
CS 229r Essential Coding Theory, Lecture 1 Jan 27, 2020

Lecture 1
Instructor: Madhu Sudan Scribe: Amir Shanehsazzadeh

1 Today

• Course Information

• Hamming’s Problem (Toy)

• Solutions

• Model/Formation

• Limits

2 Course Information

Welcome to CS 229r: Essential Coding Theory! The Lecturer for this class is Professor Madhu Sudan. His
Office Hours are Monday, Wednesday from 4:30-5:30 pm in MD 339. The TF is Chi-Ning Chou. The course
website can be found at http://madhu.seas.harvard.edu/courses/Spring2020/. Here there is a detailed
syllabus, a pointer to the course’s unofficial textbook, and additional references. Make sure you have access
to the class’ Piazza and Canvas sites and that you sign up for scribing. Grading will be determined using
Problem Sets (40%), a Final Project (30%), Participation (15%), and Scribing at least one lecture (15%).
For lectures before spring break limit the number of scribes to 1. After spring break the limit will be raised
to 2. PSET0 is out and due this Friday!

The topic of this course is error-correcting codes. We will proceed by constructing and studying codes,
proving limits and bounds on the properties of these codes, and creating algorithms that efficiently encode
and decode. Note that this is a mathematical course at the Graduate level, so there will be some level of
hand-waving. Two significant papers motivate our studies. The first is Shannon ’48 and the second Hamming
’50. Both Shannon and Hamming were working at Bell Labs. Shannon was thinking about communication
devices whereas Hamming was thinking about storage devices and the study information over time. One
thing to note is that communication devices allow for a ”resend.”

3 Hamming’s Problem and Framework

Today’s lecture is based on Hamming ’50. Suppose we have a storage device that can store 1000 bits. In 1
day this device admits at most 1 error.

0011011000011000 7→ 001101100101100.

Can we detect a single error if our stored input is m ∈ {0, 1}1000? The answer is no. To prevent errors we
must add some level of redundancy or ”wiggle room.” Specifically, we want to construct an Encoder and
Detector such that

m ∈ {0, 1}? → Encoder→ {0, 1}1000 → Storage Device→ {0, 1}1000 → Detector→

YES No Errors

NO 1 Error

Arbitrary Otherwise

.

CS 229r Essential Coding Theory, Lecture 1-1

4 Naive Solutions

The first solution is to take 500 bits and repeat them twice:

010110 · · · → Encoder→ 001100111100 · · · .

Then our detector returns NO if any adjacent pair of bits differ and otherwise returns YES. The problem
with this code is that its rate is R = 500

1000 = 1
2 .

The second solution is to take 999 bits and XOR them:

x1, ..., x999 → Encoder→ x1, ..., x999,

999⊕
i=1

xi.

Our detector then returns the truth value of

999⊕
i=1

xi =

999⊕
i=1

x̂i.

If a single bit is flipped then the above expression is false, otherwise it is true. This is much better as the
rate is R = 999

1000 , which is as good as we can get.
Now we want to be able to detect 2, 3, 4, ... errors. Something better though would be to correct 1, 2,

3, ... errors. Our framework now aims to find a decoder such that:

m ∈ {0, 1}? → Encoder→ {0, 1}1000 → Storage Device→ {0, 1}1000 → Decoder→

{
m At most 1 error

Arbitrary Otherwise
.

For correcting 1 error we can repeat thrice instead of twice. More specifically we take 333 bits and map:

010110 · · · → Encoder→ 000111000111111000 · · · .

Then if we take the majority vote of every group of three we get the correct bit. We have now achieved a
rate of R = 333

1000 ≈
1
3 .

5 Hamming’s Solution Version 1

The naive repetition approach above for correcting a single error is in fact not optimal. We can improve the
rate of the code using a more complicated scheme. Hamming’s starting solution was to break up sequences
of bits into continuous length 4 sequences:

x1x2...→ (x1, x2, x3, x4), (x5, x6, x7, x8),

Next we map each 4-tuple to a 7-tuple:

x = (x1, x2, x3, x4) ∈ F4
2 → y = (x1, x2, x3, x4, x1 ⊕ x2 ⊕ x4, x1 ⊕ x3 ⊕ x4, x2 ⊕ x3 ⊕ x4) ∈ F7

2.

Here F2 is the field with 2 elements. Addition and multiplication are defined modulo 2.

Exercise 1. Convince yourself (perhaps using casework) that Hamming’s solution here works.

Define the generator matrix G ∈ F4×7
2 of the code by:

G =

0 0 1 0 1 1 0
0 1 0 0 1 0 1
1 0 0 0 0 1 1
0 0 0 1 1 1 1

 (1)

CS 229r Essential Coding Theory, Lecture 1-2

The encoding of a message x is y = xG. A generator matrix will always be ”fat” and have more columns
than rows. Now define H ∈ F7×3

2 as

H =

0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

(2)

Note that each row H is unique and that GH = 0. It’s easy to verify the latter observation computationally.
Now the encoder E maps our message m = (x1, x2, x3, x4) ∈ F4

2 to E(m) = (x1, x2, x3, x4) · G. Let y =
E(m) + ei where ei ∈ F7

2 is a vector with 0s everywhere and a 1 at the ith index. Then we claim that
y ·H = (i) in binary. Why is this true? We defined E(m) = m ·G. Then

y ·H = (E(m) + ei) ·H = m ·G ·H + ei ·H = ei ·H = (i).

One thing to note is that if there are no errors then y ·H = (0). What we have done is create a code that
returns the index of the error if an error has occurred. In this code G maps a 4 bit object to a 7 bit object
and H maps a 7 bit object to a 3 bit object. The rate is R = 4

7 .

6 Hamming’s Solution Version 2

Must H map from 7 bits to 3 bits? No. Notice that 7 = 23 − 1. In general we can construct a matrix H`

that maps 2` − 1 bits to ` bits. This matrix H` is just the binary representation of the value of each row.
We can write

H` =

0 0 0 · · · 0 0 1
0 0 0 · · · 0 1 0

...
1 1 1 · · · 1 1 0
1 1 1 · · · 1 1 1

 (3)

The above matrix has ` columns. Note that ei ·H = (i) 6= (0).
Let G ∈ Fk×n

2 be full rank with G ·H = 0. Then the encoder EG : Fk
2 → Fn

2 given by m 7→ m ·G corrects
one error. The proof of this is identical to the previous proof. Note that

(m ·G + ei) ·H = m ·G ·H + ei ·H = ei ·H = (i) 6= (0).

This again allows us to locate a potential error and recover m from m ·G if G is full rank.
Why must G be full rank? This is for linear algebra purposes. The following exercise shows the importance

of G being full rank.

Exercise 2. Prove that for any H ∈ Fn×`
2 there exists a full rank G ∈ F(n−`)×n

2 such that G ·H = 0. This
is called the orthogonal space.

If we take ` = 10 then there exists G : F1013
2 → F1023

2 and H ∈ F1023×10
2 such that G ·H = 0. Is this the

best we can do? We will see that the answer to this is yes.

7 1000 Bit Limit

What about the fact that our storage device only stores 1000 (and not 1023) bits? It turns out we can
essentially remove the last 23 bits in the encoding. To see why this is true we can write out a 21013 × 1023
matrix where each row is the encoding of one of the 21013 different elements of F1013

2 . Consider the last 23

CS 229r Essential Coding Theory, Lecture 1-3

columns. The values of the elements in these columns can be partitioned into 0, 1, 2, ..., 223 − 1 and by the
pigeonhole principle at least one of them must have 21013/223 = 2990 elements. Let’s suppose that the value
2 (this value is arbitrary) has at least 990 elements x, y1, y2, ..., y989. Then the bucket with value 0 contains
at least 990 elements, specifically they are x− x, x− y1, x− y − 2, ..., x− y989. And so we are done.

Why can we not do better? Consider trying to make a code that maps F991
2 to F1000

2 . Our code is also
defined so that for m ∈ F991

2 and x ∈ F1000
2 we have m↔ x if E(m) = x or E(m)⊕ ei = x for some i. If we

view our code as a bipartite graph from a set of 2991 elements to a set of 21000 elements then the number
of edges is easily seen to be 2991(1001) > 21000 since 1001 > 29 = 512. But then by the pigeonhole principle
there must exist an x ∈ F1000

2 such that for m1,m2 ∈ F991
2 with m1 6= m2 we have E(m1) = E(m2) = x.

Thus our code is not injective.

8 Citation Aside

Interestingly enough, Shannon ’48 cites Hamming ’50 which cites Golay ’49 which cites Shannon ’48.

9 Detecting ≡ Correcting

Thus far we have shown how to best detect and correct 1 error. What about detecting and correcting n
errors? Hamming showed the amazing result that detecting 2t errors is the same as correcting t errors. The
idea is to consider a message m ∈ {0, 1}k that is encoded to E(m) ∈ {0, 1}n. For x ∈ Fn

2 we will create the
correspondence m↔ x if x = E(m) + up to t-many errors.

For an arbitrary discrete alphabet Σ let us define the distance between x = (x1, ..., xn), y = (y1, ..., yn) ∈
Σn as

∆(x, y) = #{i | xi 6= yi}..

Hamming had a notion of a distance d code E : Σk → Σn (injective). Here the ”code” corresponding to E
is equal to C = {E(m) | m ∈ Σk} ⊂ Σn. Hamming’s notion of distance is

Distance(C) := min
x,y∈C,x6=y

{∆(x, y)}.

Exercise 3. Prove that Hamming distance is in fact a metric.

A code of distance d detects d − 1 errors and corrects
⌊
d−1
2

⌋
errors. This is clear geometrically. In our

code space C ⊂ Σn consider a point c ∈ C. Then a neighborhood of radius d− 1 about C is disjoint with the
rest of C allowing for the detection of d− 1 errors. Now take two points a, b ∈ C and take neighborhoods of
radius

⌊
d−1
2

⌋
about them. These neighborhoods are disjoint allowing for the correction of

⌊
d−1
2

⌋
errors. See

below for a beautiful artist’s rendition.

CS 229r Essential Coding Theory, Lecture 1-4

Figure 1: Geometric Intuition behind Hamming Distance

CS 229r Essential Coding Theory, Lecture 1-5

