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Abstract

The bases-exchange graph of a matroid is the graph whose vertices are the bases of
the matroid, and two bases are connected by an edge if and only if one can be obtained
from the other by the exchange of a single pair of elements.

In this paper we prove that a matroid is “connected” if and only if the “restricted
bases-exchange graph” (the bases-exchange graph restricted to exchanges involving
only one specific element e) is connected. This provides an alternative definition of
matroid connectivity. Moreover, it shows that the connected components of the re-
stricted bases-exchange graph satisfy a “ratios-condition”, namely, that the ratio of
the number of bases containing e to the number of bases not containing e is the same
for each connected component of the restricted bases-exchange graph. We further show
that if a more general ratios-condition is also true, namely, that any fraction a of the
bases containing e is adjacent to at least a fraction o of the bases not containing e
(where a is any real number between 0 and 1), then the bases-exchange graph has
the following expansion property : “For any bipartition of its vertices, the number of
edges incident to both partition classes is at least as large as the size of the smaller
partition”. In fact, this was our original motivation for studying matroid connectivity,
since such an expansion property yields efficient randomized approximation algorithms
to count the number of bases of a matroid [18].

*This work was done while the first author was at Harvard and U.C. Berkeley, and was supported by
NSF-CCR86-58143.
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1 Introduction

The bases-exchange graph of a matroid was introduced by Edmonds [7] as the graph whose
vertex-set is the collection of bases of the matroid, and two bases B, B’ are connected by
an edge if and only if their symmetric difference has cardinality exactly 2, i.e., B’ can be
obtained from B by the fundamental exchange operation B'= B\ {z} U{y}. The e-restricted
bases-exchange graphis the bipartite subgraph of the bases-exchange graph where only edges
involving a particular element e are considered (B’ = B\ {e}U{y}, or B’ = B\ {z} U {e}).
Henceforth, for a matroid M(S, B), where S is the ground-set and B is the collection of bases,
G(M) will denote the bases-exchange graph of M, and G.(M) will denote the e-restricted
bases-exchange graph of M. In this paper we focus on certain non-trivial connectivity and
expansion properties of G(M) and G.(M) (roughly, connectivity in matroids corresponds to
biconnectivity in graphs: a matroid is connected if and only if there exists a circuit through
every pair of elements of its ground-set).

We show that a matroid is connected if and only if the e-restricted bases-exchange graph
G.(M) is connected (Theorem 4.2), thus obtaining a combinatorially interesting alternative
definition to matroid connectivity. Despite the simplicity of the above statement, its proof
involves rather non-trivial technical manipulations. In fact, equivalent definitions of matroid
connectivity have always been non-trivial, and have therefore attracted significant attention
(e.g. see the work of Whitney [27], Tutte [23] and Harary [9]). Furthermore, Theorem 4.2
provides a concrete characterization of the connected components of G.(M): in Theorem
4.3 we show that the connected components of G.(M) correspond exactly to the connected
components of the matroid ground-set. We also also observe that all connected components

of G.(M) are isomorphic.

All the above suggest that the following ratios-condition is satisfied by the connected com-
ponents of G.(M) : Let B, (resp. B:) denote the collection of bases of M containing a
particular element e € S (resp. not containing e). Let A be a subset of B, and let I'.(A) be
the set of vertex neighbors of A in G.(M). Then, when AU T (A) is an entire connected
component of G.(M), it is the case that |[.(A)|/|A| = |Bz|/|B.| (Corollary 4.4).

We further show that if a similar ratios-condition is satisfied for arbitrary subsets A of 5.,
then the bases-exchange graph is a cutset-expander in the sense conjectured by Mihail and
Vazirani [18]: “For any bipartition of the vertices of the bases-exchange graph, the number
of cutset edges (edges incident to vertices in both partitions) is at least as large as the size
of the smaller partition”. In particular, we have isolated the following Ratios-Criterion for
expansion: “G(M) is a cutset-expander if for all A : A C B, |T.(4)|/|A| > |B:l/|B.|”
(Theorem 3.3). We believe that the Ratios-Criterion might be particularly suitable for
matroids because it is the core of an inductive reasoning which imposes structure towards
arguing about single-step exchanges that involve a specific element e. Matroids satisfy certain
interesting properties for single-step exchanges that are not known to hold for sequences
of exchanges. For instance, it is known that matroids posses “single-step complementary
properties”: For every pair of bases B and B’ and for every z € B, there exists y € B’ such



that both B\ {z} U{y} and B’ \ {y} U {z} are bases ([25], Chapter 1). Such a property,
coupled with the restriction to exchanges involving a specific element e as required by the
Ratios-Criterion, can be potentially used to a single-step analogue of a Jerrum and Sinclair
type of argument for expansion [5] [11] [18].

It has been pointed-out by Mihail and Vazirani [18], that if strong expansion properties for
the bases-exchange graph in fact hold, then aside from being of remarkable combinatorial
interest, they are of fundamental algorithmic significance. A sequence of well known ideas
concerning the convergence-rate of random walks on expanders and the equivalence of uni-
form sampling and approximate counting for self-reducible problems, imply that a positive
resolution of the matroid-expansion conjecture yields simple and efficient algorithms to ap-
proximately count the number of bases of any matroid, given, say, an independence oracle.
In view of recent spectacular approximation results that have been attributed to expansion
arguments [5] [6] [11] [13], the work reported here pinpoints new aspects of matroid-theory
that are related to connectivity and expansion. We believe that matroids are the next natural
candidates for expansion to yield efficient approximation schemes for counting.

The rest of the paper is organized as follows : In Section 2 we review the fundamental
concepts concerning matroid theory, random walks, and approximate counting, in order to
provide a context for our work. In Section 3 we present the Ratios-Criterion for expansion
(Theorem 3.3), and discuss its suitability for the matroid setup. The key underlying structure
in the Ratios-Criterion is the e-restricted bases-exchange graph G.(M). In Section 4 we
focus on the connectivity of the e-restricted bases-exchange graph, and show that G.(M) is
connected if and only if the underlying matroid M is connected (Theorems 4.2 and 4.3). A
necessary condition for the e-restricted bases-exchange graph to pass the Ratios Criterion
follows (Corollary 4.4).

2 Bases : Enumeration and the Exchange Graph

Definition: A matroid M over a finite ground-set S is a pair (S, B), where B (the bases of
M) is a collection of subsets of S satisfying :

(i) All sets B in B have the same cardinality, and

(11) If B and B’ are in B and z is an element of B, then there is some element y of B’
such that B\ {z} U{y} is in B.

Definition: A set I C S is called independent in M(S, B) if it is a subset of some basis in
5.

The interested reader is referred to the classical textbook of Welsh [25] for a detailed treat-
ment of matroid theory.



Definition: For a matroid M(S, B) the bases-exchange graph G(M) of M is a graph whose
vertez-set is the set of bases B, and two bases B and B' are connected with an edge if and
only if their symmetric difference is ezactly 2, i.e. B' = B\ {z} U {y}, for some z,y € S.

Again, the reader is referred to [7] [10] [18] [19] [20] [23] [26], for further information about
the bases-exchange graph.

Definition: For a graph G(V, E) and for X CV define the cutset C(X) of X in the usual
way :

O(X) = {(ul,uz)EE : ’1,1,1€X, u €V \ X}

Definition: The cutset-ezpansion (or simply expansion) of a graph G(V, E) is :
. |0(X)]
min
xcv|x|<d | X

To the best of our knowledge, there is no counter-example to the following conjecture that
was proposed in [18] :

Conjecture: (Matroid-Expansion Conjecture ) For any matroid M(S,B), the cutset
ezpansion of the bases-exchange graph G(M) is at least 1.

The above conjecture has been shown to hold for partition matroids and their truncations
[18], and in slightly weaker form for graphic matroids [2] [4].

Clearly, a positive resolution of the conjecture, even in slightly weaker form or for special
classes of matroids (vectorial, transversals, graphic and their truncations etc.) would be of
major combinatorial interest. Furthermore, it was pointed out in [18] that it would also be
of fundamental algorithmic significance:

Fact: [18] If for all matroids M(S,B) the bases-exzchange graph G(M) possesses cutset-
ezpansion inverse polynomial in |S|, then for any matroid M(S,B) there exzists an efficient
algorithm to approzimate |B|, given an independence oracle for M.

The above assertion follows by standard techniques on random walks on expanders [1] [16]
[21], and the well known equivalence of uniform generation and approximate counting for
self-reducible combinatorial structures [3] [12]. The reader is referred to [18] for further
explanations.

In particular, several unsolved counting problems (including network reliability which is
known to be NP-hard [24]) can be reduced to counting the number of bases of suitably
chosen matroids. So, if the Matroid-Expansion Conjecture holds, then all such problems can
be approximated by eflicient Monte-Carlo algorithms.

Our work was precisely motivated by the question of resolving the Matroid-Expansion Con-
jecture.




3 The Ratios-Criterion

Expansion properties of various families of graphs have always been hard to establish [5] [6]
[8] [11] [13] [14] [15] [18]. The apparent hardness is due to the fact that expansion is a global
property, while the adjacencies of the graph in question are usually defined in a local manner
(especially for graphs with intricate combinatorial structure like the bases-exchange graph).
Therefore, an expansion argument typically aims to infer global statements by isolating
known relevant and usually local structure. It was in this sense that the geometric features of
the bases-exchange graph were isolated in [18] (and in fact, it was partial geometric evidence
that led to the matroid-expansion conjecture). While geometry has still not resolved the
conjecture, we have isolated here yet another criterion for matroid-expansion, the Ratios-
Criterion : “Ifforall A: ACRH,, [T(A)|/|A| > |Bz|/|Bel, then G¢(M) is a cut-set expander”.
We believe that this criterion seems more local and suitable for matroids for the following
reasons:

(i) It is more local because it is the core of an inductive argument by imposing structure to
a reasoning about exchanges that involve a particular element e.

(ii) It is more suitable for matroids because it seems to reduce (in a way particularly conve-
nient for matroids) the regularity that needs to be exhibited in an expansion argument. More
specifically, as mentioned on the introduction, matroids satisfy certain non-trivial properties
for single-step exchanges that are not known to hold for sequences of exchanges (the reader
in referred to [25] for a convincing collection of such properties). For example, among oth-
ers, matroids are known to posses “single-step complementary properties”: For every pair of
bases B and B’ and for every z € B, there exists y € B’ such that both B\ {z} U{y} and
B'\ {y} U {z} are bases ([25], Chapter 1). Such a property, coupled with the restriction to
exchanges involving a specific element e as required by the Ratios-Criterion, can be poten-
tially used to a single-step analogue of a Jerrum and Sinclair type of expansion argument.
Along the Jerrum and Sinclair style of reasoning, expansion of a set A is established by
exhibiting a substantial number of edge-disjoint paths from A to its complement [5] [11] [18].
In such a setup for the bases-exchange graph G(M), it would be required to reason about
the regularity of “complementary” properties holding all along paths that are appropriately
defined between any two bases B and B’. In contrast, the Ratios-Criterion requires to reason
only about the regularity of the first step of such paths, for which at least complementary
properties are in fact known to hold.

We proceed with the technical statements :
Definition: Say that a matroid M(S, B) enforces ratios if for all e € S and for all A C B,
A enforces ratios with respect to e, i.e.,
r.(A s
r.(A) I8 o
Al |B.]




Lemma: If all matroids enforce ratios, then the dual of (1) is also always true : For all

matroids M(S,B), for all e € S, and for any A C B:

T.(A) _ B,
A B 2)

where I'.(A) ts the set of vertices in B. that are connected with some vertez in A by an edge
of G(M).

PROOF. (2)is obtained by applying condition (1) to the dual M*(S, B*) of M(S, B), where
B € B* if and only if S\ B € B, and by noticing that M (S, B) is isomorphic to M*(S, B*).
O

Theorem: (The Ratios-Criterion) : If all matroids enforce ratios, then all matroids have
cutset-expansion at least 1.

PrOOF. Consider a matroid M(S,B) and let X C B be such that

B
x| < &l (3)
2
We wish to show

[C(X)| = [X] (4)

Let X. = X NB. and Xz = X N B:. Let C.(X) denote the set of edges in G(M) that
are incident to both X, and B, \ X.. Let C:(X) denote the set of edges in G(M) that are
incident to both Xz and Bz \ Xz. Let C.z:(X) denote the set of edges in G(M) that are
incident to both X, and B: \ Xz Finally let Cs(X) denote the set of edges in G(M) that
are incident to both X; and B. \ X.. Clearly, the above sets define a partition of C(X).
Therefore:

|C(X)] = [Ce(X)| + |Ce(X)| + [Cee(X)[ + |Cee( X)) (5)

The proof will bound from below |C(X)| by lower-bounding appropriately chosen terms of
the right-hand-side of (5). For this we proceed inductively on the size of the ground-set of
M(S,B). The basis of the induction is trivial, and the hypothesis asserts that all matroids
over ground-sets of size strictly smaller than |S| have cutset-expansion at least 1.

Case 1: |X,| < Bl and | x| < 182,

el

2
The inductive hypothesis provides satisfactory lower bounds for |C.(X)| and |C:(X)|, and
(5) yields a lower bound on |C(X)|. In particular, realize that the matroids M(S, B.)
and M(S \ {e}, B:) are isomorphic to matroids over ground-set S \ {e}. Therefore the
inductive hypothesis applies to M(S, B,) for X., and M(S \ {e}, Bz) for X, thus yielding
|Ce(X)| > | Xe| and |Cg| > | Xz|. Now (5) suggests that |C(X)| > |X|, which completes the

argument for case 1.

Case 2 : | X | > L'B;”, and |Xg| < (@1




By the remarks of the previous case, the inductive hypothesis applies to M(.S, B.) for B, \ X.
and M(S \ {e}, B:) for Xz, thus yielding :

[C(X)| = [Be\ Xe| = [Be| = [Xe|  and
[C(X)] = | Xe] (6)

Clearly, the bounds in (6) are not strong enough to establish the desired bound for |C'(X)].
It is at this point that we will use the enforcement of ratios (conditions (1) and (2)) and
obtain an additional lower bound for the cross expansion |C.s(X)|.

Consider some subset A of X, |A| = [|B2—e|1 Condition (1) implies that |T'.(A4)| > |A||B:|/|B.| =

[|B2—e|1 Therefore, there exists a subset A; of I'.(A) such that 4; N X; = 0 and |44] =

[|B2—e|1 — | Xz|. Let Cez 4,(X) be the set of edges incident to X, and A;. Clearly,

Cuat, (X)) 2 12 = 11227 — ")

Let A" = B\ (41 U Xz). Of course, |A'| = L|B2—E|J Condition (2) implies that there exists

some subset A} of I'.(A’) such that A} C X, and |A4]| = | X.| — L|B2—E|J Now if Ceg a7 (X) is
the set of edges incident to A} and A’, it is clear that

|B. |
|Ce,; (X)) 2 |1 Xe| = [ =] (8)
Moreover, notice that Cez 4,(X) and Ceg 4 (X) are disjoint. Therefore (7) and (8) imply:

Cee(X)| 2 [Ceza, (X)] + |Cez 1, (X))

|Be| 5|

> [ - Xl X - )

Finally, (5), (6), and (9) imply :
|Be|

Bz
GO = 1B~ X+ el + 28] — e+ - (B
BB
_ 18
- 2
Z |Xe|+|XE|
= Ix

This last bound completes the treatment of Case 2.

Case 3: |X.| < [|B2—e|1, and | Xz| > L|B2—E|J This case is identical to Case 2, which completes

the proof of Theorem 4.3. O



Remark : A Ratios-Condition similar to (1) and (2) can be shown to hold for the polytopes
of order ideals, independent sets, partition matroids and their truncations, and matchings
and their “slices” that were examined in [18]. This results in cutset expansion factors 1
for these polytopes (while in [18] it was shown that these polytopes have “strong cutset
expansion” 1, hence, cutset expansion only 1/2). The reasoning is inductive and uses single-
step complementary point arguments that are known to hold for the above polytopes. The
reader is referred to [17] for the complete proof.

4 Matroid Connectivity and the e-Restricted Bases-
Exchange graph

The Ratios-Criterion that was developed in the previous section was based on the exchanges
involving only one specific element e of the ground set S. In particular, the graph that was
underlying throughout the Ratios-Criterion was the “e-restricted bases-exchange graph”,
formally defined as follows :

Definition: For a matroid M(S,B) and for some e € S the e-restricted bases-ezchange
graph : G.(M) is a graph on vertez-set B(= B.UBz), and two bases B and B' are connected
by an edge if and only if :

e Bc B, and B' € B, and

e B and B’ are connected by an edge in G(M).

In terms of the e-restricted bases-exchange graph the ratios enforcement condition in the
Ratios-Criterion states that for all subsets A of B, the following holds :

T(4)] | |5
4T 7B

It is easy to see that if the bases-exchange graph indeed passes the Ratios-Criterion, then
it is necessary that when X (= X. U X;) is an entire connected component of G.(M) then
this component enforces ratios with equality, i.e., | X.|/|Xz| = |B.|/|Bs|. While the general
condition remains open, we show here that the above non-trivial necessary condition is in fact
true. The key ingredient in our proof is the characterization of the connected components
of Ge(M), which, in turn, results in an alternative definition of matroid connectivity.

A very simple (and very instructive) example of a matroid is the Graphic Matroid of a graph
G(V, E). The ground set of this matroid is the set E of the edges of G and the bases are the
spanning trees. Biconnectivity in graphs is a well known property; connectivity in matroids
is analogous to biconnectivity in graphs : A matroid M(S,B) is connected if there exists a



circuit through every pair of elements in the ground set. Furthermore, if a matroid is not
connected, then its ground set can be partitioned uniquely into connected components (for
graphic matroids this corresponds to a partitioning of the edges into biconnected compo-
nents). The original matroid induces a matroid on each component in a natural way and
the original matroid can be reconstructed as the direct sum of the components. (Again it is
easy to see that spanning trees of the original graph are simply the union of spanning trees
of biconnected components.)

Our main theorem relates the connectivity of the e-restricted bases-exchange graph to the
connectivity of the matroid.

Theorem: (Connectivity Theorem) The e-restricted bases-ezchange graph of a matroid
M is connected if and only if the matroid s connected.

Consequently, if the matroid is not connected then the structure of the connected components
of Ge(M) can be characterized as follows :

Theorem: Let M1(S1,B1) be the connected component containing an element e in a matroid
M and let My(Ss,B2) be the induced matroid on the remaining elements of the ground-set
(S2 =S\ S1). Then G.(M) contains ezactly one connected component for each basis By in
B, and each connected component is isomorphic to G.(My).

Again, by Theorem 4.3 the following necessary condition for the e-restricted bases exchange
graph to pass the Ratios Criterion is true:

Corollary: (Necessary Condition) Every connected component of G.(M) enforces ratios
with equality, 1.e.if X = X, U Xz is a connected component of G.(M), then |X.|/|Xz| =
|Be|/|Bz|.

In the rest of the section we give the technical details of the proof of Theorems 4.2, 4.3 and
Corollary 4.4.

4.1 Preliminaries

Recall that a subset of the ground-set is independent if it is the subset of a base. A set that
is not independent is called dependent.

Definition: A circuit in a matroid M is a minimal dependent subset of S.

In Definition 2.1 a matroid was introduced in terms of its bases. Equivalently a matroid can
be introduced in terms of its circuits (e.g. see [25]):

Definition: (Circuit Axioms) A collection C of subsets of S is the set of circuits of a
matroid on S if and only if for all XY € C

(1) X is not a subset of ¥

(1) If z € XNY andy € XAY, then there exists a circuit Z € C such that Z C XUY \{z}
and y € Z (here A denotes symmetric difference).
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The circuits of a matroid define a natural relation R on the ground-set. The equivalence
classes of this relation are the connected components of the matroid.

Definition: Let R C S x S be such that e;Rey if and only of 3C € C such that e1,es € C.
It is well known that R defined on S x S, as above, is an equivalence relation.

Definition: The equivalence classes of the relation R induce a partition of S whose partition
classes are the connected components of S.

Definition: A matroid M(S,B) is said to be connected if and only if S has ezactly one
connected component.

In the following subsections we show the sufficiency and necessity of matroid connectivity
for the connectedness of G.(M). In particular we will establish Theorem 4.2 which follows
from Lemma 4.17 and Lemma 4.20.

We first show sufficiency, i.e. that a connected matroid results in a connected e-restricted
bases-exchange graph.

4.2 Sufficiency

Let M(S, B) be a connected matroid. We show that every pair of bases that are adjacent in
G(M) are connected by a path of length O(|S]|) in Ge(M). Since the bases-exchange graph

is connected, this implies that the e-restricted bases-exchange graph is also connected.

In the proof we shall first exhibit the existence of “chains” of circuits in M that link adjacent
bases of G(M). We shall further show that these chains are sufficient to establish paths in
G (M) between adjacent bases of G(M).

Definition: The rank function of a matroid is a function p : 2° — ¥y such that for all
XCS:
p(X)=max(|Y|:Y C X, Y €7)

In words, the rank of a set is the size of the maximal independent set that is contained in
the set.

Definition: A sequence of circuits C1,Cs,---,Cy is a chain of length k if p(C; U Ciyq1) =
|C; UCiy1| —2 and C; N Cip1 # @, foralls : 1 <1 <k.

In the case of graphic matroids a chain is a sequence of cycles where intersection of successive
cycles is a path in the graph.

Fact: The conditions p(C; U Ci1) = |C; U Cipq1| — 2 and C; N Ciy1 # ¢ guarantee that
C;AC;11 s contained in a circuit.

PrOOF. Let z € C;, N C;1;. Then the circuit axioms guarantee that for every element
z € 0;AC;41 there exists a circuit contained in C; U C;y1 \ {z} that contains z. But the
condition p(C;UC;11) = |C;UC;41|—2, implies that there is a unique circuit in C;UC;41\ {2},
which implies that C;AC; 1 1s contained in a circuit. O
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Recall that for a basis B € B and an element z € S\ B there is a unique circuit in BU {z}.

Definition: For a basis B and an element z € S\ B, the unique circuit in BU{z} is called
the fundamental circuit of (B,z). This will be henceforth denoted by C(B, z).

Definition: Lete € S and let B and B’ be two bases in M such that BAB' = {e;, es}, where

e1 € B and e; € B'. Define B and B' to be linked with respect to e by a chain of length k, if

there exists a sequence of elements 1,2, -,z = €2, such that C(B,z1),C(B, z2),...,C (B, zk)

is a chain of length k and e € C(B,z1). We shall also say that the chain C(B,z1),C(B, z2),...,C(B,z)

links e to e; with respect to the basis B.

Claim: Let B, B’ be two bases in M such that BAB' = {e1,es}, where e; € B and e; € B'.
Then there exists a chain of length at most |S| which links B and B'.

PrOOF. Follows from Lemma 6.2 in [?]. 0

Claim: If B, B' are linked by a chain of length [, then there exists a path of length at most
41 between B and B' in Ge(M).

PrROOF. We use induction on [. The case [ =1 is trivial.
Consider B and B’ that are linked by a chain of length .

Let the sequence of edges forming the chain be zi,z5,---,2; and let the chain be C; =
C(B,z1),Cy = C(B,zs),---,C = C(B, ;). Assume further that if |¢—j| > 1 then C;NC; =

¢ (otherwise there exists a smaller chain linking B and B').

Consider y € C; N Oy (notice y € B). Now consider the bases Bl = BU {z1} \ {y} and
Bl" = B"U {z1} \ {y}. Bl (resp. Bl') can be reached from Bl (resp. Bl’) by exchanges
involving e. We show below that B and B’ are linked by a chain of length [ — 1.

Consider the sequence of edges z,z3,---,z;, and the circuits Cly = C(Bl,z2),Cly =
C(Bl,z3),---,C1l;_1 = C(B1,z;). Now notice:

o U1, = C;41,Ve > 1 : This follows from the fact that B is different from B1 only in

{wlvy}‘
e (U1, NC1ly # ¢ : This is true since C1AC,; C €1y and C3NCy N Cy = ¢.

Thus C11,C1,,--+,C1;_1 is a chain of length [ — 1 that links B1 with B1’. This completes

our proof. a
All the above imply

Lemma: The e-restricted bases-exchange graph of a matroid M 1is connected if M s con-
nected.

ProoF. Follows from Claims 4.15 and 4.16. O

Next we show that G.(M) is not connected if M is not connected.
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4.3 Necessity

Let M(S, B) be a disconnected matroid and let S’ be a minimal non-empty seperator of M
not containing e. Then, for any base B, no exchange involving e will change B N S’. Thus
if there exist two bases Bl and B2 such that B1 N S # B2N §’, then there is no path
connecting them. This proves that the connectedness of the matroid is a necessary condition
for the connectedness of the e-restricted basis-exchange graph.

Theorem 4.3 Let M;(S1,B1) be the connected component containing an element e in a
matroid M and let My(S2,Bs) be the induced matroid on the remaining elements of the
matroid (Sa = S\ S1). Then G.(M) contains exactly one connected component for each
basis By in By and each connected component is isomorphic to G.(My).

PROOF. The proof follows from the fact that all bases of M are formed by the union of
bases of My and M,. Thus for a given basis By of Mo, all the vertices of G.(M) that are
of the form {B; U By : B is a basis of M;} form a connected component of G.(M). The
edges in G.(M) are all based on circuits of M;. Thus every such basis By in B, induces a
component in G.(M). O

4.4 Connected Components of G (M)

We are now in a position to establish the necessary condition :

Corollary 4.4 (Necessary Condition) Each connected component of G.(M) enforces
ratios with equality i.e.if X = X. U X; are the vertices of a connected component of G.(M),
then |X.|/|X:| = |B.l/|Bs|.

PrOOF. Follows from the fact that all components are isomorphic and hence the ratio of
vertices in either partition is the same in all components. a

5 Conclusion

We investigate the connectivity property of matroids and their bases-exchange graph and
obtain an alternative definition for matroid connectivity. The motivation for our work was
to resolve the matroid-expansion conjecture of [18]. While the conjecture still remains open,
we provide a new local expansion criterion that appears suitable for matroids. Resolving the

matroid expansion conjecture is of fundamental algorithmic significance.
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