010010110$
- Sanity check: $X \rightarrow_{\Delta, \Gamma} Y \Rightarrow Y \rightarrow_{\Gamma, \Delta} X$
- ( $\Delta, \Gamma$ )-Edit Distance Codes:
- $E: \Sigma^{k} \rightarrow \Sigma^{n} ; D: \Sigma^{*} \rightarrow \Sigma^{k}$


## Edit Distance \& Codes

- $X \in \Sigma^{n}$ and $Y \in \Sigma^{m}$ :
- $X \rightarrow_{\Delta, \Gamma} Y:$ If deleting $\leq \Delta$ symbols from $X$ and then inserting $\leq \Gamma$ symbols gives $Y$.
- Example: $010101010110 \rightarrow_{1,2} 011010010110$
- Sanity check: $X \rightarrow_{\Delta, \Gamma} Y \Rightarrow Y \rightarrow_{\Gamma, \Delta} X$
- ( $\Delta, \Gamma$ )-Edit Distance Codes:
- $E: \Sigma^{k} \rightarrow \Sigma^{n} ; D: \Sigma^{*} \rightarrow \Sigma^{k}$ $\forall X \in \Sigma^{k}, Y \in \Sigma^{*}$ s.t. $E(X) \rightarrow_{\Delta, \Gamma} Y, \quad D(Y)=X$


## Edit Distance \& Codes

- $X \in \Sigma^{n}$ and $Y \in \Sigma^{m}$ :
- $X \rightarrow_{\Delta, \Gamma} Y$ : If deleting $\leq \Delta$ symbols from $X$ and then inserting $\leq \Gamma$ symbols gives $Y$.
- Example: 01010 $1010110 \rightarrow_{1,2}$ 01/0100101円10
- Sanity check: $X \rightarrow_{\Delta, \Gamma} Y \Rightarrow Y \rightarrow_{\Gamma, \Delta} X$
- ( $\Delta, \Gamma$ )-Edit Distance Codes:
- $E: \Sigma^{k} \rightarrow \Sigma^{n} ; D: \Sigma^{*} \rightarrow \Sigma^{k}$
$\forall X \in \Sigma^{k}, Y \in \Sigma^{*}$ s.t. $E(X) \rightarrow_{\Delta, \Gamma} Y, \quad D(Y)=X$
- $E: \Sigma^{k} \rightarrow \Sigma^{n} ; D: \Sigma^{*} \rightarrow\binom{\Sigma^{k}}{L}$

List decoding
$\forall X \in \Sigma^{k}, Y \in \Sigma^{*}$ s.t. $E(X) \rightarrow_{\Delta, \Gamma} Y, \quad D(Y) \ni X$

## Edit-Distance Codes - 2

Given family of code $E=\left(E_{n}: \Sigma^{k_{n}} \rightarrow \Sigma^{n}\right)_{n}$

- Rate $=R=\lim _{n \rightarrow \infty} \frac{k_{n}}{n}$;


## Edit-Distance Codes - 2

- Given family of code $E=\left(E_{n}: \Sigma^{k_{n}} \rightarrow \Sigma^{n}\right)_{n}$
- Rate $=R=\lim _{n \rightarrow \infty} \frac{k_{n}}{n}$;
- $(\delta, \gamma)$-code if $E_{n}$ is ( $\left.\delta n, \gamma n\right)$-code $\forall n$


## Edit-Distance Codes - 2

- Given family of code $E=\left(E_{n}: \Sigma^{k_{n}} \rightarrow \Sigma^{n}\right)_{n}$
- Rate $=R=\lim _{n \rightarrow \infty} \frac{k_{n}}{n}$;
- $(\delta, \gamma)$-code if $E_{n}$ is $(\delta n, \gamma n)$-code $\forall n$
- Questions: what ( $\delta, \gamma, R$ ) achievable?


## Edit-Distance Codes - 2

- Given family of code $E=\left(E_{n}: \Sigma^{k_{n}} \rightarrow \Sigma^{n}\right)_{n}$
- Rate $=R=\lim _{n \rightarrow \infty} \frac{k_{n}}{n}$;
- $(\delta, \gamma)$-code if $E_{n}$ is $(\delta n, \gamma n)$-code $\forall n$
- Questions: what ( $\delta, \gamma, R$ ) achievable?
- With list-decoding?
- While $q=|\Sigma|=O(1)$
- Algorithmically?


## Brief History

- Notion dates back to '70s: Levenstein
- 

q=\operatorname{poly}(n), \quad R \rightarrow 1-(\delta+\gamma) unique decoding
\]

- Algorithmic!



## Brief History

- Notion dates back to '70s: Levenstein
- 

q=\operatorname{poly}(n), \quad R \rightarrow 1-(\delta+\gamma) unique decoding
\]

- Algorithmic!


## Brief History

- Notion dates back to '70s: Levenstein
- 

q=poly(n), \quad R \rightarrow 1-(\delta+\gamma) unique decoding
\]

- Algorithmic!


## Brief History

- Notion dates back to '70s: Levenstein
- 

q=\operatorname{poly}(n), \quad R \rightarrow 1-(\delta+\gamma) unique decoding
\]

- Algorithmic!


## Brief History

Notion dates back to '70s: Levenstein
[Schulman-Zuckerman '90s](%5B):

$$
q=\operatorname{poly}(n), \quad R \rightarrow 1-(\delta+\gamma) \text { unique decoding }
$$

- Algorithmic!
- List-decoding? $q=O(1)$ ?


## Brief History

- Notion dates back to '70s: Levenstein
- 

q=poly(n), \quad R \rightarrow 1-(\delta+\gamma) unique decoding
\]

- Algorithmic!
- List-decoding? $q=O(1)$ ?
- [Haeupler-Shahrasbi'17](%5B):
- $q=O(1) ; R \rightarrow 1-(\delta+\gamma)$ unique decoding


## Brief History



- Notion dates back to '70s: Levenstein
- 

q=poly(n), \quad R \rightarrow 1-(\delta+\gamma) unique decoding
\]

- Algorithmic!
- List-decoding? $q=O(1)$ ?
- 

q=O(1) ; R \rightarrow 1-(\delta+\gamma) unique decoding
\]

- [Haeupler-Shahrasbi-S.'18]
- $q=O_{\gamma, \delta, R}(1) ; R \rightarrow 1-\delta$ list decoding


## Schulman-Zuckerman Idea

- Indexing:

$$
\begin{aligned}
&-E: \Sigma^{k} \rightarrow \Sigma^{n} \rightarrow \quad E^{\prime}: \Sigma^{k} \rightarrow(\Sigma \times[n])^{n} \\
& \quad E^{\prime}(x)_{i}=\left(E(x)_{i}, i\right)
\end{aligned}
$$

## Schulman-Zuckerman Idea

- Indexing:

$$
\begin{aligned}
&-E: \Sigma^{k} \rightarrow \Sigma^{n} \rightarrow \quad E^{\prime}: \Sigma^{k} \rightarrow(\Sigma \times[n])^{n} \\
&-E^{\prime}(x)_{i}=\left(E(x)_{i}, i\right) \\
&=\operatorname{Rate}\left(E^{\prime}\right)=\operatorname{Rate}(E)-\frac{\log n}{\log |\Sigma|}
\end{aligned}
$$

## Schulman-Zuckerman Idea

- Indexing:

$$
\begin{array}{rl}
=E & E \Sigma^{k} \rightarrow \Sigma^{n} \rightarrow \quad E^{\prime}: \Sigma^{k} \rightarrow(\Sigma \times[n])^{n} \\
& ■ E^{\prime}(x)_{i}=\left(E(x)_{i}, i\right) \\
& \simeq \operatorname{Rate}\left(E^{\prime}\right)=\operatorname{Rate}(E)-\frac{\log n}{\log |\Sigma|} \quad \Rightarrow n \ll|\Sigma|!
\end{array}
$$

## Schulman-Zuckerman Idea

- Indexing:

$$
=E: \Sigma^{k} \rightarrow \Sigma^{n} \rightarrow E^{\prime}: \Sigma^{k} \rightarrow(\Sigma \times[n])^{n}
$$

- $E^{\prime}(x)_{i}=\left(E(x)_{i}, i\right)$
$-\operatorname{Rate}\left(E^{\prime}\right)=\operatorname{Rate}(E)-\frac{\log n}{\log |\Sigma|} \quad \Rightarrow n \ll|\Sigma|$ !
- Insertion ( $E^{\prime}$ ) $\Rightarrow$ Erasure ( $E$ )
- Deletion ( $E^{\prime}$ ) $\Rightarrow$ Erasure ( $E$ )
- Same location Ins. + Del. $\left(E^{\prime}\right) \Rightarrow \operatorname{Error}(E)$


## Schulman-Zuckerman Idea

- Indexing:

$$
=E: \Sigma^{k} \rightarrow \Sigma^{n} \rightarrow E^{\prime}: \Sigma^{k} \rightarrow(\Sigma \times[n])^{n}
$$

- $E^{\prime}(x)_{i}=\left(E(x)_{i}, i\right)$
$-\operatorname{Rate}\left(E^{\prime}\right)=\operatorname{Rate}(E)-\frac{\log n}{\log |\Sigma|} \quad \Rightarrow n \ll|\Sigma|$ !
- Insertion ( $E^{\prime}$ ) $\Rightarrow$ Erasure ( $E$ )
- Deletion ( $E^{\prime}$ ) $\Rightarrow$ Erasure ( $E$ )
- Same location Ins. + Del. $\left(E^{\prime}\right) \Rightarrow \operatorname{Error}(E)$
$-E$ has distance $\gamma+\delta \Rightarrow E^{\prime}$ is $(\delta, \gamma)$-code.


## Haeupler-Shahrasbi strategy

- Index with string $S=\left(S_{1}, \ldots, S_{n}\right) \in[c]^{n}$, w. $c=O(1) \ll n$
- $E: \Sigma^{k} \rightarrow \Sigma^{n} \rightarrow E^{\prime}: \Sigma^{k} \rightarrow(\Sigma \times[c])^{n}$
$-E^{\prime}(x)_{i}=\left(E(x)_{i}, S_{i}\right)$


## Haeupler-Shahrasbi strategy

- Index with string $S=S_{1}, \ldots, S_{n} \in[c]^{n}$, w. $c=O(1) \ll n$

$$
E: \Sigma^{k} \rightarrow \Sigma^{n} \rightarrow E^{\prime}: \Sigma^{k} \rightarrow(\Sigma \times[c])^{n}
$$

- $E^{\prime}(x)_{i}=\left(E(x)_{i}, S_{i}\right)$
$-\operatorname{Rate}\left(E^{\prime}\right)=\operatorname{Rate}(E)-\frac{\log c}{\log |\Sigma|}$


## Haeupler-Shahrasbi strategy

- Index with string $S=S_{1}, \ldots, S_{n} \in[c]^{n}$, w. $c=O(1) \ll n$
$-E: \Sigma^{k} \rightarrow \Sigma^{n} \rightarrow \quad E^{\prime}: \Sigma^{k} \rightarrow(\Sigma \times[c])^{n}$
$-E^{\prime}(x)_{i}=\left(E(x)_{i}, S_{i}\right)$
- $\operatorname{Rate}\left(E^{\prime}\right)=\operatorname{Rate}(E)-\frac{\log c}{\log |\Sigma|}$
- No longer have $i \neq j \Rightarrow S_{i} \neq S_{j}$
- What properties of $S$ useful? Attainable?

Verifiable/Constructible?

## Synchronization Strings: Defn.

- $\epsilon$-self-matching:
- $M=\left\{\left(i_{t}, j_{t}\right) \mid 1 \leq t \leq m\right\} \subseteq[n] \times[n]$ is $S$-matching if
- Matching: $i_{1}, \ldots, i_{m}$ distinct, $j_{1}, \ldots, j_{m}$ distinct
- Non-trivially $S$-valid: $S_{i_{t}}=S_{\text {有 }}$ but $i_{t} \neq j_{t} \forall t$
- Monotone: $i_{a}<i_{b} \Rightarrow j_{a}<j_{b}$

- $S \epsilon$-synch. string if $\forall S$-matching $M,|M| \leq \epsilon \cdot n$



## Synchronization Strings

- Thm: $\forall \epsilon>0 \exists c<\infty \forall n \exists S \in[c]^{n} \epsilon$-synch. string.


## Synchronization Strings

- Thm: $\forall \epsilon>0 \exists c<\infty \forall n \exists S \in[c]^{n} \epsilon$-synch. string.
- Random string is $\epsilon$-synch. string w.h.p.
- Can verify if $S$ is $\epsilon$-synch. string in poly time.
- [HS'17]+followups: Poly time explicit constructions.


## Synchronization Strings

- Thm: $\forall \epsilon>0 \exists c<\infty \forall n \exists S \in[c]^{n} \epsilon$-synch. string.
- Random string is $\epsilon$-synch. string w.h.p.
- Can verify if $S$ is $\epsilon$-synch. string in poly time.
- [HS'17]+followups: Poly time explicit constructions.
- How do they help correct decoding errors?


## List-decoding + Synchronization Strings

- Ingredient: List-recoverable codes.


## List-decoding + Synchronization Strings

- Ingredient: List-recoverable codes.
- $C \subseteq \Sigma^{n}$ is $(\delta, L)$-list-decodable if
for every $y=\left(y_{1}, \ldots, y_{n}\right) \in \Sigma^{n}$
if $S=\left\{x \in C \mid \#\left\{i \mid x_{i} \neq y_{i}\right\} \leq \delta, n\right\}$,
then $|S| \leq L$
(and $S$ can be computed efficiently given $y$ )


## List-decoding + Synchronization Strings

- Ingredient: List-recoverable codes.
$-C \subseteq \Sigma^{n}$ is $(\delta, L)$-list-decodable if
for every $y=\left(y_{1}, \ldots, y_{n}\right) \in \Sigma^{n}$
if $S=\left\{x \in C \mid \#\left\{i \mid x_{i} \neq y_{i}\right\} \leq \delta, n\right\}$,
then $|S| \leq L$
(and $S$ can be computed efficiently given $y$ )
- $C \subseteq \Sigma^{n}$ is $(\ell, \delta, L)$-list-recoverable: if
for every $Y_{1} \times \cdots \times Y_{n} \subseteq \Sigma^{n}$ s.t. $\left|Y_{i}\right| \leq \ell$
if $S=\left\{x \in C \mid \#\left\{i \mid x_{i} \notin Y_{i}\right\} \leq \delta, n\right\}$,
then $|S| \leq L$
( $S$ can be computed efficiently given $Y_{1}, \ldots, Y_{n}$ )


## List-decoding + Synchronization Strings

- Ingredient: List-recoverable codes.
- $C \subseteq \Sigma^{n}$ is $(\ell, \delta, L)$-list-recoverable: if for every $Y_{1} \times \cdots \times Y_{n} \subseteq \Sigma^{n}$ s.t. $\left|Y_{i}\right| \leq \ell$
if $S=\left\{x \in C \mid \#\left\{i \mid x_{i} \notin Y_{i}\right\} \leq \delta, n\right\}$,
then $|S| \leq L$
( $S$ can be computed efficiently given $Y_{1}, \ldots, Y_{n}$ )


## List-decoding + Synchronization Strings

- Ingredient: List-recoverable codes.
$-C \subseteq \Sigma^{n}$ is $(\ell, \delta, L)$-list-recoverable: if
for every $Y_{1} \times \cdots \times Y_{n} \subseteq \Sigma^{n}$ s.t. $\left|Y_{i}\right| \leq \ell$
if $S=\left\{x \in C \mid \#\left\{i \mid x_{i} \notin Y_{i}\right\} \leq \delta, n\right\}$,
then $|S| \leq L$
( $S$ can be computed efficiently given $Y_{1}, \ldots, Y_{n}$ )
- Theorem [Guruswami-Rudra'06]+followups: $\forall \delta, \epsilon>0, \ell \exists \Sigma, L$ s.t. $\exists$ a family of $(\ell, \delta, L)$-listrecoverable codes of rate $1-\delta-\epsilon$
- "Folded-Reed-Solomon" codes + Guruswami-Indyk alphabet reduction.


## List-decodable codes for editing errors

Theorem: Let $E: \Sigma^{k} \rightarrow \Sigma^{n}$ be $(\ell, \delta+\epsilon, L)$-list-recoverable. Let $S \in[c]^{n}$ be $\epsilon^{\prime}$-synch string. Then $E^{\prime}: \Sigma^{k} \rightarrow(\Sigma \times[c])^{n}$ given by $E^{\prime}(x)_{i}=\left(E(x)_{i}, S_{i}\right)$ is ( $\left.\delta, \gamma\right)$-list-decodable-code.

$$
\left(\text { For } \ell=\frac{2(1+\gamma)}{\epsilon} \& \epsilon^{\prime}=\frac{\epsilon}{2 \ell}\right)
$$

## List-decodable codes for editing errors

Theorem: Let $E: \Sigma^{k} \rightarrow \Sigma^{n}$ be $(\ell, \delta+\epsilon, L)$-list-recoverable. Let $S \in[c]^{n}$ be $\epsilon^{\prime}$-synch string. Then $E^{\prime}: \Sigma^{k} \rightarrow(\Sigma \times[c])^{n}$ given by $E^{\prime}(x)_{i}=\left(E(x)_{i}, S_{i}\right)$ is ( $\left.\delta, \gamma\right)$-list-decodable-code.

$$
\left(\text { For } \ell=\frac{2(1+\gamma)}{\epsilon} \& \epsilon^{\prime}=\frac{\epsilon}{2 \ell}\right) \quad \psi_{\psi}[c]
$$

- Proof by Algorithm: Given $\left(a_{i}, b_{i}\right)_{i \in[m]}, a_{i} \in \Sigma, b_{i} \in[c]$ :


## List-decodable codes for editing errors

Theorem: Let $E: \Sigma^{k} \rightarrow \Sigma^{n}$ be $(\ell, \delta+\epsilon, L)$-list-recoverable. Let $S \in[c]^{n}$ be $\epsilon^{\prime}$-synch string. Then $E^{\prime}: \Sigma^{k} \rightarrow(\Sigma \times[c])^{n}$ given by $E^{\prime}(x)_{i}=\left(E(x)_{i}, S_{i}\right)$ is ( $\left.\delta, \gamma\right)$-list-decodable-code.

$$
\left(\text { For } \ell=\frac{2(1+\gamma)}{\epsilon} \& \epsilon^{\prime}=\frac{\epsilon}{2 \ell}\right)
$$

- Proof by Algorithm: Given $\left(a_{i}, b_{i}\right)_{i \in[m]}, a_{i} \in \Sigma, b_{i} \in[c]$ :
- Let $B=\left(b_{1}, \ldots, b_{m}\right) ; Y_{1}=\cdots=Y_{n}=\varnothing$

$S_{m}$


## List-decodable codes for editing errors

- Theorem: Let $E: \Sigma^{k} \rightarrow \Sigma^{n}$ be ( $\ell, \delta+\epsilon, L$ )-list-recoverable. Let $S \in[c]^{n}$ be $\epsilon^{\prime}$-synch string. Then $E^{\prime}: \Sigma^{k} \rightarrow(\Sigma \times[c])^{n}$ given by $E^{\prime}(x)_{i}=\left(E(x)_{i}, S_{i}\right)$ is ( $\left.\delta, \gamma\right)$-list-decodable-code.

$$
\text { (For } \left.\ell=\frac{2(1+\gamma)}{\epsilon} \& \epsilon^{\prime}=\frac{\epsilon}{2 \ell}\right)
$$

- Proof by Algorithm: Given $\left(a_{i}, b_{i}\right)_{i \in[m]}, a_{i} \in \Sigma, b_{i} \in[c]$ :
- Let $B=\left(b_{1}, ~, ~, ~ b_{m}\right) ; Y_{1}=\cdots=Y_{n}=\varnothing$


For $\ell$ iterations do:

- Let $M$ be largest monotone matching between $B$ and $S$
- Removed matched part from $B$; add matched $a$-symbols into $Y_{i}$ s.

$$
b_{j} \leftrightarrow S_{i} \Rightarrow Y_{i} \leftarrow Y_{i} \cup\left\{a_{j}\right\}
$$



## List-decodable codes for editing errors

$\forall \delta, \gamma, \in \quad \exists, \Sigma, \epsilon, l, e$ s.t.

- Theorem: Let $E: \Sigma^{k} \rightarrow \Sigma^{n}$ be $(\ell, \delta+\epsilon, L)$-list-recoverable. Let $S \in[c]^{n}$ be $\epsilon^{\prime}$-synch string. Then $E^{\prime}: \Sigma^{k} \rightarrow(\Sigma \times[c])^{n}$ given by $E^{\prime}(x)_{i}=\left(E(x)_{i}, S_{i}\right)$ is ( $\left.\delta, \gamma\right)$-list-decodable-code.

$$
\left(\text { For } \ell=\frac{2(1+\gamma)}{\epsilon} \& \epsilon^{\prime}=\frac{\epsilon}{2 \ell}\right)
$$

- Proof by Algorithm: Given $\left(a_{i}, b_{i}\right)_{i \in[m]}, a_{i} \in \Sigma, b_{i} \in[c]$ :
- Let $B=\left(b_{1}, \ldots, b_{m}\right) ; Y_{1}=\cdots=Y_{n}=\emptyset$
- For $\ell$ iterations do:
- Let $M$ be largest monotone matching between $B$ and $S$
- Removed matched part from $B$; add matched $a$-symbols into $Y_{i} \mathrm{~s}$.

$$
=b_{j} \leftrightarrow S_{i} \Rightarrow Y_{i} \leftarrow Y_{i} \cup\left\{a_{j}\right\}
$$

- List-Recover from $Y_{1}, \ldots, Y_{n}$


## Analysis of Algorithm

- Say transmitted $E^{\prime}(x)$. Received $\left(a_{j}, b_{j}\right)_{j \in[m]}$
- $i=$ "error" if $E(x)_{i} \notin Y_{i}$.


## Analysis of Algorithm

- Say transmitted $E^{\prime}(x)$. Received $\left(a_{j}, b_{j}\right)_{j \in[m]}$
- $i=$ "error" if $E(x)_{i} \notin Y_{i}$.
- $\delta n$ deletions $\Rightarrow \delta n$ errors. Any others?


## Analysis of Algorithm

- Say transmitted $E^{\prime}(x)$. Received $\left(a_{j}, b_{j}\right)_{j \in[m]}$
- $i=$ "error" if $E(x)_{i} \notin Y_{i}$.
- $\delta n$ deletions $\Rightarrow \delta n$ errors. Any others?
- Say $E^{\prime}(x)_{i}=\left(a_{j}, b_{j}\right)$ is not deleted. Why is $E(x)_{i} \notin Y_{i}$ ?


## Analysis of Algorithm

- Say transmitted $E^{\prime}(x)$. Received $\left(a_{j}, b_{j}\right)_{j \in[m]}$
- $i=$ "error" if $E(x)_{i} \notin Y_{i}$.
- $\delta n$ deletions $\Rightarrow \delta n$ errors. Any others?
- Say $E^{\prime}(x)_{i}=\left(a_{j}, b_{j}\right)$ is not deleted. Why is $E(x)_{i} \notin Y_{i}$ ?
- Case 1: $b_{j}$ matched to $S_{i}$, for $i^{\prime} \neq i$ :
- $\epsilon^{\prime}$-synch string $\Rightarrow \epsilon^{\prime} n$ such errors per iteration.
- $\ell$-iterations $\Rightarrow \ell \epsilon^{\prime} n \leq \frac{\epsilon n}{2}$ such errors.


## Analysis of Algorithm

- Say transmitted $E^{\prime}(x)$. Received $\left(a_{j}, b_{j}\right)_{j \in[m]}$
- $i=$ "error" if $E(x)_{i} \notin Y_{i}$.
- $\delta n$ deletions $\Rightarrow \delta n$ errors. Any others?
- Say $E^{\prime}(x)_{i}=\left(a_{j}, b_{j}\right)$ is not deleted. Why is $E(x)_{i} \notin Y_{i}$ ?
- Case 1: $b_{j}$ matched to $S_{i}$, for $i^{\prime} \neq i$ :
- $\epsilon^{\prime}$-synch string $\Rightarrow \epsilon^{\prime} n$ such errors per iteration.
- $\ell$-iterations $\Rightarrow \ell \epsilon^{\prime} n \leq \frac{\epsilon n}{2}$ such errors.
- Case 2: $b_{j}$ unmatched at end:
- Let $\alpha$ n code symbols be unmatched at end. Then each iteration matched $\geq \alpha n$ symbols. So $\ell \alpha n \leq m \leq(1+\gamma) n \Rightarrow \alpha n \leq \frac{(1+\gamma)}{\ell} n \leq \frac{\epsilon n}{2}$


## Analysis of Algorithm

- Say transmitted $E^{\prime}(x)$. Received $\left(a_{j}, b_{j}\right)_{j \in[m]}$
- $i=$ "error" if $E(x)_{i} \notin Y_{i}$.
- $\delta n$ deletions $\Rightarrow \delta n$ errors. Any others?
- Say $E^{\prime}(x)_{i}=\left(a_{j}, b_{j}\right)$ is not deleted. Why is $E(x)_{i} \notin Y_{i}$ ?
- Case 1: $b_{j}$ matched to $S_{i}$, for $i^{\prime} \neq i$ :
- $\epsilon^{\prime}$-synch string $\Rightarrow \epsilon^{\prime} n$ such errors per iteration.
- $\ell$-iterations $\Rightarrow \ell \epsilon^{\prime} n \leq \frac{\epsilon n}{2}$ such errors.
- Case 2: $b_{j}$ unmatched at end:
- Let $\alpha$ n code symbols be unmatched at end. Then each iteration matched $\geq \alpha$ n symbols.

$$
\text { So } \ell \alpha n \leq m \leq(1+\gamma) n \Rightarrow \alpha n \leq \frac{(1+\gamma)}{\ell} \leq \frac{\epsilon n}{2}
$$

## Further work

- Editing + Interaction errors!
- Binary codes for edit distance: Positive rate limits known. [Guruswami-Haeupler-Shahrasbi]
- Rvs. $\delta$ vs $\gamma$ for binary codes?


## Thank You!

