
CS 229r Essential Coding Theory Apr 22, 2020

Lecture 23
Instructor: Madhu Sudan Scribe: Pratap Singh

1 Today

1.1 Admin

• Optional, updated problem set 6 now out on Piazza.

1.2 Coding Theory in Complexity/Cryptography

Two major topic areas for today:

• Hardcore predicates for one-way permutations, using list decoding.

• Worst-case to average-case reduction (example: matrix permanent), using a locally decodable code.

2 Hardcore predicates for one-way permutations

2.1 One-way permutations

Definition 1 (One-way permutation). A function f : {0, 1}k → {0, 1}k is a one-way permutation iff the
following hold:

1. f is a permutation: ∃f−1 : {0, 1}k → {0, 1}k s.t. ∀x ∈ {0, 1}k, f−1(f(x)) = x.

2. f is computable in polynomial time in the worst case.

3. f−1 is “very hard” to compute on average.

We define “very hard” as follows:

Definition 2 (ε(k)-approximable). A function g : {0, 1}k → {0, 1}k is ε(k)-approximable if there exists
some polynomial-time computable algorithm A s.t. Prx [A(x) = g(x)] ≥ ε(k).

Definition 3 (“Very hard” function). A function f : {0, 1}k → {0, 1}k is said to be “very hard” to compute
if for every polynomial p(k), f is not (1/p(k))-approximable.

2.2 Hardcore predicates

One-way permutations are relevant in cryptography–we could encrypt a message efficiently using an o.w.p.,
but an eavesdropper would not be able to recover the message from its encryption. But some o.w.p.s may
“leak” information–some part of the message may be present unchanged in the output. Consider the following
exercise:

Exercise 4. Let f : {0, 1}k → {0, 1}k be an o.w.p., and let F : {0, 1}2k → {0, 1}2k be defined by F (x, y) =
(f(x), y). Prove that F is an o.w.p.

CS 229r Essential Coding Theory-1

Sketch of Proof Clearly, if f is a permutation then F is also a permutation, and if f is computable
in worst-case polynomial time then F is also computable in worst-case polynomial time. In order to ε-
approximate F−1 we would need to ε-approximate f−1, which by definition is not possible for any polynomial
accuracy ε; therefore F−1 is not ε-approximable for any polynomial epsilon.

The F defined in Exercise 4 is an o.w.p., but the last k bits of the message are visible in the last k bits of
the output. This is not much good for encryption. In general, we want a way of discussing what information
abut x can be gleaned just by looking at f(x). This gives us the following definition.

Definition 5 (Hardcore predicate). For some function f : {0, 1}k → {0, 1}k, a hardcore predicate is some
function b that satisfies the following properties:

• b is a predicate: b : {0, 1}k → {0, 1}.

• b is “hardcore”:

1. b is computable in polynomial time given x.

2. b is hard to compute given f(x).

2′. It is “very hard” to compute b(x) given f(x).

Specifically, for every polynomial p, b ◦ f−1 is not
(

1
2 + 1

p(k)

)
-approximable.

Note that property 2′ implies property 2 in Definition 5. Since b is a predicate, one of the constant 0 or
constant 1 functions would be a 1/2-approximator; hence we require that we cannot do any better than a
1/2-approximation.

Exercise 6. Suppose b is a hardcore predicate for some permutation f . If f is easy (poly-time computable),
show that f is an o.w.p. (This should be immediate from definitions.)

Sketch of Proof Immediate from definitions. If b is hardcore for f , then since b is computable in poly-
time (property 1 from Definition 5) but b◦f−1 is not poly-time approximable (property 2 from Definition 5),
it cannot be the case that f−1 is poly-time approximable. If f−1 were poly-time approximable, we could
approximate b ◦ f−1 in the obvious way. Therefore, since f is easy but f−1 is hard, f is an o.w.p.

2.3 Motivation: PRGs from hardcore predicates and o.w.p.s

We shall see that it is possible to create pseudorandom generators from hardcore predicates and o.w.p.s.
For this class, we will use a much stronger cryptographic definition of PRG than last class: a PRG that can
“fool every polynomial-time function to ε”.

Definition 7 (Cryptographic PRG). A function G : {0, 1}n → {0, 1}m is a pseudorandom generator iff
m > n and ∀ polynomial-time functions A, ∀ polynomials P , ∀x,

A(G(x)) ≈ 1
P (n)

A(Unif({0, 1}m))

where Unif({0, 1}m) is the uniform distribution over {0, 1}m.
If 1

P (n) = ε(n), we say that G is an ε-PRG.

We can generate a PRG from an o.w.p. and a hardcore predicate, as follows.

Theorem 8 (PRG from o.w.p. and hardcore predicate). Suppose f : {0, 1}k → {0, 1}k is an o.w.p. and b
is hardcore for f . Then

G(x) = (b(x), b(f(x)), b(f2(x)), . . . , b(fm−1(x))

is a PRG (for m > k).

CS 229r Essential Coding Theory-2

Proof. We omit many of the details, but the general structure is as follows. Let Gi(x) = (b(x), Gi−1(f(x))),
G0(x) = x. First, show that if b is hardcore for f , G1 is an ε-PRG. Second, show that if G1(x) is an ε-PRG,
then Gm is an m · ε-PRG.

Exercise 9. Fill in the details of the proof of theorem 8.

Sketch of Proof We first show that G1(x) = (b(x), f(x)) is a PRG. For contraposition, assume G1 is not
a PRG and there exists some algorithm B that distinguishes it from the uniform distribution. In this case
we could break property 2′ of Definition 5 as follows. Suppose we want to compute b ◦ f−1 on some input y.
We compute A(1, y), which will tell us if (1, y) is a uniform random string or the output of G1. If it is the
output of G1, we know that b ◦ f−1(y) = 1; otherwise, b ◦ f−1(y) must be 0 and we can output 0. Since A is
poly-time computable and gives us advantage ε, we can thus poly-time approximate b ◦ f−1 with advantage
ε.

We can use a similar argument to show that if G1 is a PRG, the m-bit construction of G is not a PRG.
Suppose we can distinguish G from the uniform distribution using algorithm A. Now, consider h(x) =
(U1, b(f(x)), b(f2(x)), . . . , b(fm−1(x)), where U1 is a single uniform bit. If we can distinguish h(x) from
G(x) then we are clearly able to break the PRG property of G1, since we would then be able to compute b(x)
given f(x) (as described above). We can use the algorithm A to distinguish h(x) from G(x) by applying A
on m samples from h. Note also that this argument can extend to t uniform bits at the start of the message,
thus giving us the required inductive argument. Each step reduces the advantage of the PRG by ε, so that
if G1 is an ε-PRG, then G is an (m · ε)-PRG.

2.4 A hardcore predicate for (many) o.w.p.s

We would like to be able to generate hardcore predicates for every o.w.p. At present, specific examples are
known, such as f = RSA and b = most significant bit. But these constructions are not known to generalize
nicely; for example, f = RSA and b = least significant bit. The ideal result would be if there was one b
that is hardcore for every o.w.p., but this is unlikely to be the case. Today we will get close by using a
list-decodable code.

Theorem 10 (Hardcore predicate for many o.w.p.s). For all k, there exists some m > k and some function
b : {0, 1}m → {0, 1} such that for every o.w.p. f : {0, 1}k → {0, 1}k, there exists some o.w.p. F : {0, 1}m →
{0, 1}m that is a padding of f (in the sense of exercise 4) and such that b is hardcore for F .

Proof. We first give the m and b, then prove that the theorem holds. We use some code C : {0, 1}k → {0, 1}n
which is efficiently encodable and list-decodable from (1

2 − ε) fraction of errors. Let m = k + log n, i ∈ [n].

Then let F (x, i) , (f(x), i), and let b(x, i) = C(x)i.
We give a contrapositive proof of the theorem: suppose that b is not hardcore for F , then show that f is

not an o.w.p. In particular, assume that there exists some poly-time computable A s.t. A(f(x), i) = C(x)i
with probability at least 1

2 + α over x and i.
By Markov’s inequality, we have that

Pr
x

[
Pr
i

[A(f(x), i) = C(x)i] ≥
1

2
+
α

2

]
≥ α

2
.

(We apply Markov’s inequality by thinking of Pri [A(f(x), i) = C(x)i] as a random variable over [0, 1], then
bounding the tail.) Let a particular x be “good” if it satisfies the inner condition that Pri [A(f(x), i) = C(x)i] ≥
1
2 + α

2 . We claim that the following algorithm will approximate the inverse of f .

• Input: y = f(x) for some x.

• for i in [n] let wi = A(y, i).

• List-decode w as {x1, x2, . . . , xL}.

CS 229r Essential Coding Theory-3

• If f(xi) = y, output xi.

Now, if x is “good” then ∆(w,C(x)) ≤ 1
2 − α

2 . In this case, list-decoding is successful and the inverter
algorithm will output x. Since x is good with probability at least α/2, if α/2 ≥ ε, then we can invert
f with probability at least ε. Thus, if b is 2ε-approximable, then f is ε-approximable. This gives us the
contraposition we need. We also note that since we can list-decode C in polynomial time (by assumption),
our construction yields a polynomial-time algorithm.

3 Worst-case to average-case reduction

In general it is (relatively) easy to reason about worst-case complexity of functions, and we have lots of results
about worst-case complexity. But often we are more interested in the complexity of an “average” case, or
the kind of case we are likely to encounter in applications. For example, SAT is a well-known NP-complete
problem, for which the best known deterministic algorithms are exponential-time, but in practice there are
many widely-used SAT solvers which can efficiently solve SAT for many instances.

In cryptography, average-case complexity is particularly important. If complexity measures the security
of a particular encryption scheme, then it is not enough that there exists some pathological key which causes
high complexity. We want a randomly chosen key to give high complexity, such that all (or most) keys will
be secure.

We haven’t been able to do worst-case to average-case reduction for NP as a whole; but note that the
worst-case to average-case reduction is trivial for problems in P. We give an example of a non-trivial reduction
below.

3.1 The matrix permanent

Definition 11 (Matrix permanent). ∀M ∈ Fn×nq , the permanent of M , Perm(M), is defined as:

Perm(M) =
∑
π∈Sn

n∏
i=1

Miπ(i)

where Sn is the set of all permutations of [n].

Intuitively, the permanent is the determinant without sign. In the determinant calculation we multiply
each permutation product by the sign of the permutation. Unlike the determinant, however, permanent is
very hard to compute (over any field except F2, where Perm(M) = det(M). In fact, Perm is #P -complete,
meaning that (in particular) #SAT ≤p Perm.

Notice that Perm is a degree-n polynomial over n2 variables, the Mij . This is the key to the worst-case
to average-case reduction.

Theorem 12 (Worst-case to average-case for permanent). If q > n2 and there exists some polynomial time
algorithm A s.t.

Pr
R∼Fn×n

q

[A(R) = Perm(R)] ≥ 7

8
,

then there exists some polynomial time algorithm B s.t. ∀M ∈ Fn×nq , B(M) = Perm(M) w.p. 1− o(1).

(Note the contraposition: we show that if the random case is “easy”, then the worst case is “easy”.
Equivalently, if the worst case is “hard”, then the random case is “hard”.)

Proof. The idea of the proof is to consider calculating the matrix permanent as a local decoding problem.
Suppose we list the permanents of every matrix in Fn×nq as a single vector vP of length qn

2

, as follows:

CS 229r Essential Coding Theory-4

M 2 Fn⇥n
q

<latexit sha1_base64="2MW5O9xJBHPY7NvGdItol0mpa18=">AAACCHicbVDLSsNAFJ34rPUVdenCwSIIQklEUHdFQdwIFewDmhgm00k7dDKJMxOhhCzd6G+4c+NCEbd+gjs/xL2TtgttPTBw5px7ufceP2ZUKsv6MqamZ2bn5gsLxcWl5ZVVc229LqNEYFLDEYtE00eSMMpJTVHFSDMWBIU+Iw2/d5r7jVsiJI34lerHxA1Rh9OAYqS05JlbF9ChHDohUl3fT88y7+Y61X9FQyIhzzyzZJWtAeAksUekVNn7fnwgpbjqmZ9OO8JJSLjCDEnZsq1YuSkSimJGsqKTSBIj3EMd0tKUIz3HTQeHZHBHK20YREI/ruBA/d2RolDKfujrynxhOe7l4n9eK1HBkZtSHieKcDwcFCQMqgjmqcA2FQQr1tcEYUH1rhB3kUBY6eyKOgR7/ORJUt8v2wfl40udxgkYogA2wTbYBTY4BBVwDqqgBjC4A0/gBbwa98az8Wa8D0unjFHPBvgD4+MH5Lmc+A==</latexit>

Perm(M)

<latexit sha1_base64="LIgHv/FQEY8Q5BwXjE2Nmhg55rk=">AAAB+XicbVDLSgMxFM3UV62vUZduQotQEcqMCOqu6MaNUME+oDOUTJppQ5PMkGQKw9C/cOnGhSJu/RN3/RszbRfaeiBwOOde7skJYkaVdpypVVhb39jcKm6Xdnb39g/sw6OWihKJSRNHLJKdACnCqCBNTTUjnVgSxANG2sHoLvfbYyIVjcSTTmPiczQQNKQYaSP1bNvjSA8lzxpE8kn14axnV5yaMwNcJe6CVOpl7/x5Wk8bPfvb60c44URozJBSXdeJtZ8hqSlmZFLyEkVihEdoQLqGCsSJ8rNZ8gk8NUofhpE0T2g4U39vZIgrlfLATOY51bKXi/953USH135GRZxoIvD8UJgwqCOY1wD7VBKsWWoIwpKarBAPkURYm7JKpgR3+curpHVRcy9rN4+mjVswRxGcgDKoAhdcgTq4Bw3QBBiMwQt4A+9WZr1aH9bnfLRgLXaOwR9YXz9RNJZx</latexit>

qn2

<latexit sha1_base64="UvBQc7tYCEixxBlsEt83uvb3aqU=">AAAB7nicbVDLSgNBEOyNrxhfUY+KDAbBU9gNAfUW9OIxAfOAZBNmJ7PJkNnZdWZWCEuOfoAXD4p49RPyHd78Bn/CyeOgiQUNRVU33V1exJnStv1lpVZW19Y30puZre2d3b3s/kFNhbEktEpCHsqGhxXlTNCqZprTRiQpDjxO697gZuLXH6hULBR3ehhRN8A9wXxGsDZS/b6diHZh1Mnm7Lw9BVomzpzkSsfjyvfjybjcyX62uiGJAyo04VippmNH2k2w1IxwOsq0YkUjTAa4R5uGChxQ5SbTc0fozChd5IfSlNBoqv6eSHCg1DDwTGeAdV8tehPxP68Za//STZiIYk0FmS3yY450iCa/oy6TlGg+NAQTycytiPSxxESbhDImBGfx5WVSK+SdYv6qYtK4hhnScASncA4OXEAJbqEMVSAwgCd4gVcrsp6tN+t91pqy5jOH8AfWxw86LZM4</latexit>

A(M)

<latexit sha1_base64="yF67lGZ4Ujcnt1BH0kOOD1Kxq9Y=">AAAB63icbVBNS8NAEJ3Ur1q/qh69hBahIpREBPVW9eJFqGA/oA1ls920S3c3YXcjhNC/4EVBEa/+IW/9N27aHrT1wcDjvRlm5vkRo0o7zsTKrayurW/kNwtb2zu7e8X9g6YKY4lJA4cslG0fKcKoIA1NNSPtSBLEfUZa/ug281tPRCoaikedRMTjaCBoQDHSmXRduT/pFctO1ZnCXibunJRrpe7p66SW1HvF724/xDEnQmOGlOq4TqS9FElNMSPjQjdWJEJ4hAakY6hAnCgvnd46to+N0reDUJoS2p6qvydSxJVKuG86OdJDtehl4n9eJ9bBpZdSEcWaCDxbFMTM1qGdPW73qSRYs8QQhCU1t9p4iCTC2sRTMCG4iy8vk+ZZ1T2vXj2YNG5ghjwcQQkq4MIF1OAO6tAADEN4hjd4t7j1Yn1Yn7PWnDWfOYQ/sL5+ABEOkJg=</latexit>

M 2 Fn⇥n
q

<latexit sha1_base64="2MW5O9xJBHPY7NvGdItol0mpa18=">AAACCHicbVDLSsNAFJ34rPUVdenCwSIIQklEUHdFQdwIFewDmhgm00k7dDKJMxOhhCzd6G+4c+NCEbd+gjs/xL2TtgttPTBw5px7ufceP2ZUKsv6MqamZ2bn5gsLxcWl5ZVVc229LqNEYFLDEYtE00eSMMpJTVHFSDMWBIU+Iw2/d5r7jVsiJI34lerHxA1Rh9OAYqS05JlbF9ChHDohUl3fT88y7+Y61X9FQyIhzzyzZJWtAeAksUekVNn7fnwgpbjqmZ9OO8JJSLjCDEnZsq1YuSkSimJGsqKTSBIj3EMd0tKUIz3HTQeHZHBHK20YREI/ruBA/d2RolDKfujrynxhOe7l4n9eK1HBkZtSHieKcDwcFCQMqgjmqcA2FQQr1tcEYUH1rhB3kUBY6eyKOgR7/ORJUt8v2wfl40udxgkYogA2wTbYBTY4BBVwDqqgBjC4A0/gBbwa98az8Wa8D0unjFHPBvgD4+MH5Lmc+A==</latexit>

qn2

<latexit sha1_base64="UvBQc7tYCEixxBlsEt83uvb3aqU=">AAAB7nicbVDLSgNBEOyNrxhfUY+KDAbBU9gNAfUW9OIxAfOAZBNmJ7PJkNnZdWZWCEuOfoAXD4p49RPyHd78Bn/CyeOgiQUNRVU33V1exJnStv1lpVZW19Y30puZre2d3b3s/kFNhbEktEpCHsqGhxXlTNCqZprTRiQpDjxO697gZuLXH6hULBR3ehhRN8A9wXxGsDZS/b6diHZh1Mnm7Lw9BVomzpzkSsfjyvfjybjcyX62uiGJAyo04VippmNH2k2w1IxwOsq0YkUjTAa4R5uGChxQ5SbTc0fozChd5IfSlNBoqv6eSHCg1DDwTGeAdV8tehPxP68Za//STZiIYk0FmS3yY450iCa/oy6TlGg+NAQTycytiPSxxESbhDImBGfx5WVSK+SdYv6qYtK4hhnScASncA4OXEAJbqEMVSAwgCd4gVcrsp6tN+t91pqy5jOH8AfWxw86LZM4</latexit>

If we could access arbitrary elements of vP , we would be done. Of course, we can’t access arbitrary elements
of this vector. The best we can do is construct arbitrary elements of the corresponding vector vA built using
A instead of Perm:

M 2 Fn⇥n
q

<latexit sha1_base64="2MW5O9xJBHPY7NvGdItol0mpa18=">AAACCHicbVDLSsNAFJ34rPUVdenCwSIIQklEUHdFQdwIFewDmhgm00k7dDKJMxOhhCzd6G+4c+NCEbd+gjs/xL2TtgttPTBw5px7ufceP2ZUKsv6MqamZ2bn5gsLxcWl5ZVVc229LqNEYFLDEYtE00eSMMpJTVHFSDMWBIU+Iw2/d5r7jVsiJI34lerHxA1Rh9OAYqS05JlbF9ChHDohUl3fT88y7+Y61X9FQyIhzzyzZJWtAeAksUekVNn7fnwgpbjqmZ9OO8JJSLjCDEnZsq1YuSkSimJGsqKTSBIj3EMd0tKUIz3HTQeHZHBHK20YREI/ruBA/d2RolDKfujrynxhOe7l4n9eK1HBkZtSHieKcDwcFCQMqgjmqcA2FQQr1tcEYUH1rhB3kUBY6eyKOgR7/ORJUt8v2wfl40udxgkYogA2wTbYBTY4BBVwDqqgBjC4A0/gBbwa98az8Wa8D0unjFHPBvgD4+MH5Lmc+A==</latexit>

Perm(M)

<latexit sha1_base64="LIgHv/FQEY8Q5BwXjE2Nmhg55rk=">AAAB+XicbVDLSgMxFM3UV62vUZduQotQEcqMCOqu6MaNUME+oDOUTJppQ5PMkGQKw9C/cOnGhSJu/RN3/RszbRfaeiBwOOde7skJYkaVdpypVVhb39jcKm6Xdnb39g/sw6OWihKJSRNHLJKdACnCqCBNTTUjnVgSxANG2sHoLvfbYyIVjcSTTmPiczQQNKQYaSP1bNvjSA8lzxpE8kn14axnV5yaMwNcJe6CVOpl7/x5Wk8bPfvb60c44URozJBSXdeJtZ8hqSlmZFLyEkVihEdoQLqGCsSJ8rNZ8gk8NUofhpE0T2g4U39vZIgrlfLATOY51bKXi/953USH135GRZxoIvD8UJgwqCOY1wD7VBKsWWoIwpKarBAPkURYm7JKpgR3+curpHVRcy9rN4+mjVswRxGcgDKoAhdcgTq4Bw3QBBiMwQt4A+9WZr1aH9bnfLRgLXaOwR9YXz9RNJZx</latexit>

qn2

<latexit sha1_base64="UvBQc7tYCEixxBlsEt83uvb3aqU=">AAAB7nicbVDLSgNBEOyNrxhfUY+KDAbBU9gNAfUW9OIxAfOAZBNmJ7PJkNnZdWZWCEuOfoAXD4p49RPyHd78Bn/CyeOgiQUNRVU33V1exJnStv1lpVZW19Y30puZre2d3b3s/kFNhbEktEpCHsqGhxXlTNCqZprTRiQpDjxO697gZuLXH6hULBR3ehhRN8A9wXxGsDZS/b6diHZh1Mnm7Lw9BVomzpzkSsfjyvfjybjcyX62uiGJAyo04VippmNH2k2w1IxwOsq0YkUjTAa4R5uGChxQ5SbTc0fozChd5IfSlNBoqv6eSHCg1DDwTGeAdV8tehPxP68Za//STZiIYk0FmS3yY450iCa/oy6TlGg+NAQTycytiPSxxESbhDImBGfx5WVSK+SdYv6qYtK4hhnScASncA4OXEAJbqEMVSAwgCd4gVcrsp6tN+t91pqy5jOH8AfWxw86LZM4</latexit>

A(M)

<latexit sha1_base64="yF67lGZ4Ujcnt1BH0kOOD1Kxq9Y=">AAAB63icbVBNS8NAEJ3Ur1q/qh69hBahIpREBPVW9eJFqGA/oA1ls920S3c3YXcjhNC/4EVBEa/+IW/9N27aHrT1wcDjvRlm5vkRo0o7zsTKrayurW/kNwtb2zu7e8X9g6YKY4lJA4cslG0fKcKoIA1NNSPtSBLEfUZa/ug281tPRCoaikedRMTjaCBoQDHSmXRduT/pFctO1ZnCXibunJRrpe7p66SW1HvF724/xDEnQmOGlOq4TqS9FElNMSPjQjdWJEJ4hAakY6hAnCgvnd46to+N0reDUJoS2p6qvydSxJVKuG86OdJDtehl4n9eJ9bBpZdSEcWaCDxbFMTM1qGdPW73qSRYs8QQhCU1t9p4iCTC2sRTMCG4iy8vk+ZZ1T2vXj2YNG5ghjwcQQkq4MIF1OAO6tAADEN4hjd4t7j1Yn1Yn7PWnDWfOYQ/sL5+ABEOkJg=</latexit>

M 2 Fn⇥n
q

<latexit sha1_base64="2MW5O9xJBHPY7NvGdItol0mpa18=">AAACCHicbVDLSsNAFJ34rPUVdenCwSIIQklEUHdFQdwIFewDmhgm00k7dDKJMxOhhCzd6G+4c+NCEbd+gjs/xL2TtgttPTBw5px7ufceP2ZUKsv6MqamZ2bn5gsLxcWl5ZVVc229LqNEYFLDEYtE00eSMMpJTVHFSDMWBIU+Iw2/d5r7jVsiJI34lerHxA1Rh9OAYqS05JlbF9ChHDohUl3fT88y7+Y61X9FQyIhzzyzZJWtAeAksUekVNn7fnwgpbjqmZ9OO8JJSLjCDEnZsq1YuSkSimJGsqKTSBIj3EMd0tKUIz3HTQeHZHBHK20YREI/ruBA/d2RolDKfujrynxhOe7l4n9eK1HBkZtSHieKcDwcFCQMqgjmqcA2FQQr1tcEYUH1rhB3kUBY6eyKOgR7/ORJUt8v2wfl40udxgkYogA2wTbYBTY4BBVwDqqgBjC4A0/gBbwa98az8Wa8D0unjFHPBvgD4+MH5Lmc+A==</latexit>

qn2

<latexit sha1_base64="UvBQc7tYCEixxBlsEt83uvb3aqU=">AAAB7nicbVDLSgNBEOyNrxhfUY+KDAbBU9gNAfUW9OIxAfOAZBNmJ7PJkNnZdWZWCEuOfoAXD4p49RPyHd78Bn/CyeOgiQUNRVU33V1exJnStv1lpVZW19Y30puZre2d3b3s/kFNhbEktEpCHsqGhxXlTNCqZprTRiQpDjxO697gZuLXH6hULBR3ehhRN8A9wXxGsDZS/b6diHZh1Mnm7Lw9BVomzpzkSsfjyvfjybjcyX62uiGJAyo04VippmNH2k2w1IxwOsq0YkUjTAa4R5uGChxQ5SbTc0fozChd5IfSlNBoqv6eSHCg1DDwTGeAdV8tehPxP68Za//STZiIYk0FmS3yY450iCa/oy6TlGg+NAQTycytiPSxxESbhDImBGfx5WVSK+SdYv6qYtK4hhnScASncA4OXEAJbqEMVSAwgCd4gVcrsp6tN+t91pqy5jOH8AfWxw86LZM4</latexit>

Now, since Perm is jut a degree-n polynomial in n2 variables over Fq, vP is a codeword in the Reed-Muller
code RM(q, n, n2). So in order to construct vP , we could just decode vA using the Reed-Muller list-decoding
algorithm we have seen before. However, this would not be efficient since the codewords have size exponential
in n. Instead, we can use the local decoding algorithm for RM codes.

We can specify the algorithm B:

• Input: M ∈ Fn×nq

• Choose R uniformly at random in Fn×nq .

• Choose {α1, α2, . . . , α10n} distinct from Fq \ {0}.

• For each i ∈ [10n], let βi = A(M + αiR).

• Reed-Solomon decode {(αi, βi)}i to polynomial P (α).

• Output P (0).

This algorithm effectively follows the pattern of the RM local decoding algorithm we have seen before. We
now prove it correct.

Let g(t) , Perm(M + tR); then we want to output g(0). Note that by definition of A, PrM [βi = g(αi)] ≥
7/8 for every i. This then implies that the probability of getting more than a 1/4 fraction of incorrect βi is
at most 1/4. But this inner condition is just the condition for the RS decoding algorithm to work. So with
probability at least 3/4, we will output Perm(M).

The lower bound of 7/8 on the probability that A succeeds can be improved to 1/2 + ε by using a more
careful decoding and reduction. Further, we can improve to 1/poly(n) by using a concept called “local list
decoding” which is not discussed in this course.

The above is an of a general class of theorem due to Sudan, Trevisan, and Vadhan [1]. An example
of this is (roughly) that if there exists some f ∈ TIME(2O(n)) but f /∈ P/poly, then there exists some

F ∈ TIME(2O(n)) that is “very hard” relative to P/poly. The proof of this result relies again on locally
list-decodable codes.

CS 229r Essential Coding Theory-5

References

[1] Madhu Sudan, Luca Trevisan, and Salil Vadhan. “Pseudorandom Generators without the XOR Lemma.”
In: J. Computer and System Sciences 62.2 (March 2001). issn: 0022-0000. doi: 10.1006/jcss.2000.

1730. url: https://doi.org/10.1006/jcss.2000.1730.

CS 229r Essential Coding Theory-6

10.1006/jcss.2000.1730
10.1006/jcss.2000.1730
https://doi.org/10.1006/jcss.2000.1730

	Today
	Admin
	Coding Theory in Complexity/Cryptography

	Hardcore predicates for one-way permutations
	One-way permutations
	Hardcore predicates
	Motivation: PRGs from hardcore predicates and o.w.p.s
	A hardcore predicate for (many) o.w.p.s

	Worst-case to average-case reduction
	The matrix permanent

