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21 IntroductionThe bases-exchange graph of a matroid was introduced by Edmonds [7] as the graph whosevertex-set is the collection of bases of the matroid, and two bases B, B 0 are connected byan edge if and only if their symmetric di�erence has cardinality exactly 2, i.e., B 0 can beobtained from B by the fundamental exchange operation B0=B nfxg[fyg. The e-restrictedbases-exchange graph is the bipartite subgraph of the bases-exchange graph where only edgesinvolving a particular element e are considered (B 0 = B n feg [ fyg, or B0 = B n fxg [ feg).Henceforth, for a matroidM(S;B), where S is the ground-set and B is the collection of bases,G(M) will denote the bases-exchange graph of M, and Ge(M) will denote the e-restrictedbases-exchange graph of M. In this paper we focus on certain non-trivial connectivity andexpansion properties of G(M) and Ge(M) (roughly, connectivity in matroids corresponds tobiconnectivity in graphs: a matroid is connected if and only if there exists a circuit throughevery pair of elements of its ground-set).We show that a matroid is connected if and only if the e-restricted bases-exchange graphGe(M) is connected (Theorem 4.2), thus obtaining a combinatorially interesting alternativede�nition to matroid connectivity. Despite the simplicity of the above statement, its proofinvolves rather non-trivial technical manipulations. In fact, equivalent de�nitions of matroidconnectivity have always been non-trivial, and have therefore attracted signi�cant attention(e.g. see the work of Whitney [27], Tutte [23] and Harary [9]). Furthermore, Theorem 4.2provides a concrete characterization of the connected components of Ge(M): in Theorem4.3 we show that the connected components of Ge(M) correspond exactly to the connectedcomponents of the matroid ground-set. We also also observe that all connected componentsof Ge(M) are isomorphic.All the above suggest that the following ratios-condition is satis�ed by the connected com-ponents of Ge(M) : Let Be (resp. B�e) denote the collection of bases of M containing aparticular element e2S (resp. not containing e). Let A be a subset of Be and let �e(A) bethe set of vertex neighbors of A in Ge(M). Then, when A [ �e(A) is an entire connectedcomponent of Ge(M), it is the case that j�e(A)j=jAj = jBej=jBej (Corollary 4.4).We further show that if a similar ratios-condition is satis�ed for arbitrary subsets A of Be,then the bases-exchange graph is a cutset-expander in the sense conjectured by Mihail andVazirani [18]: \For any bipartition of the vertices of the bases-exchange graph, the numberof cutset edges (edges incident to vertices in both partitions) is at least as large as the sizeof the smaller partition". In particular, we have isolated the following Ratios-Criterion forexpansion: \G(M) is a cutset-expander if for all A : A � Be, j�e(A)j=jAj � jB�ej=jBej"(Theorem 3.3). We believe that the Ratios-Criterion might be particularly suitable formatroids because it is the core of an inductive reasoning which imposes structure towardsarguing about single-step exchanges that involve a speci�c element e. Matroids satisfy certaininteresting properties for single-step exchanges that are not known to hold for sequencesof exchanges. For instance, it is known that matroids posses \single-step complementaryproperties": For every pair of bases B and B0 and for every x 2 B, there exists y 2 B0 such



3that both B n fxg [ fyg and B 0 n fyg [ fxg are bases ([25], Chapter 1). Such a property,coupled with the restriction to exchanges involving a speci�c element e as required by theRatios-Criterion, can be potentially used to a single-step analogue of a Jerrum and Sinclairtype of argument for expansion [5] [11] [18].It has been pointed-out by Mihail and Vazirani [18], that if strong expansion properties forthe bases-exchange graph in fact hold, then aside from being of remarkable combinatorialinterest, they are of fundamental algorithmic signi�cance. A sequence of well known ideasconcerning the convergence-rate of random walks on expanders and the equivalence of uni-form sampling and approximate counting for self-reducible problems, imply that a positiveresolution of the matroid-expansion conjecture yields simple and e�cient algorithms to ap-proximately count the number of bases of any matroid, given, say, an independence oracle.In view of recent spectacular approximation results that have been attributed to expansionarguments [5] [6] [11] [13], the work reported here pinpoints new aspects of matroid-theorythat are related to connectivity and expansion. We believe that matroids are the next naturalcandidates for expansion to yield e�cient approximation schemes for counting.The rest of the paper is organized as follows : In Section 2 we review the fundamentalconcepts concerning matroid theory, random walks, and approximate counting, in order toprovide a context for our work. In Section 3 we present the Ratios-Criterion for expansion(Theorem 3.3), and discuss its suitability for the matroid setup. The key underlying structurein the Ratios-Criterion is the e-restricted bases-exchange graph Ge(M). In Section 4 wefocus on the connectivity of the e-restricted bases-exchange graph, and show that Ge(M) isconnected if and only if the underlying matroid M is connected (Theorems 4.2 and 4.3). Anecessary condition for the e-restricted bases-exchange graph to pass the Ratios Criterionfollows (Corollary 4.4).|||||||||||||||2 Bases : Enumeration and the Exchange GraphDe�nition: A matroid M over a �nite ground-set S is a pair (S;B), where B (the bases ofM) is a collection of subsets of S satisfying :(i) All sets B in B have the same cardinality, and(ii) If B and B0 are in B and x is an element of B, then there is some element y of B0such that B n fxg [ fyg is in B.De�nition: A set I � S is called independent in M(S;B) if it is a subset of some basis inB.The interested reader is referred to the classical textbook of Welsh [25] for a detailed treat-ment of matroid theory.



4De�nition: For a matroidM(S;B) the bases-exchange graph G(M) of M is a graph whosevertex-set is the set of bases B, and two bases B and B 0 are connected with an edge if andonly if their symmetric di�erence is exactly 2, i.e. B0 = B n fxg [ fyg, for some x; y 2 S.Again, the reader is referred to [7] [10] [18] [19] [20] [23] [26], for further information aboutthe bases-exchange graph.De�nition: For a graph G(V;E) and for X � V de�ne the cutset C(X) of X in the usualway : C(X) = f(u1; u2)2E : u12X; u22V nXgDe�nition: The cutset-expansion (or simply expansion) of a graph G(V;E) is :minX�V;jX j� jV j2 jC(X)jjXjTo the best of our knowledge, there is no counter-example to the following conjecture thatwas proposed in [18] :Conjecture: (Matroid-Expansion Conjecture ) For any matroid M(S;B), the cutsetexpansion of the bases-exchange graph G(M) is at least 1.The above conjecture has been shown to hold for partition matroids and their truncations[18], and in slightly weaker form for graphic matroids [2] [4].Clearly, a positive resolution of the conjecture, even in slightly weaker form or for specialclasses of matroids (vectorial, transversals, graphic and their truncations etc.) would be ofmajor combinatorial interest. Furthermore, it was pointed out in [18] that it would also beof fundamental algorithmic signi�cance:Fact: [18] If for all matroids M(S;B) the bases-exchange graph G(M) possesses cutset-expansion inverse polynomial in jSj, then for any matroid M(S;B) there exists an e�cientalgorithm to approximate jBj, given an independence oracle for M.The above assertion follows by standard techniques on random walks on expanders [1] [16][21], and the well known equivalence of uniform generation and approximate counting forself-reducible combinatorial structures [3] [12]. The reader is referred to [18] for furtherexplanations.In particular, several unsolved counting problems (including network reliability which isknown to be NP -hard [24]) can be reduced to counting the number of bases of suitablychosen matroids. So, if the Matroid-Expansion Conjecture holds, then all such problems canbe approximated by e�cient Monte-Carlo algorithms.Our work was precisely motivated by the question of resolving the Matroid-Expansion Con-jecture.|||||||||||||||||||-



53 The Ratios-CriterionExpansion properties of various families of graphs have always been hard to establish [5] [6][8] [11] [13] [14] [15] [18]. The apparent hardness is due to the fact that expansion is a globalproperty, while the adjacencies of the graph in question are usually de�ned in a local manner(especially for graphs with intricate combinatorial structure like the bases-exchange graph).Therefore, an expansion argument typically aims to infer global statements by isolatingknown relevant and usually local structure. It was in this sense that the geometric features ofthe bases-exchange graph were isolated in [18] (and in fact, it was partial geometric evidencethat led to the matroid-expansion conjecture). While geometry has still not resolved theconjecture, we have isolated here yet another criterion for matroid-expansion, the Ratios-Criterion : \If for all A : A�Be, j�e(A)j=jAj � jB�ej=jBej, then Ge(M) is a cut-set expander".We believe that this criterion seems more local and suitable for matroids for the followingreasons:(i) It is more local because it is the core of an inductive argument by imposing structure toa reasoning about exchanges that involve a particular element e.(ii) It is more suitable for matroids because it seems to reduce (in a way particularly conve-nient for matroids) the regularity that needs to be exhibited in an expansion argument. Morespeci�cally, as mentioned on the introduction, matroids satisfy certain non-trivial propertiesfor single-step exchanges that are not known to hold for sequences of exchanges (the readerin referred to [25] for a convincing collection of such properties). For example, among oth-ers, matroids are known to posses \single-step complementary properties": For every pair ofbases B and B0 and for every x 2 B, there exists y 2 B 0 such that both B n fxg [ fyg andB0 n fyg [ fxg are bases ([25], Chapter 1). Such a property, coupled with the restriction toexchanges involving a speci�c element e as required by the Ratios-Criterion, can be poten-tially used to a single-step analogue of a Jerrum and Sinclair type of expansion argument.Along the Jerrum and Sinclair style of reasoning, expansion of a set A is established byexhibiting a substantial number of edge-disjoint paths from A to its complement [5] [11] [18].In such a setup for the bases-exchange graph G(M), it would be required to reason aboutthe regularity of \complementary" properties holding all along paths that are appropriatelyde�ned between any two bases B and B0. In contrast, the Ratios-Criterion requires to reasononly about the regularity of the �rst step of such paths, for which at least complementaryproperties are in fact known to hold.We proceed with the technical statements :De�nition: Say that a matroid M(S;B) enforces ratios if for all e 2 S and for all A � Be,A enforces ratios with respect to e, i.e.,j�e(A)jjAj � jB�ejjBej (1)



6Lemma: If all matroids enforce ratios, then the dual of (1) is also always true : For allmatroids M(S;B), for all e 2 S, and for any A � B�ej�e(A)jjAj � jBejjB�ej (2)where �e(A) is the set of vertices in Be that are connected with some vertex in A by an edgeof G(M).Proof. (2) is obtained by applying condition (1) to the dualM�(S;B�) ofM(S;B), whereB 2 B� if and only if S nB 2 B, and by noticing that M(S;B) is isomorphic to M�(S;B�).2Theorem: (The Ratios-Criterion) : If all matroids enforce ratios, then all matroids havecutset-expansion at least 1.Proof. Consider a matroid M(S;B) and let X � B be such thatjXj � jBj2 (3)We wish to show jC(X)j � jXj (4)Let Xe = X \ Be and X�e = X \ B�e. Let Ce(X) denote the set of edges in G(M) thatare incident to both Xe and Be nXe. Let C�e(X) denote the set of edges in G(M) that areincident to both X�e and B�e n X�e. Let Ce�e(X) denote the set of edges in G(M) that areincident to both Xe and B�e n X�e Finally let C�ee(X) denote the set of edges in G(M) thatare incident to both X�e and Be n Xe. Clearly, the above sets de�ne a partition of C(X).Therefore: jC(X)j = jCe(X)j+ jC�e(X)j + jCe�e(X)j+ jC�ee(X)j (5)The proof will bound from below jC(X)j by lower-bounding appropriately chosen terms ofthe right-hand-side of (5). For this we proceed inductively on the size of the ground-set ofM(S;B). The basis of the induction is trivial, and the hypothesis asserts that all matroidsover ground-sets of size strictly smaller than jSj have cutset-expansion at least 1.Case 1 : jXej � jBej2 , and jX�ej � jB�ej2 .The inductive hypothesis provides satisfactory lower bounds for jCe(X)j and jC�e(X)j, and(5) yields a lower bound on jC(X)j. In particular, realize that the matroids M(S;Be)and M(S n feg;B�e) are isomorphic to matroids over ground-set S n feg. Therefore theinductive hypothesis applies to M(S;Be) for Xe, and M(S n feg;B�e) for X�e, thus yieldingjCe(X)j � jXej and jC�ej � jX�ej. Now (5) suggests that jC(X)j � jXj, which completes theargument for case 1.Case 2 : jXej > b jBej2 c, and jX�ej < d jB�ej2 e.



7By the remarks of the previous case, the inductive hypothesis applies toM(S;Be) for BenXeand M(S n feg;B�e) for X�e, thus yielding :jCe(X)j � jBe nXej = jBej � jXej andjC�e(X)j � jX�ej (6)Clearly, the bounds in (6) are not strong enough to establish the desired bound for jC(X)j.It is at this point that we will use the enforcement of ratios (conditions (1) and (2)) andobtain an additional lower bound for the cross expansion jCe�e(X)j.Consider some subsetA ofXe jAj = d jBej2 e. Condition (1) implies that j�e(A)j � jAjjB�ej=jBej =d jB�ej2 e. Therefore, there exists a subset A1 of �e(A) such that A1 \ X�e = ; and jA1j =d jB�ej2 e � jX�ej. Let Ce�e;A1(X) be the set of edges incident to Xe and A1. Clearly,jCe�e;A1(X)j � jA1j = djB�ej2 e � jX�ej (7)Let A0 = B�e n (A1 [ X�e). Of course, jA0j = b jB�ej2 c. Condition (2) implies that there existssome subset A01 of �e(A0) such that A01 � Xe and jA01j = jXej � b jBej2 c. Now if Ce�e;A01(X) isthe set of edges incident to A01 and A0, it is clear thatjCe�e;A01(X)j � jXej � bjBej2 c (8)Moreover, notice that Ce�e;A1(X) and Ce�e;A01(X) are disjoint. Therefore (7) and (8) imply:jCe�e(X)j � jCe�e;A1(X)j+ jCe�e;A01(X)j� djB�ej2 e � jX�ej+ jXej � bjBej2 c (9)Finally, (5), (6), and (9) imply :jC(X)j � jBej � jXej+ jX�ej+ djB�ej2 e � jX�ej+ jXej � bjBej2 c= djBej2 e+ djB�ej2 e� jBj2� jXej+ jX�ej= jXjThis last bound completes the treatment of Case 2.Case 3 : jXej < d jBej2 e, and jX�ej > b jB�ej2 c. This case is identical to Case 2, which completesthe proof of Theorem 4.3. 2



8Remark : A Ratios-Condition similar to (1) and (2) can be shown to hold for the polytopesof order ideals, independent sets, partition matroids and their truncations, and matchingsand their \slices" that were examined in [18]. This results in cutset expansion factors 1for these polytopes (while in [18] it was shown that these polytopes have \strong cutsetexpansion" 1, hence, cutset expansion only 1/2). The reasoning is inductive and uses single-step complementary point arguments that are known to hold for the above polytopes. Thereader is referred to [17] for the complete proof.|||||||||||||||||||{4 Matroid Connectivity and the e-Restricted Bases-Exchange graphThe Ratios-Criterion that was developed in the previous section was based on the exchangesinvolving only one speci�c element e of the ground set S. In particular, the graph that wasunderlying throughout the Ratios-Criterion was the \e-restricted bases-exchange graph",formally de�ned as follows :De�nition: For a matroid M(S;B) and for some e 2 S the e-restricted bases-exchangegraph : Ge(M) is a graph on vertex-set B(= Be[B�e), and two bases B and B0 are connectedby an edge if and only if :� B 2 Be and B0 2 B�e, and� B and B0 are connected by an edge in G(M).In terms of the e-restricted bases-exchange graph the ratios enforcement condition in theRatios-Criterion states that for all subsets A of Be the following holds :j�e(A)jjAj � jB�ejjBejIt is easy to see that if the bases-exchange graph indeed passes the Ratios-Criterion, thenit is necessary that when X(= Xe [X�e) is an entire connected component of Ge(M) thenthis component enforces ratios with equality, i.e., jXej=jX�ej = jBej=jB�ej. While the generalcondition remains open, we show here that the above non-trivial necessary condition is in facttrue. The key ingredient in our proof is the characterization of the connected componentsof Ge(M), which, in turn, results in an alternative de�nition of matroid connectivity.A very simple (and very instructive) example of a matroid is the Graphic Matroid of a graphG(V;E). The ground set of this matroid is the set E of the edges of G and the bases are thespanning trees. Biconnectivity in graphs is a well known property; connectivity in matroidsis analogous to biconnectivity in graphs : A matroid M(S;B) is connected if there exists a



9circuit through every pair of elements in the ground set. Furthermore, if a matroid is notconnected, then its ground set can be partitioned uniquely into connected components (forgraphic matroids this corresponds to a partitioning of the edges into biconnected compo-nents). The original matroid induces a matroid on each component in a natural way andthe original matroid can be reconstructed as the direct sum of the components. (Again it iseasy to see that spanning trees of the original graph are simply the union of spanning treesof biconnected components.)Our main theorem relates the connectivity of the e-restricted bases-exchange graph to theconnectivity of the matroid.Theorem: (Connectivity Theorem) The e-restricted bases-exchange graph of a matroidM is connected if and only if the matroid is connected.Consequently, if the matroid is not connected then the structure of the connected componentsof Ge(M) can be characterized as follows :Theorem: LetM1(S1;B1) be the connected component containing an element e in a matroidM and let M2(S2;B2) be the induced matroid on the remaining elements of the ground-set(S2 = S n S1). Then Ge(M) contains exactly one connected component for each basis B2 inB2 and each connected component is isomorphic to Ge(M1).Again, by Theorem 4.3 the following necessary condition for the e-restricted bases exchangegraph to pass the Ratios Criterion is true:Corollary: (Necessary Condition) Every connected component of Ge(M) enforces ratioswith equality, i.e.if X = Xe [ X�e is a connected component of Ge(M), then jXej=jX�ej =jBej=jB�ej.In the rest of the section we give the technical details of the proof of Theorems 4.2, 4.3 andCorollary 4.4.4.1 PreliminariesRecall that a subset of the ground-set is independent if it is the subset of a base. A set thatis not independent is called dependent.De�nition: A circuit in a matroid M is a minimal dependent subset of S.In De�nition 2.1 a matroid was introduced in terms of its bases. Equivalently a matroid canbe introduced in terms of its circuits (e.g. see [25]):De�nition: (Circuit Axioms) A collection C of subsets of S is the set of circuits of amatroid on S if and only if for all X;Y 2 C(i) X is not a subset of Y(ii) If z 2 X\Y and y 2 X�Y , then there exists a circuit Z 2 C such that Z � X[Y nfzgand y 2 Z (here � denotes symmetric di�erence).



10The circuits of a matroid de�ne a natural relation R on the ground-set. The equivalenceclasses of this relation are the connected components of the matroid.De�nition: Let R � S � S be such that e1Re2 if and only if 9C 2 C such that e1; e2 2 C.It is well known that R de�ned on S � S, as above, is an equivalence relation.De�nition: The equivalence classes of the relation R induce a partition of S whose partitionclasses are the connected components of S.De�nition: A matroid M(S;B) is said to be connected if and only if S has exactly oneconnected component.In the following subsections we show the su�ciency and necessity of matroid connectivityfor the connectedness of Ge(M). In particular we will establish Theorem 4.2 which followsfrom Lemma 4.17 and Lemma 4.20.We �rst show su�ciency, i.e. that a connected matroid results in a connected e-restrictedbases-exchange graph.4.2 Su�ciencyLet M(S;B) be a connected matroid. We show that every pair of bases that are adjacent inG(M) are connected by a path of length O(jSj) in Ge(M). Since the bases-exchange graphis connected, this implies that the e-restricted bases-exchange graph is also connected.In the proof we shall �rst exhibit the existence of \chains" of circuits inM that link adjacentbases of G(M). We shall further show that these chains are su�cient to establish paths inGe(M) between adjacent bases of G(M).De�nition: The rank function of a matroid is a function � : 2S ! @0 such that for allX � S : �(X) = max(jY j : Y � X;Y 2 I)In words, the rank of a set is the size of the maximal independent set that is contained inthe set.De�nition: A sequence of circuits C1; C2; � � � ; Ck is a chain of length k if �(Ci [ Ci+1) =jCi [ Ci+1j � 2 and Ci \ Ci+1 6= �, for all i : 1 � i � k.In the case of graphic matroids a chain is a sequence of cycles where intersection of successivecycles is a path in the graph.Fact: The conditions �(Ci [ Ci+1) = jCi [ Ci+1j � 2 and Ci \ Ci+1 6= � guarantee thatCi�Ci+1 is contained in a circuit.Proof. Let z 2 Ci \ Ci+1. Then the circuit axioms guarantee that for every elementx 2 Ci�Ci+1 there exists a circuit contained in Ci [ Ci+1 n fzg that contains x. But thecondition �(Ci[Ci+1) = jCi[Ci+1j�2, implies that there is a unique circuit in Ci[Ci+1nfzg,which implies that Ci�Ci+1 is contained in a circuit. 2



11Recall that for a basis B 2 B and an element x 2 S nB there is a unique circuit in B [ fxg.De�nition: For a basis B and an element x 2 S nB, the unique circuit in B [fxg is calledthe fundamental circuit of (B;x). This will be henceforth denoted by C(B;x).De�nition: Let e 2 S and let B and B 0 be two bases inM such that B�B 0 = fe1; e2g, wheree1 2 B and e2 2 B0. De�ne B and B0 to be linked with respect to e by a chain of length k, ifthere exists a sequence of elements x1; x2; � � � ; xk = e2, such that C(B;x1),C(B;x2),: : : ; C(B;xk)is a chain of length k and e 2 C(B;x1). We shall also say that the chain C(B;x1),C(B;x2),: : : ; C(B;xk)links e to e1 with respect to the basis B.Claim: Let B;B0 be two bases in M such that B�B 0 = fe1; e2g, where e1 2 B and e2 2 B0.Then there exists a chain of length at most jSj which links B and B0.Proof. Follows from Lemma 6.2 in [?]. 2Claim: If B;B 0 are linked by a chain of length l, then there exists a path of length at most4l between B and B0 in Ge(M).Proof. We use induction on l. The case l = 1 is trivial.Consider B and B 0 that are linked by a chain of length l.Let the sequence of edges forming the chain be x1; x2; � � � ; xl and let the chain be C1 =C(B;x1); C2 = C(B;x2); � � � ; Cl = C(B;xl). Assume further that if ji�jj > 1 then Ci\Cj =� (otherwise there exists a smaller chain linking B and B 0).Consider y 2 C1 \ C2 (notice y 2 B). Now consider the bases B1 = B [ fx1g n fyg andB10 = B 0 [ fx1g n fyg. B1 (resp. B10) can be reached from B1 (resp. B10) by exchangesinvolving e. We show below that B and B0 are linked by a chain of length l � 1.Consider the sequence of edges x2; x3; � � � ; xl, and the circuits C11 = C(B1; x2); C12 =C(B1; x3); � � � ; C1l�1 = C(B1; xl). Now notice:� C1i = Ci+1;8i > 1 : This follows from the fact that B is di�erent from B1 only infx1; yg.� C11 \ C12 6= � : This is true since C1�C2 � C11 and C3 \ C2 \ C1 = �.Thus C11; C12; � � � ; C1l�1 is a chain of length l � 1 that links B1 with B10. This completesour proof. 2All the above implyLemma: The e-restricted bases-exchange graph of a matroid M is connected if M is con-nected.Proof. Follows from Claims 4.15 and 4.16. 2Next we show that Ge(M) is not connected if M is not connected.



124.3 NecessityLet M(S;B) be a disconnected matroid and let S0 be a minimal non-empty seperator of Mnot containing e. Then, for any base B, no exchange involving e will change B \ S 0. Thusif there exist two bases B1 and B2 such that B1 \ S0 6= B2 \ S 0, then there is no pathconnecting them. This proves that the connectedness of the matroid is a necessary conditionfor the connectedness of the e-restricted basis-exchange graph.Theorem 4.3 Let M1(S1;B1) be the connected component containing an element e in amatroid M and let M2(S2;B2) be the induced matroid on the remaining elements of thematroid (S2 = S n S1). Then Ge(M) contains exactly one connected component for eachbasis B2 in B2 and each connected component is isomorphic to Ge(M1).Proof. The proof follows from the fact that all bases of M are formed by the union ofbases of M1 and M2. Thus for a given basis B2 of M2, all the vertices of Ge(M) that areof the form fB1 [ B2 : B1 is a basis of M1g form a connected component of Ge(M). Theedges in Ge(M) are all based on circuits of M1. Thus every such basis B2 in B2 induces acomponent in Ge(M). 24.4 Connected Components of Ge(M)We are now in a position to establish the necessary condition :Corollary 4.4 (Necessary Condition) Each connected component of Ge(M) enforcesratios with equality i.e.if X = Xe [X�e are the vertices of a connected component of Ge(M),then jXej=jX�ej = jBej=jB�ej.Proof. Follows from the fact that all components are isomorphic and hence the ratio ofvertices in either partition is the same in all components. 2|||||||||||||||||||5 ConclusionWe investigate the connectivity property of matroids and their bases-exchange graph andobtain an alternative de�nition for matroid connectivity. The motivation for our work wasto resolve the matroid-expansion conjecture of [18]. While the conjecture still remains open,we provide a new local expansion criterion that appears suitable for matroids. Resolving thematroid expansion conjecture is of fundamental algorithmic signi�cance. ||||||||||||||{
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