
Proof Verification and the Hardness of

Approximation Problems

Sanjeev Arora∗ Carsten Lund† Rajeev Motwani‡

Madhu Sudan§ Mario Szegedy¶

Abstract

We show that every language in NP has a probablistic verifier that checks member-
ship proofs for it using logarithmic number of random bits and by examining a constant
number of bits in the proof. If a string is in the language, then there exists a proof
such that the verifier accepts with probability 1 (i.e., for every choice of its random
string). For strings not in the language, the verifier rejects every provided “proof”
with probability at least 1/2. Our result builds upon and improves a recent result of
Arora and Safra [6] whose verifiers examine a nonconstant number of bits in the proof
(though this number is a very slowly growing function of the input length).

As a consequence we prove that no MAX SNP-hard problem has a polynomial
time approximation scheme, unless NP=P. The class MAX SNP was defined by Pa-
padimitriou and Yannakakis [82] and hard problems for this class include vertex cover,
maximum satisfiability, maximum cut, metric TSP, Steiner trees and shortest super-
string. We also improve upon the clique hardness results of Feige, Goldwasser, Lovász,
Safra and Szegedy [42], and Arora and Safra [6] and show that there exists a positive
ε such that approximating the maximum clique size in an N -vertex graph to within a
factor of N ε is NP-hard.

1 Introduction

Classifying optimization problems according to their computational complexity is a central
endeavor in theoretical computer science. The theory of NP-completeness, developed by
Cook [36], Karp [69] and Levin [75], shows that many decision problems of interest, such
as satisfiability, are NP-complete. This theory also shows that decision versions of many
optimization problems, such as the traveling salesman problem, bin packing, graph coloring,
∗arora@cs.princeton.edu. Department of Computer Science, Princeton University, NJ 08544. This

work was done when this author was a student at the University of California at Berkeley, supported by
NSF PYI Grant CCR 8896202 and an IBM fellowship. Currently supported by an NSF CAREER award,
an Alfred P. Sloan Fellowship and a Packard Fellowship.
†lund@research.att.com. AT&T Bell Labs, 600 Mountain Ave, Murray Hill, NJ 07974.
‡rajeev@cs.stanford.edu. Department of Computer Science, Stanford University, Stanford, CA 94305.

Supported by an Alfred P. Sloan Research Fellowship, an IBM Faculty Partnership Award, NSF grant
CCR-9010517, NSF Young Investigator Award CCR-9357849, with matching funds from IBM, Mitsubishi,
Schlumberger Foundation, Shell Foundation, and Xerox Corporation.
§madhu@lcs.mit.edu. Laboratory for Computer Science, MIT, 545 Technology Square, Cambridge, MA

02139. Parts of this work were done when this author was at the University of California at Berkeley,
supported by NSF PYI Grant CCR 8896202, and at the IBM Thomas J. Watson Research Center.
¶ms@research.att.com. AT&T Bell Labs, 600 Mountain Ave, Murray Hill, NJ 07974.

1

and maximum clique are NP-complete, thus implying that those optimization problems are
NP-hard. If P 6= NP, no polynomial-time algorithm can solve them optimally.

Given this evidence of intractability, researchers have attempted to design polynomial time
approximation algorithms for the NP-hard optimization problems [53, 81]. An algorithm
is said to approximate a problem within a factor c, where c ≥ 1, if it computes, for every
instance of the problem, a solution whose cost (or value) is within a factor c of the optimum.

While all NP-complete decision problems are polynomial-time equivalent, research over the
past two decades [53, 81], starting with the papers of Johnson [66] and Sahni and Gonza-
les [92], suggests that NP-hard optimization problems differ vastly if we are interested in
computing approximately optimal solutions. Some NP-hard problems, such as the knapsack
problem [91, 64], have a Fully Polynomial Time Approximation Scheme: an algorithm that,
for any given ε > 0, approximates the problem within a factor 1 + ε in time that is polyno-
mial in the input size and 1/ε. The class of problems with such approximation schemes is
called FPTAS. Some other NP-hard problems, such as the problem of scheduling processes
on a multiple processor machine so as to minimize their makespan [60], have a Polyno-
mial Time Approximation Scheme: an algorithm that, for any given ε > 0, approximates
the problem within a factor 1 + ε in time that is polynomial in the input size (and could
depend arbitrarily upon 1/ε). The class of problems with such approximation schemes is
called PTAS. Most problems of interest are not known to be in PTAS. However, many of
the latter problems, such as maximum cut, vertex cover, and the metric traveling salesman
problem, have a constant-factor approximation algorithm, i.e., algorithms which for some
fixed constant c > 1, are able to approximate the optimal solution to within a factor c in
polynomial time. The class of such problems is called APX. It follows from the definitions
that FPTAS ⊆ PTAS ⊆ APX.

Researchers have also tried to show that problems do not belong to some of the classes
above. The notion of strong NP-completeness was introduced by Garey and Johnson [52] to
show that a large collection of problems are not in FPTAS if P 6= NP. Sahni and Gonzalez
[92] showed that the (unrestricted) traveling salesman problem is not in APX if P 6= NP.
But the status of many other problems remained open. For example, it was not known if
the clique problem is in APX.

In a recent breakthrough, Feige, Goldwasser, Lovász, Safra, and Szegedy [42] provided strong
evidence that clique is not in APX. They showed that if it is possible to approximate the
clique number to within any constant factor in polynomial time, then every NP problem
can be solved in nO(log logn) time. More recently, Arora and Safra [6] improved this result to
show that if clique is in APX, then P = NP. In other words, approximating clique within any
constant factor is NP-hard. These results relied upon algebraic techniques from complexity
theory and the theory of interactive proofs. Arora and Safra also used these techniques
to give a new probabilistic characterization of NP which is of independent interest (and is
described below).

However, there has been less progress in showing that APX problems are not in PTAS. The
one important work in this direction is due to Papadimitriou and Yannakakis [82], who show
that a large subset of APX problems are essentially equivalent in this regard: either all of
them belong to PTAS, or none of them do. They used second order logic to define a class of
NP optimization problems called MAX SNP that is contained within APX. (The inspiration
to use 2nd order logic came from the work of Fagin [40] and Kolaitis and Vardi [73].) They
also defined a notion of approximation-preserving reductions and, thereby, the notion of
completeness and hardness for MAX SNP. We will not define these terms here, except to
note that a MAX SNP-complete problem is in PTAS if and only if MAX SNP ⊆ PTAS,
and that if a MAX SNP-hard problem is in PTAS, then MAX SNP ⊆ PTAS. Many APX
problems of real interest are MAX SNP-hard, e.g., MAX-3SAT, MAX-CUT, vertex cover,

2

independent set, and metric traveling salesman problem. Note that to show that none of
the MAX SNP-hard problems is in PTAS, it suffices to exhibit just one MAX SNP problem
that is not in PTAS.

In this paper we show that if P 6= NP, then the MAX SNP problem MAX-3SAT — the
problem of computing the maximum number of simultaneously satisfiable clauses in a 3-
CNF formula — is not in PTAS. Thus, it follows that if P 6= NP, then all MAX SNP-hard
problems are not in PTAS.

Our result, like those of Feige et al. and Arora and Safra, involves constructing efficient
verifiers that probabilistically check membership proofs for NP languages. As a consequence,
we improve upon Arora and Safra’s characterization of NP.

In the concluding section of the paper (Section 8) we discuss related work that has appeared
since the circulation of the first draft of this paper.

1.1 Related Recent Work

As hinted above, a large body of work in complexity theory and the theory of interactive
proofs forms the backdrop for our work. We briefly describe the more relevant developments.

1.1.1 Proof Verification

By definition, NP is the class of languages for which membership proofs can be checked
in deterministic polynomial time in the length of the input. In other words, for every NP
language L, there exists a polynomial time Turing Machine M , called a verifier, that takes
pairs of strings as its input and behaves as follows: if a string x ∈ L, then there exists a
string π of length polynomial in |x| such that M accepts the pair (x, π); conversely, if x 6∈ L,
then for all strings π, M rejects (x, π).

Generalizing the above definition of NP leads to definitions of interesting new complexity
classes, which have been the subject of intense research in the past decade. Goldwasser, Mi-
cali and Rackoff [59] and Babai [10, 16] allowed the verifier to be a probabilistic polynomial-
time Turing Machine that interacts with a “prover,” which is an infinitely powerful Turing
Machine trying to convince the verifier that the input x is in the language. A surprising
recent result, due to Lund, Fortnow, Karloff and Nisan [77] and Shamir [94], has shown
that every language in PSPACE — which is suspected to be a much larger class than NP
— admits such “interactive” membership proofs. Another variant of proof verification, due
to Ben-Or, Goldwasser, Kilian and Wigderson [24], involves a probabilistic polynomial-
time verifier interacting with more than one mutually non-interacting provers. The class of
languages with such interactive proofs is called MIP (for Multi-prover Interactive Proofs).
Fortnow, Rompel and Sipser [46] gave an equivalent definition of MIP as languages that have
a probabilistic polynomial-time oracle verifier that checks membership proofs (possibly of
exponential length) using oracle access to the proof. This equivalent definition is described
below, using the term probabilistically checkable proofs introduced by Arora and Safra.

Babai, Fortnow and Lund [13] recently showed that MIP is exactly NEXP, the class of lan-
guages for which membership proofs can be checked deterministically in exponential time.
This result is surprising because NEXP is just the exponential analogue of NP, and its
usual definition involves no notion of randomness or interaction. Therefore researchers tried
to discover if the MIP = NEXP result can be “scaled-down” to say something interesting
about NP. Babai, Fortnow, Levin and Szegedy [14] introduced the notion of transparent
membership proofs, namely, membership proofs that can be checked in polylogarithmic
time, provided the input is encoded with some error-correcting code. They showed that NP

3

languages have such proofs. Feige et al. [42] showed a similar result, but with a somewhat
more efficient verifier. Arora and Safra [6] further improved the efficiency of checking mem-
bership proofs for NP languages. They also gave a surprising new characterization of NP.
We describe their result below, and describe how we have improved upon it.

Arora and Safra define a hierarchy of complexity classes called PCP (for Probabilistically
Checkable Proofs). This definition uses the notion of a “probabilistic oracle verifier” of
Fortnow et al. [46] and classifies languages based on how efficiently such a verifier can check
membership proofs for them. The notion of “efficiency” refers to the number of random bits
used by the verifier as well as the number of bits it reads in the membership proof. Note
that we count only the bits of the proof that are read - not the bits of the input which the
verifier is allowed to read fully. These parameters were first highlighted by the work of Feige
et al.[42]. In fact, the definition of a class very similar to PCP was implicit in the work of
Feige et al. [42].

Definition 1 ([6]) For functions r, q : Z+ → Z+, a probabilistic polynomial-time verifier
V is (r(n), q(n))-restricted if, for every input of size n, it uses at most r(n) random bits
and examines at most q(n) bits in the membership proof while checking it.

A language L ∈ PCP(r(n), q(n)) if there exists a (r(n), q(n))-restricted polynomial-time
verifier that, for every input x, behaves as follows:

• if x ∈ L, then there exists a membership proof π such that V accepts (x, π) with
probability 1 (i.e., for every choice of its random bits);

• if x 6∈ L, then for any membership proof π, V accepts π with probability at most 1/2.

The PCP notation allows a compact description of many known results,

• NEXP = ∪c>0PCP(nc, nc) (Babai, Fortnow, and Lund [13]).

• NP ⊆ ∪c>2PCP(logc n, logc n,) (Babai, Fortnow, Levin, and Szegedy [14]).

• NP ⊆ ∪c>0PCP(c log n loglog n, c log n loglog n) (Feige, Goldwasser, Lovász, Safra, and
Szegedy [42]).

• NP = ∪c>0PCP(c log n, c
√

log n) (Arora and Safra [6]).

Notice that the first and the last of the above relations are exact characterizations of the
complexity classes NEXP and NP, respectively. In this paper we improve upon the last
result (see Theorem 4).

1.1.2 PCP and Non-approximability

A result due to Feige et al. [42] implies that in order to prove the hardness of approximating
the clique number, it suffices to show that some NP-complete language is low in the PCP
hierarchy. The following statement summarizes this result.

Theorem 2 ([42]) Suppose q : Z+ → Z+ is a logarithmically bounded non-decreasing
function and c is a constant such that

3-SAT ∈ PCP(c log n, q(n)).

Then there exists a constant k such that approximating the clique number in an N ≥ n-vertex
graph to within a factor of N1/(k+q(N)) is NP-hard.

4

Remark: The above statement is a well-known implication of the result of Feige et al. [42].
It uses the idea of reducing the error probability of the verifier using “recycled” random bits
(see [32, 65]). For further details see [6].

Thus, as a consequence of the new characterization of NP due to Arora and Safra [6], it
follows that approximating the clique number within a factor 2θ(

√
logN) is NP-hard.

The discovery of Theorem 2 inspired the search for other connections between probabilistic
proof checking and non-approximability (Bellare [18], Bellare and Rogaway [22], Feige and
Lovász[45], and Zuckerman [100]). Another such connection is reported by Arora, Motwani,
Safra, Sudan and Szegedy [5], which shows the connection between PCP’s and the hardness
of approximating MAX 3SAT. The following theorem summarizes this result; for a proof
see Section 3.

Theorem 3 ([5]) If NP ⊂ ∪c>0PCP(c log n, q) for some positive integer q, then there exists
a constant ε > 0, such that approximating MAX-3SAT within a factor 1 + ε is NP-hard.

1.2 Our results

The main result of this paper is a new characterization of NP in terms of PCP, which
improves the earlier characterization due to Arora and Safra [6].

Theorem 4 (Main) There is a positive integer q such that

NP = ∪c>0PCP(c log n, q).

The containment ∪c>0PCP(c log n, q) ⊆ NP is trivial, since a verifier that uses O(log n)
random bits can be replaced by a deterministic verifier. The nontrivial containment NP ⊆
∪c>0PCP(c log n, q) is a consequence of our Theorem 17 below.

We note that the characterization in Theorem 4 is probably optimal up to constant factors,
since, as observed in [6], if P 6= NP, then NP 6⊆ PCP(o(log n), o(log n)).

As an immediate consequence of our main theorem and Theorem 3, we have the following.

Theorem 5 There exists a constant ε > 0 such that approximating the maximum number
of simultaneously satisfiable clauses in a 3CNF formula within a factor 1 + ε is NP-hard.

As noted earlier, Theorem 5 implies that if P 6= NP then no MAX SNP-hard problem is
in PTAS. The class of MAX SNP-hard problems includes MAX 2SAT, MAX CUT, vertex
cover [82], metric TSP [83], Steiner tree [26], shortest superstrings [27], MAX 3DM [67],
and multiway cut [38]. Our theorem above implies that for every one of these problems Π,
there exists a threshold εΠ such that approximating Π within a factor 1 + εΠ is NP-hard.

Also, as a consequence of our main theorem and Theorem 2, we can prove the following
result about the non-approximability of clique number.

Theorem 6 There exists a constant ε > 0, such that approximating the maximum clique
size in an N -vertex graph to within a factor of N ε is NP-hard.

The previous best result (in [6]) shows that approximating clique to within a factor of
2
√

logN is NP-hard.

5

Our techniques. Our proof of Theorem 4 uses techniques similar to those in recent results
about PCPs (Babai, Fortnow, Levin, and Szegedy [14]; Feige, Goldwasser, Lovász, Safra and
Szegedy [42]; and Arora-Safra [6]). The concept of Recursive Proof Checking invented by
Arora and Safra plays a particularly important role (see Section 2). We were also influenced
by work on program checking and correcting, especially Blum, Luby, and Rubinfeld [30], and
Rubinfeld and Sudan [90]. The influence of the former will be apparent in Section 5, while
the latter work (together with a lemma of Arora and Safra [6]) is used in our analysis of a
Low Degree Test described in Section 7.2. Finally, we were influenced by work on constant
prover 1-round interactive proof systems [74, 45]. In fact, our definition of an outer verifier
(Definition 8) may be viewed as a generalization of the definition of such proof systems, and
our Theorem 4 provides the first known construction of a 2-prover 1-round proof system that
uses logarithmic random bits and constant number of communication bits. In fact, prior
to this paper, no construction of constant prover one round proof system using logarithmic
random bits and no(1) communication bits was known. Theorem 14, which presents such a
proof system with logarithmic randomness and polylogarithmic communication bits, already
improves upon the performance of known constructions and plays a central role in the proof
of Theorem 4.

2 Proof of the Main Theorem: Overview

A key paradigm in the proof of Theorem 4 is the technique of recursive proof checking
from [6]. The technique, described in Theorem 13, involves constructing two types of verifiers
with certain special properties, and then composing them. If the first verifier queries q1(n)
bits in the membership proofs while checking it and the second verifier queries q2(n) bits,
where n is the input size, then the composed verifier queries the proof in approximately
q2(q1(n)) bits. Typically, q1 and q2 are sublinear functions of n (actually, they are closer to
log n), so the function q1 ◦ q2 grows slower than either q1 or q2.

As already mentioned, the above composition is possible only when the two verifiers have
certain special properties, which we describe below. The main contribution of this paper
are some new techniques for constructing such verifiers, which will be described when we
prove Theorems 14 and Theorems 15.

First we introduce some terminology. We define CKT-SAT, an NP-complete language. An
algebraic circuit (or just circuit for short) is a directed acyclic graph with fan-in 2. Some
of the nodes in the graph are input nodes; the others are internal nodes, each marked with
one of the two symbols + and · that are interpreted as operations over the field GF (2).
One special internal node is designated as the output node. We may interpret the circuit
as a device that for every assignment of 0/1 values to the input nodes, produces a unique
0/1 value for each internal node, by evaluating each node in the obvious way according to
the operation (+ or ·) labeling it. For a circuit C with n input nodes and an assignment
of values x ∈ {0, 1}n to the input nodes, the value of C on x, denoted C(x), is the value
produced this way at the output node. If C(x) = 1, we say x is a satisfying assignment to
the circuit. The size of a circuit is the number of gates in it. The CKT-SAT problem is the
following.

CKT-SAT
Given: An algebraic circuit C.
Question: Does C have a satisfying assignment?

Clearly, CKT-SAT ∈ NP. Furthermore, a 3-CNF formula can be trivially reformulated as
a circuit, so CKT-SAT is NP-complete.

6

Oracles. All verifiers in this paper expect membership proofs to have a very regular struc-
ture — the proof consists of oracles. An oracle is a table each of whose entries is a string
from {0, 1}a, where a is some positive integer called the answer size of the oracle. The veri-
fier can read the contents of any location in the table by writing its address on some special
tape. In our constructions, this address is interpreted as an element of some algebraically
defined domain, say D. (That is to say, the oracle is viewed as a function from D to {0, 1}a.)
The operation of reading the contents of a location q ∈ D is called as querying the location
q.

2.1 Outer and Inner Verifiers and How They Compose

Now we define two special types of verifiers, the outer and inner verifiers. An outer verifier
can be composed with an inner verifier and, under some special conditions, the resulting
verifier is more efficient than both of them.

The notable feature of both types of verifiers is that their decision process has a succinct
representation as a small circuit. (In our constructions, the size of the circuit is polyloga-
rithmic in the input size, or less.) By this we mean that the verifier, after reading the input
and the random string, computes a (small) circuit and a sequence of locations in the proof.
Then it queries those locations in the proof, and accepts if and only if the concatenation of
the entries in those locations is a satisfying assignment for the circuit’s inputs.

Definition 7 For functions r, p, c, a:Z+ → Z+, an (r(n), p(n), c(n), a(n)) outer verifier
is a randomized Turing machine V which expects the membership proof for an input of size
n to be an oracle of answer size a(n). Given an input x ∈ {0, 1}n and an oracle π of answer
size a(n), V runs in poly(n) time and behaves as follows:

1. Uses r(n) random bits: V reads x and picks a string R uniformly at random from
{0, 1}r(n).

2. Constructs a circuit of size c(n): V computes a circuit C of size c(n).

3. Computes p(n) locations in π: V uses x and R to compute p(n) locations in π.
Let q1, . . . , qp(n) denote these locations.

4. Queries the oracle: V queries the oracle π in locations q1, . . . , qp(n). For i =
1, . . . , p(n), let ai denote the string in the location qi of π.

5. Makes a decision: V outputs accept if a1◦a2◦· · ·◦ap(n) is a satisfying assignment to
circuit C (where ◦ denotes concatenation of strings), and otherwise it outputs reject.
We denote this decision by V π(x;R).

Remark: Note that the number of entries in the oracle has been left unspecified. But
without loss of generality, it can be upper bounded by 2r(n)p(n), since this is the maximum
number of locations the verifier can query in its 2r(n) possible runs.

Definition 8 For r, p, c, a:Z+ → Z+ and e < 1, a language L ∈ RPCP(r(n), p(n), c(n),
a(n), e), if there exists a (r(n), p(n), c(n), a(n)) outer verifier which satisfies the following
properties for every input x.

Completeness: If x ∈ L, then there exists an oracle π such that

Pr
R

[V π(x;R) = accept] = 1.

7

Soundness: If x 6∈ L, then for all oracles π,

Pr
R

[V π(x;R) = accept] ≤ e.

In both cases, the probability is over the choice of R in {0, 1}r(|x|).

We note that an (r(n), p(n), c(n), a(n)) outer verifier with p(n) = O(1) is very similar to a
constant prover 1 round interactive proof system [46]. Fairly efficient constructions of such
verifiers are implicit in [74, 45]; for instance, it is shown that NP ⊆ ∪c<∞RPCP((log)cn,
O(1), (log)cn, (log)cn, 1/n). We also observe that the definition of RPCP generalizes that
of PCP. In particular, RPCP(r(n), p(n), c(n), a(n), 1/2) ⊆ PCP(r(n), p(n)a(n)), since an
(r(n), p(n), c(n), a(n)) outer verifier examines p(n)a(n) bits in the oracle. So to prove Theo-
rem 4, it suffices to show L ∈ RPCP(r(n), p(n), c(n), a(n), 1/2) for some NP-complete lan-
guage L, where p(n) and a(n) are some fixed constants and r = O(log n). Not knowing any
simple way to achieve this, we give a 3-step construction (see the proof of Theorem 17). At
each step, r remains O(log n), p remains O(1), and e remains some fixed fraction. The only
parameters that change are c(n) and a(n), which go down from poly(log n) to poly(log log n)
to O(1).

First we define an inner verifier, a notion implicit in Arora and Safra [6]. To motivate
this definition, we state informally how an inner verifier will be used during recursive proof
checking. We will use it to perform Step 4 of an outer verifier — namely, checking that
a1 ◦ · · · ◦ ap(n), the concatenation of the oracle’s replies, is a satisfying assignment for the
circuit C — without reading most of the bits in a1, . . . , ap(n). This may sound impossible
— how can you check that a bit string is a satisfying assignment without reading every
bit in it? But Arora and Safra showed how to do it by modifying a result of Babai et al.
[14] who had shown that if a bit-string is given to us in an encoded form (using a specific
error-correcting code), then it is possible to check a proof that the string is a satisfying
assignment, without reading the entire string! Arora and Safra show how to do the same
check when the input, in addition to being encoded, is also split into many parts. This is
explained further in the definition of an inner verifier.

First we define an encoding scheme, which is a map from strings over one alphabet to strings
over another alphabet. We will think of an encoding scheme as a mapping from a string to
an oracle.

Definition 9 For l, a ∈ Z+, let Fl,a denote the family of functions {f |f : [l] → {0, 1}a}.
Equivalently, one can think of Fl,a as the family of l-letter strings over the alphabet {0, 1}a.

Definition 10 (Valid Encoding/Decoding Scheme) For functions l, a : Z+ → Z+,
an (l(n), a(n))-encoding scheme is an ensemble of functions E = {En}n∈Z+ , such that
En : {0, 1}n → Fl(n),a(n). An (l, a)-decoding scheme is an ensemble of functions E−1 =
{E−1

n }n∈Z+ , such that E−1
n : Fl(n),a(n) → {0, 1}n. An encoding/decoding scheme pair

(E,E−1) is valid if for all x ∈ {0, 1}∗, E−1
|x| (E|x|(x)) = x.

In other words, an encoding scheme maps an n bits string to an l(n)-letter string over the
alphabet 2a(n). A decoding scheme tries to reverse this mapping and is valid if and only
if E−1 ◦ E is the identity function. Notice that the map E−1 could behave arbitrarily on
l(n)-letter strings which do not have pre-images under E.

Now we define inner verifiers. Such verifiers check membership proofs for the language
CKT-SAT, and expect the proof to have a very special structure.

8

Definition 11 For functions r, p, c, a : Z+ → Z+, positive integer k and fraction e ∈ R+,
a (k, r(n), p(n), c(n), a(n), e)-inner verifier system is a triple (V,E,E−1), where V is a
probabilistic Turing machine and (E,E−1) is a valid (l(n), a(n))-encoding/decoding scheme,
for some function l : Z+ → Z+.

The input to the verifier is a circuit. The number of input nodes of the circuit is a multiple
of k. Let C be this circuit, let n be its size and km be the number of inputs to C. Then, V
expects the membership proof to consist of k + 1 oracles X1, . . . , Xk+1, each of answer size
a(n). For clarity, we use the shorthand π for Xk+1. The verifier runs in poly(n) time and
behaves as follows.

1. Uses r(n) random bits: V reads C and picks a random string R ∈ {0, 1}r(n).

2. Constructs a circuit of size c(n): Based on C and R, V computes a circuit C ′ of
size c(n).

3. Computes p(n) locations in π: V computes p(n) locations q1, . . . , qp(n) in the ora-
cles. Each location qi is a pair (q1

i , q
2
i) where q1

i ∈ [k + 1] denotes the oracle in which
it is contained and q2

i denotes the position within that oracle.

4. Queries the oracles: V uses these p(n) locations computed above to query the oracles.
Let a1, . . . , ap(n) denote the strings received as answers, where each ai ∈ {0, 1}a(n).

5. Makes a decision: V outputs accept if a1 ◦ · · · ◦ ap(n) is a satisfying assignment for
C ′. Otherwise it outputs reject. We denote this decision by V X1,...,Xk,π(C;R).

Then the following properties hold.

Completeness: Let x1, . . . , xk be m-bit strings such that x1 ◦ x2 · · · ◦ xk is a satisfying
assignment for C. Then there exists an oracle π such that

Pr
R

[V X1,...,Xk,π(C;R)] = accept] = 1,

where Xj is the encoding Em(xj) for 1 ≤ j ≤ k.

Soundness: If for some oracles X1, . . . , Xk, π, the probability

Pr
R

[
V X1,...,Xk,π(C;R) = accept

]
≥ e,

then E−1
m (X1) ◦ · · · ◦ E−1

m (Xk) is a satisfying assignment for C.

The previous definition is complicated. The following observation might clarify it a little,
and the proof of Theorem 13 will clarify it further.

Proposition 12 If r, p, c, a:Z+ → Z+ are any functions, k ∈ Z+, e < 1 and there exists a
(k, r(n), p(n), c(n), a(n), e)-inner verifier system, then CKT-SAT ∈ RPCP(r(n), p(n), c(n),
a(n), e).

Proof: The verifier in a (k, r(n), p(n), c(n), a(n), e) inner verifier system uses r(n) random
bits, expects the proof to be an oracle of answer size a(n) (i.e., we ignore the special structure
of the proof as described in the definition, and think of the k + 1 oracles in it as one long
oracle), and queries p(n) locations in the oracle. Its decision is represented by a circuit of
size c(n). Thus it is also an (r(n), p(n), c(n), a(n)) outer verifier.

Further, by definition, it can checks membership proofs for CKT-SAT: if the input circuit is
satisfiable, then the completeness condition implies that there is an oracle which the verifier

9

Figure 1: An inner verifier uses its random string to compute a (small) decision circuit and
a sequence of queries to the oracles. Then it receives the oracles’ answers to the queries.
The verifier accepts iff the concatenation of the answers satisfies the decision circuit.

accepts with probability 1. Conversely, if the verifier accepts some oracle with probability
e, then soundness implies that the circuit is satisfiable.

Hence CKT-SAT ∈ RPCP(r(n), p(n), c(n), a(n), e).

The technique of recursive proof checking is described in the proof of the following theorem.

Theorem 13 (rephrasing of results in [6]) Let p ∈ Z+ be such that a (p, r1(n), p1(n), c1(n),
a1(n), e1)-inner verifier system exists for some functions r1, p1, c1, a1:Z+ → Z+ and 0 <
e1 < 1. Then, for all functions r, c, a:Z+ → Z+ and every positive fraction e,

RPCP(r(n), p, c(n), a(n), e) ⊆ RPCP(r(n) + r1(τ), p1(τ), a1(τ), c1(τ), e+ e1 − ee1),

where τ is a shorthand for c(n) and r(n) + r1(τ) is a shorthand for r(n) + r1(c(n)).

We will prove Theorem 13 at the end of this section. First, we show how to prove Theo-
rem 4. The main ingredients are Theorems 14 and 15, whose proofs (in Sections 6 and 7.5
respectively) are the main technical contributions of this paper.

Theorem 14 For every constant k ∈ Z+, there exist constants c1, c2, c3, p ∈ Z+ and real
number e < 1, such that for some functions c(n) = O(logc2 n) and a(n) = O(logc3 n), there
exists a (k, c1 log n, p, c(n), a(n), e) inner verifier system.

Theorem 15 For every constant k ∈ Z+, there exist constants c1, p ∈ Z+ and a positive
real number e < 1, such that there exists a (k, c1n2, p, 2p, 1, e) inner verifier system.

Before proving Theorem 4 we first point out the following simple amplification rule.

Proposition 16 For integer k, real e and functions r(·), p(·), c(·), a(·), if a
(k, r(n), p(n), c(n), a(n), e,) inner verifier system exists, then for every postive integer l, a
(k, lr(n), lp(n), lc(n), la(n), el) inner verifier system also exists.

Proposition 16 is proved easily by sequentially repeating the actions of the given inner
verifier l times and accepting only if one accepts in each iteration. As a consequence of
Proposition 16 one can reduce the error of the inner verifiers given by Theorems 15 and 14
to any e > 0. In proving Theorem 4 we will be using this ability for e = 1/16. Now we
prove Theorem 4, our main theorem. It is a simple consequence of the following theorem.

10

Theorem 17 There exists a constant C, such that for every language L ∈ NP, there exists
a constant cL so that

L ∈ RPCP(cL log n, C, 2C , 1, 1/2).

Proof: Since CKT-SAT is NP-complete, we are done if we can show that CKT-SAT
∈ RPCP(cL log n, C, 2C , 1, 1/2) for some constants cL, C.

The main idea is to use the verifier of Theorem 14 and use recursive proof checking to con-
struct more efficient verifiers. First we use Theorem 14 with k = 1, and reduce the error of
the inner verifier to 1/16 using Proposition 16. This guarantees us a (1, c1 log n, p, c(n), a(n), 1/16)-
inner-verifier system where a(n) = logd1 n and c(n) = logd2 n for some constants d1, d2, and
c1, p are also constants. Then Proposition 12 implies that

CKT-SAT ∈ RPCP(c1 log n, p, logd2 n, logd1 n, 1/16). (1)

This verifier for CKT-SAT makes p queries to the oracle in the membership proof. Use
this same constant p as the value of k in Theorem 14. We obtain constants c′, c′′, d′ such
that a (p, c′ log n, c′′, logd

′
n, logd

′
n, 1/16)-inner verifier system exists (again after applying

Proposition 16).

The existence of this inner verifier allows us to apply Theorem 13 to (1) to obtain that

CKT-SAT ∈ RPCP(c1 log n+ c′d1 log log n, c′′, (d1 log log n)d
′
, (d1 log log n)d

′
,

2
16

). (2)

This verifier for CKT-SAT makes c′′ queries to the oracle in the membership proof. Using the
constant c′′ as k in the statement of Theorem 15, we obtain constants g, h such that there is
a (c′′, gn2, h, 2h, 1, 1/16) inner-verifier system (again after amplifying using Proposition 16).

The existence of this verifier allows us to apply Theorem 13 to the statement (2), to obtain

CKT-SAT ∈ RPCP(c1 log n+ c′d log log n+ g(d log log n)2d′ , h, 2h, 1, 3/16). (3)

Since every fixed power of log log n is o(log n) and h, c1 are fixed constants, our theorem has
been proved.

Remark 18 By working through the proofs of the various theorems in this paper and earlier
papers, it will be clear that the result in Theorem 17 is constructive, in the following sense.
Given a satisfying assignment to a circuit, we can in polynomial time construct a “proof
oracle” that will be accepted by the verifier of Theorem 17 with probability 1. Conversely,
given a proof oracle that the verifier accepts with probability ≥ 1/2, we can in polynomial
time construct a satisfying assignment. The reader can check this by noticing throughout
that our polynomial-based encodings/decodings are efficiently computable.

Now we prove Theorem 13.

Proof: (of Theorem 13) First we outline the main idea. Let L be a language in RPCP(r(n),
p, c(n), a(n), e) and let V1 be the outer verifier that checks membership proofs for it. Let
(V2, E,E

−1) be the (p, r1(n), p1(n), c1(n), a1(n), e1) inner verifier system mentioned in the
hypothesis. Observe that once we fix the input and the random string for V1, its decision to
accept or reject is based upon the contents of only p locations in the oracle. Moreover, these
p locations need to satisfy a very simple condition: the concatenation of their respective

11

entries should be a satisfying assignment to a certain (small) circuit. The main idea now
is that verifier V1 can use the inner verifier V2 to check that this condition holds. The new
verifier thus obtained turns out to be a new outer verifier, which we denote by V .

Now we fill in the above outline. Let x ∈ {0, 1}n be any input. According to the hypothesis,
the outer verifier V1 expects a membership proof for x to be an oracle of answer size a(n).
Also, V1 uses r(n) bits. Let

Y = Number of locations that V1 expects in a proof oracle for input x. (4)

Then the new verifier V that we are going to describe expects a membership proof for x
to be an oracle containing Y + 2r(n) sub-oracles. Let this membership proof be denoted by
π. Then each address in π is denoted by a pair [s, t], where s ≤ Y + 2r(n) is index of the
sub-oracle, and t is the position within the sub-oracle. We let π[s, ·] denote the suboracle
of π whose index is s. (Note that we have not specified the number of locations within each
suboracle. This is determined using the program of V2, as will be clear in a minute.)

The new verifier V acts as follows. First it picks a random string R1 ∈ {0, 1}r(n). Then it
simulates the outer verifier V1 for Steps 1 through 3 described in Definition 7, while using
R1 as the random string. Note that these steps do not require any querying of the oracle.
Let

C = the circuit computed by Step 2 of V1. (5)
Q1, . . . , Qp = the queries generated by Step 3 of V1. (6)

Note that C has size c(n), and that each Qi is an integer from 1 to Y .

Next, V picks a random string R2 ∈ {0, 1}r1(c(n)) and simulates the inner verifier V2 on the
input C and random string R2. Note that V2 expects a membership proof to contain p+ 1
oracles. The simulation uses the suboracles π[Q1, ·], . . . , π[Qp, ·], π[Y + R, ·] of π as these
p + 1 oracles. (Note that we are thinking of R as an integer between 1 and 2r(n).) If this
simulation of V2 ends up producing accept as output, then V outputs accept and otherwise
reject.

This finishes the description of V .

Complexity: It is clear from the above description that V uses r(n) + r1(c(n)) random
bits. All its other parameters are just those of V2 when given an input of size c(n).
Hence we conclude that V queries the oracle in p1(c(n)) locations, expects the oracle to
have answer size a1(c(n))), and bases its decision upon whether the oracle entries consti-
tute a satisfying assignment to a circuit of size c1(c(n)). In other words, it is an (r(n) +
r1(n), p1(c(n)), c1(c(n), a1(c(n))) outer verifier.

Completeness and soundness: We have to show that V satisfies the completeness and sound-
ness conditions for language L. For each x ∈ {0, 1}n, we prove these conditions separately.

Case: x ∈ L: The completeness condition for V1 implies that there is an oracle π′ which
V1 accepts with probability 1. We describe how to convert π′ into an oracle π which
V accepts with probability 1. First, replace the string in each location of π′ with
the encoding of that string using Ec(n). (This encoding is an oracle of answer size
a1(c(n)).) Thus if π′ had Y locations, we obtain a sequence of Y oracles. We make
these oracles the first Y sub-oracles of π. Next, we construct the last 2r(n) suboracles
of π. For R ∈ {0, 1}r(n), let C be the circuit generated by V1 using R as the random
string. Let a1, . . . , ap be the responses given by the oracle π′ when the queries were
generated by V1 using random string R. The completeness condition for V1 implies

12

that a1 . . . ap is a satisfying assignment for C. Then the completeness condition for V2

implies that there exists an oracle τ such that

Pr
R2∈{0,1}r1(c(n))

[V X1,...,Xp,τ
2 (C;R2) = accept] = 1,

where each Xi is simply the encoding E|ai|(ai). We let this τ be the Y +R-th sub-oracle
of π. This finishes the description of π. Our construction has ensured that

V π(x; (R,R2)) = accept ∀R ∈ {0, 1}r(n)
, R2 ∈ {0, 1}r1(c(n)).

In other words, V accepts π with probability 1.

Case: x 6∈ L: We prove this part by contradiction. Assume that there is an oracle π such
that

Pr
R∈{0,1}r(n),R2∈{0,1}r1(n)

[V π(x; (R,R2)) = accept] > e+ e1 − ee1.

We use π to construct an oracle π′ such that

Pr
R∈{0,1}r(n)

[
V π
′

1 (x;R) = accept
]
> e,

thus contradicting the soundness condition for V1.

To construct π′, we take the first Y suboracles in π, and apply E−1
a(n) on each. (Of

course, if π does not have some of these suboracles, we use an arbitrary string for
the missing suboracles.) The last 2r(n) suboracles are discarded. Thus we obtain an
oracle π′ with Y locations and answer size a(n). Now we show that V1 accepts π′ with
probability greater than e. Consider the set

R = {R ∈ {0, 1}r(n)| Pr
R2∈{0,1}r1(n)

[V π(x;R,R2) = accept] > e1}.

Observe that R constitutes a fraction more than e of {0, 1}r(n), since otherwise the
probability that V accepts π would have been less than e1(1− e) + e = e+ e1 − ee1.
Hence it suffices for us to show that every R ∈ R satisfies V π

′

1 (x;R) = accept.

But this follows just by definition of V . Let C denote the circuit generated by V1

on input x using R ∈ R as random string. Let Q1, . . . , Qp be the queries generated
by V1. Then the actions of V on input x and random string (R,R2) just involve
simulating the inner verifier V2 on input C, random string R2, and using the suboracles
π[Q1, ·], . . . , π[Qp, ·], π[Y +R, ·]. Since we know that

Pr
R2∈{0,1}r1(n)

[V π(x;R,R2) = accept] > e1,

we conclude (by the soundness condition for V2) that the decoded string

E−1
a(n)(π[Q1, ·]) ◦ · · · ◦ E−1

a(n)(π[Q1, ·])

is a satisfying assignment for C. But the corresponding locations in π′ contain exactly
these decodings. Therefore, V π1 (x;R) = accept. This completes the proof.

Thus we have proved that verifier V satisfies all properties claimed for it, and thus L ∈
RPCP(r(n) + r1(c(n)), p1(c(n)), a1(c(n)), a1(c(n)), e+ e2 − ee2).

13

3 PCP and hardness of approximating MAX 3-SAT

Here we define MAX 3-SAT and show how the existence of an (O(log n), O(1))-restricted
verifier for NP implies the hardness of approximating MAX 3-SAT.

Definition 19 (MAX 3-SAT) An instance of this problem is a 3-CNF formula φ. Every
assignment to the variables of the formula is a solution, whose value is the number of clauses
of formula that are satisfied by the assignment. The goal is to find an assignment with
maximum value.

We are now ready to prove Theorem 3.

Proof of Theorem 3: Let L be a language in NP and V be a (cL log n, q)-restricted
verifier for it, where cL, q are constants. We give a polynomial-time reduction that, given
input x of length n, produces a 3-SAT formula φx with at most 2q2cL logn clauses. This
formula satisfies the following conditions.

1. If x ∈ L, then φx is satisfiable.

2. If x 6∈ L, then every assignment fails to satisfy at least 2cL logn−1 clauses in φx.

The reduction goes as follows. For every potential query Qi to the oracle π made by the
verifier V , associate a boolean variable vi. (Thus the set of possible assignments to the vari-
ables are in one-to-one correspondence with the set of possible oracles.) For every choice of
the verifier’s random string, do the following. Suppose the random string is R ∈ {0, 1}cL logn

and suppose the verifier V asks queries Qi1 , . . . , Qiq using R. Let ψx,R: {0, 1}q → {0, 1} be
a boolean function such that ψx,R(ai1 , . . . , aiq) is 1 if and only if V accepts upon receiving
ai1 , . . . , aiq as the responses from the oracle. Express ψx,R in CNF (conjunctive normal
form) over the variables vi1 , . . . , viq . Observe that ψx,R has at most 2q clauses, each of
length at most q. Then express it in the standard way (see e.g. [53]) as a 3-CNF formula,
by using up to q auxiliary variables. (These auxiliary variables should be unique to R and
should not be reused for any other random string.) Let φx,R denote this 3-CNF formula.
Then

φx =
∧
R

φx,R.

Denote the number of clauses of φx by m. Note that m is at most q2q2cL logn.

We now argue the completeness and soundness properties. We first show that if x ∈ L, then
we can find a satisfying assignment to φx. Let π be an oracle such that V accepts with
probability 1. For every i, set vi = π(Qi). Notice that this assignment satisfies ψx,R for
every R. Now we fill in the values of the auxiliary variables so that every formula φx,R is
satisfied. Note that since the auxiliary variables are not shared by different φx,R’s, there is
no conflict in this assignment. Conversely, suppose x 6∈ L. Suppose for contradiction’s sake
that there exists an assignment to the variables vi and the auxiliary variables such that at
most εm clauses in φx are not satisfied, for ε = 1

q2(q+1) . Construct an oracle π such that
π(Qi) = vi. Notice that for every R such that φx,R is satisfied by the assignment, V accepts
Π on random string R. But the number of R’s such that φx,R is not satisfied is at most
εm = 2cLlogn−1. Thus the probability that V accepts π is at least 1/2, implying x ∈ L. This
is a contradiction. We conclude that no assignment can satisfy more than (1− ε)m clauses
of φx.

14

We conclude by observing that if there exists an algorithm that can distinguish between the
cases that the number of satisfiable formulae in φx is m and the case where the number of
satisfiable formulae in φx is less than (1 − ε)m, then this distinguishes between the cases
x ∈ L and x 6∈ L. Thus we conclude that no algorithm can approximate the number of
satisfiable clauses in a 3-CNF formula to within a 1 − ε factor in polynomial time, unless
P=NP.

4 Terminology

Recall that an encoding/decoding scheme is central to the notion of an inner verifier. Such
a scheme maps strings to oracles (in other words, it maps a string to a function from some
domain D to some range R). The following definition is used to define the distance between
the encodings of two strings.

Definition 20 Let D and R be finite sets. Let f, g be functions from D to R and let F be
a family of functions from D to R. The relative distance between f and g, denoted ∆(f, g),
is the fraction of inputs from D on which they disagree. The relative distance between f
and F , denoted ∆(f,F), is the minimum over g ∈ F of ∆(f, g). If ∆(f, g) ≤ ε, we say that
f is ε-close to g. Similarly, if ∆(f,F) ≤ ε, we say that f is ε-close to F .

Everywhere in this paper, the domain and range are defined using finite fields. Let F =
GF (q) be a field and m be an integer. By specializing the above definition, the distance
between two functions f, g:Fm → F , denoted ∆(f, g), is the fraction of points in Fm they
differ on.

∆(f, g) =
1
qm
|{x : f(x) 6= g(x)}| .

The function families considered in this paper are families of multivariate polynomials over
finite fields of “low degree”. A function f :Fm → F is a degree k polynomial if it can be
described as follows. There is a set of coefficientsai1,...,im ∈ F : i1, . . . , im ≥ 0 and

∑
j≤m

ij ≤ k

such that for every (x1, . . . , xm) ∈ Fm,

f(x1, . . . , xm) =
∑

i1,...,im

ai1,...,im
∏
j≤m

x
ij
j .

We let F (d)
m denote the family of m-variate polynomials of degree d. Specializing our defini-

tion of closeness above to such families, we see that a function f :Fm → F is δ-close to F (d)
m

(or just δ-close when d is understood from the context) if there is a polynomial g ∈ F (d)
m

such that ∆(f, g) ≤ δ. The following lemma is often attributed to Schwartz [93].

Lemma 21 If f, g ∈ F (d)
m and f 6= g, then ∆(f, g) ≥ 1− d/ |F |.

Remark 22 From the above lemma, it follows that the nearest polynomial g is unique if
δ < 1/4 and d/ |F | ≤ 1/2. This fact will be used many times.

15

In the following sections we will be using the space F (d)
m to represent and encode informa-

tion. Two very different representations of this space will be used. The first is the “terse”
representation. In this representation, an element of F (d)

m , i.e., an m-variate polynomial of
degree d, will be represented using

(
m+d
d

)
coefficients from F . In particular, in this repre-

sentation an element of F (d)
1 can be specified using at most (d+ 1)dlog |F |e bits. The other

representation is the “redundant” representation. In this we first map F
(d)
m to Fm → F ,

i.e., to the space of all functions on m variables from F to F , using the natural map —
every polynomial in m variables is a function from Fm → F . We then represent elements of
Fm → F as |F |m elements from F , i.e., by a listing of values of the function on all possible
inputs. For all choices of m and d that will be used in this paper, the “redundant” repre-
sentation is significantly longer that the “terse” representation. However this redundancy
renders the representation “robust”. Lemma 21 above tells that two polynomials repre-
sented this way differ on most indices (provided d/|F | is small). The “terse” representation
will be the default representation for elements of F (d)

m . We will specify explicitly whenever
we use the “redundant” representation.

5 The constant bit verifier: Ingredients

In this section, we prove Theorem 15 by constructing the appropriate inner verifier. We will
use techniques developed in the context of program checking.

Linear Encoding/Decoding scheme. Through this section we work with vector spaces
over GF(2) and all operations (additions and multiplications) are assumed to be over GF(2).
We will use an encoding/decoding scheme that encodes bit-strings with linear functions over
GF(2). We will describe algebraic procedures using which the verifier can check, after a few
queries, that the provided function encodes a satisfying assignment to the input circuit (or
at least is ε-close to the encoding of a satisfying assignment).

Think of n-bit strings as n-dimensional vectors over GF(2). For an n-bit string x, we let x(i)

represent its i-th coordinate. We encode this string by a linear function Lx: GF(2)n → GF(2)
that maps y to

∑n
i=1 x

(i)y(i). Note that every linear function from GF(2)n to GF(2) is the
encoding of some n bit string.

Definition 23 (parity encoding) The parity encoding scheme E⊕n maps the n-bit string
x to Lx.

The following fact is easy to verify

Proposition 24 For x 6= y, ∆(E⊕n (x), E⊕n (y)) = 1/2.

We now define the corresponding decoding scheme.

Definition 25 (parity decoding) Given a function f : GF(2)n → GF(2), the parity de-
coding scheme (E⊕n)−1 maps f to the string x which minimizes the distance ∆(E⊕(x), f).
Ties are broken arbitrarily.

Remark 26 From Remark 22 it follows that if there exists a function f and string x such
that ∆(f,E⊕(x)) < 1/4, then (E⊕n)−1(f) = x.

16

Testing/Correcting Given an oracle f : GF(2)n → GF(2), we would like to determine
very efficiently, probabilistically, if there exists a string x ∈ GF(2)n, such that ∆(Lx, f) is
small. The following procedure due to Blum, Luby and Rubinfeld [30] achieves this with
just 3 queries to the oracle f .

Linearity-test(f ;n):
/* Expects an oracle f : GF(2)n → GF(2). */

Pick x, y ∈R GF(2)n;
If f(x) + f(y) 6= f(x+ y) then reject else accept.

The following theorem describes the effectiveness of this test.

Theorem 27 ([30])

1. If f is a linear function, then the test Linearity-test(f ;n) accepts with probability 1.

2. If the probability that the test Linearity test accepts is more than 1−δ for some δ < 2/9
then there exists a linear function g such that ∆(f, g) ≤ 2δ.

Remark: The exact bound stated above in part 2 of Theorem 27 may not match the
bound as stated in [30]. However this bound can be easily reconstructed from some of the
subsequent papers, for instance, in the work of Bellare et al. [19]. In any case, the exact
bound is unimportant for what follows.

A useful aspect of the linear encoding is that one can obtain the value of the linear function
at any point using few (randomly chosen) queries to any function that is very close to it.
This procedure, described below, is also due to Blum, Luby and Rubinfeld [30].

Linear-self-corr(f, x;n):
/* Expects an oracle f : GF(2)n → GF(2) and x ∈ GF(2)n. */

Pick y ∈R GF(2)n;
Output f(x+ y)− f(y).

Proposition 28 ([30])

1. If f is a linear function, then the procedure Linear-self-corr(f, x;n) outputs f(x) with
probability 1.

2. Given a function f that is δ-close to some linear function g, and any point x ∈ GF(2)n,
the procedure Linear-self-corr(f, x;n) outputs g(x) with probability at least 1− 2δ.

Concatenation It will be in our interest to construct a single oracle which represents the
information content of many different oracles. We describe such a procedure next.

17

Definition 29 For positive integers n1, . . . , nk, if f1, . . . , fk are linear functions with fi :
GF(2)ni → GF(2), their concatenated linear function linear-concatf1,...,fk is the function f :
GF(2)n1+···+nk → GF(2) defined as follows:

for x1 ∈ GF(2)n1 , . . . , xk ∈ GF(2)nk f(x1, . . . , xk) =
k∑
i=1

fi(xi).

We remark that every linear function f : GF(2)n1+···+nk → GF(2) is a concatenation of
some k functions f1, . . . , fk, where fi : GF(2)ni → GF(2) is defined as

fi(xi) = f(0, . . . , 0, xi, 0, . . . , 0) ∀xi ∈ GF(2)ni , (7)

where the xi on the right hand side is the i-th argument of f .

Suppose we are given f : GF(2)n1+···+nk → GF(2) and wish to test if fi as defined in (7)
is equal to some given linear function f ′ : GF(2)ni → GF(2). A randomized test suggests
itself: pick xi ∈ GF(2)ni at random and test if f(0, . . . , 0, xi, 0, . . . , 0) = f ′(xi). We now
show that a simple variant of this test works even if f and f ′ are not linear functions but
only ε-close to some linear functions.

First we introduce some notation: For i ∈ {1, . . . , k} and xi ∈ GF(2)ni , the inverse pro-
jection of xi is the vector y = π−1

i (xi;n1, n2, . . . , nk) ∈ GF(2)n1+···+nk which is 0 on all
coordinates except those from n1 + · · ·+ ni−1 + 1 to n1 + · · ·+ ni, where it is equal to xi.

Linear-concat-corr-test(i, f, f ′;n1, . . . , nk):
/* Expects oracles f : GF(2)n1+···+nk → GF(2)

and f ′ : GF(2)ni → GF(2). */

Pick xi ∈R GF(2)ni;
If Linear-self-corr(f, π−1

i (xi;n1, . . . , nk);
∑k
i=1 ni) = f ′(xi)

then accept else reject.

Proposition 30

1. If f and f ′ are linear functions such that f is the concatenation of k linear functions
f1, . . . , fk where fj : GF(2)nj → GF(2) with the i-th function being f ′, then the
procedure Linear-concat-corr-test(i, f, f ′;n1, . . . , nk) accepts with probability 1.

2. If f and f ′ are ε-close to linear functions g and g′ respectively, for some ε < 1/4,
and the probability that the procedure Linear-concat-corr-test(i, f, f ′;n1, . . . , nk) accept
is greater than 1/2+3ε, then g is the concatenation of linear functions g1, . . . , gk where
gj : GF(2)nj → GF(2) with the i-th function being g′.

Proof: The proof of the completeness part is straightforward. For the second part, we
use the fact that since g is linear it is the concatenation of linear functions g1, . . . , gk, where
gj(·) = g(π−1

j (·;n1, . . . , nk)) for j = 1, . . . , k. Assume for contradiction that gi(·) 6= g′(·).
Then since both gi and g′ are linear, for a randomly chosen element xi, g(π−1

i (xi;n1, . . . , nk))
does not equal g′(xi) with probability 1/2. In order for the test to accept it must be the case
that either xi is such that g(π−1

i (xi;n1, . . . , nk)) = g′(xi) or Linear-self-corr(f, (π−1
i (xi;n1, . . . , nk));n1+

· · · + nk) 6= g(π−1
i (xi;n1, . . . , nk)) or g′(xi) 6= f ′(xi). We upper bound the probability of

18

these events by the sum of their probabilities. The middle event above happens with prob-
ability at most 2ε (by Proposition 28) and the final event with probability at most ε (since
∆(f ′, g′) ≤ ε). Thus the probability of any of these events happening is at most 1/2+2ε+ε.
The proposition follows.

Quadratic Functions Before going on to describe the inner verifier of this section we
need one more tool. Recall that the definition of Lx described it as a table (oracle) of values
of a linear function at all its inputs. A dual way to think of Lx is as a table of the values
of all linear functions at the input x ∈ GF(2)n. (Notice that there are exactly 2n linear
functions Ly from GF(2)n to GF(2); and the value of the function Ly at x equals the value
of Lx at y.) This perspective is more useful when trying to verify circuit satisfiability. For
the sake of verifying circuit satisfiability it is especially useful to have a representation which
allows one to find the values of all degree 2 functions at x. The following definition gives
such a representation.

Definition 31 For x ∈ GF(2)n, the function quadx is the map from GF(2)n
2

to GF(2) de-
fined as follows: For the n2 bit string c = {c(ij)}n,ni=1,j=1, quadx(c) =

∑n
i=1

∑n
j=1 c

(ij)x(i)x(j).

Observe that any quadratic function in x, i.e., any n-variate polynomial in the variables
x(1), . . . , x(n) of degree at most two, can be computed from the value of quadx at one point,
even if x is unknown. Suppose one is interested in the value of the polynomial p(x) =∑
i 6=j p

(ij)x(i)x(j) +
∑
i p

(i)x(i) + p(00). Then p(x) = quadx(c) + p(00), where c(ij) = p(ij) if
i 6= j, and cii = pi. (Notice that since we are working over GF(2), the identity x2 = x holds
for all x ∈ GF(2) and hence p will not contain any terms of the form (x(i))2.) Given any
polynomial p of degree 2 with p(00) = 0, we use the notation coeffp to denote the n2 bit
vector which satisfies p(x) = quadx(coeffp) for all x ∈ GF(2)n.

The following observation will be useful in dealing with the quadratic representations.

Proposition 32 For any x ∈ GF(2)n, the function quadx is linear.

We now show how to check if two linear functions f : GF(2)n → GF(2) and f ′ : GF(2)n
2

→
GF(2) correspond to the linear and quadratic function representations respectively of the
same string x ∈ GF(2)n. First we need some notation: Given x, y ∈ GF(2)n, the outer
product of x and y, denoted x@y, is the n2 bit vector with (x@y)(ij) = x(i)y(j).

Quadratic-consistency(f, f ′;n);
/* Expects f : GF(2)n → GF(2) and f ′ : GF(2)n

2

→ GF(2). */

Pick x, y ∈R GF(2)n.
If f(x) · f(y) = f ′(x@y) then accept else reject.

The test above is based on Freivalds test [47] for matrix multiplication and its correctness
is established as follows.

Proposition 33

19

1. Given linear functions f : GF(2)n → GF(2) and f ′ : GF(2)n
2

→ GF(2), if for some
x ∈ GF(2)n, f = Lx and f ′ = quadx, then the procedure Quadratic-consistency(f, f ′;n)
accepts with probability 1.

2. For linear functions f : GF(2)n → GF(2) and f ′ : GF(2)n
2

→ GF(2), if the proce-
dure Quadratic consistency(f, f ′;n) accepts with probability greater than 3/4, then there
exists x ∈ GF(2)n, such that f = Lx and f ′ = quadx.

Proof: Every linear function is of the form Lx for some x ∈ GF(2)n. Let x be such that
f = Lx. Since f ′ is linear, there exists b ∈ GF(2)n

2

, such that f ′(z) =
∑n
i=1

∑n
j=1 b

(ij)z(ij).
Part (1) follows from the fact that if b(ij) = x(i)x(j) then f ′(z1@z2) = f(z1)f(z2). For
part (2) we look at the n × n matrix B = {b(ij)}. We would like to compare B with the
n× n matrix C = xxT . Assume for the sake of contradiction that the two matrices are not
identical. Then Freivalds’ probabilistic test [47] for matrix identity guarantees that for a
randomly chosen bit vector z2, the probability that the vectors Bz2 and Cz2 turn out to
be distinct is at least 1/2. Now assume that Bz2 6= Cz2 and consider their respective inner
products with a randomly chosen vector z1. We get

Pr
z1∈GF(2)n

[
zT1 Bz2 6= zT1 Cz2|Bz2 6= Cz2

]
≥ 1

2
.

By taking the product of the two events above we get

Pr
z1,z2∈GF(2)n

[
zT1 Bz2 6= zT1 Cz2

]
≥ 1

4
.

But the left hand side in the above inequality is exactly f ′(z1@z2) and the quantity on the
right hand side is f(z1)f(z2). Thus if f ′ is not equal to quadx, then the probability that
f ′(z1@z2) 6= f(z1)f(z2) is at least 1/4.

We now give an error-correcting version of the above test, when the functions f and f ′ are
not linear but only close to linear functions.

Quadratic-corr-test(f, f ′;n):
/* Expects oracle f : GF(2)n → GF(2) and f ′ : GF(2)n

2

→ GF(2).*/

Pick z1, z2 ∈R GF(2)n;
If f(z1) · f(z2) 6= Linear-self-corr(f ′, z1@z2;n2)

then reject
else accept.

The following proposition can be proved as an elementary combination of Propositions 33 and 28.

Proposition 34

1. Given linear functions f : GF(2)n → GF(2) and f ′ : GF(2)n
2

→ GF(2), if for some
x ∈ GF(2)n, f = Lx and f ′ = quadx, then the procedure Quadratic-corr-test(f, f ′;n)
accepts with probability 1.

2. Given functions f : GF(2)n → GF(2), which is ε-close to some linear function g, and
f ′ : GF(2)n

2

→ GF(2), which is ε-close to some linear function g′, if the procedure
Quadratic-corr-test(f, f ′;n) accepts with probability greater than 3/4 + 4ε, then there
exists x ∈ GF(2)n, such that g = Lx and g′ = quadx.

20

6 The Constant Bit Verifier: Putting it together

We now show how a verifier can verify the satisfiability of a circuit. Let C be a circuit
of size n on km inputs. Suppose x1, . . . , xk form a satisfying assignment to C. To verify
this suppose the verifier is given not only x1, . . . , xk but also the value of every gate on the
circuit. Then the verifier only has to go check that for every gate the inputs and the output
are consistent with each other and that the value on the output gate is accepting. This
forms the basis for our next two definitions.

For strings x1, . . . , xk of length m, the C-augmented representation of x1x2 . . . xk, denoted
C-aug(x1 . . . xk) is an n bit string z indexed by the gates of C, where the ith coordinate
of z represents the value on the i-th gate of the circuit C, on input x1 . . . xk, with the
property that the first km gates correspond to the input gates (i.e., x1 . . . xk is a prefix
of C-aug(x1 . . . xk)). Given an n-bit string z, let πi(z) be the projection of z on to the
coordinates (i−1)m+1 to im. Notice that πi is defined so that πi(C-aug(x1, . . . , xk)) = xi.

Given a circuit C of size n with km inputs, we associate with the circuit n − km + 1
polynomials Pj , 1 ≤ j ≤ n− km+ 1. For any fixed j, Pj is a polynomial of degree at most
2 on n variables z(1), . . . , z(n), and is defined as follows. For 1 ≤ j ≤ n − km, if the j-th
gate of C is an addition gate with inputs being gates j1 and j2 and output being the gate
j3, then Pj(z) = z(j1) + z(j1) − z(j3). Similarly if the j-th gate is a multiplication gate then
Pj(z) would be z(j1)z(j1)−z(j3). Lastly the polynomial Pn−km+1(z) is the polynomial which
is zero if and only if the output gate is accepting.

Thus C accepts on input x1 . . . xk iff

∃z ∈ GF(2)n s.t. ∀j ∈ [n− km+ 1], Pj(z) = 0 and ∀i ∈ [k], πi(z) = xi. (8)

However, the verifier will be given not x1, . . . , xk but merely functions that are purported
to be Lx1 , . . . , Lxk and some extra functions that will be useful in the above checking.
The intuition behind the use of the polynomials Pj is that since all these polynomials are
quadratic polynmials in z, the process of “evaluating” them may hopefully reduce to making
a few queries to oracles that purport to be Lx1 , . . . , Lxk and quadz for z = C-aug(x1, . . . , xk).
In what follows we define a verifier V ⊕ that validates this hope. The verifier preceeds in two
steps. First it checks that the provided functions are close to linear functions. Then, to check
that the decodings of these functions satisfy the conditions in (8), it uses the procedures
described in Section 5.

Parity Verifier V ⊕. Given a circuit C of size n on km inputs, the verifier V ⊕ accesses
oracles X1, . . . , Xk+1 all of which have answer size 1. The oracles X1 to Xk take m bit
strings as queries. For notational clarity we think of the oracle Xk+1 as consisting of two
suboracles. Thus it takes as input a pair (b, q) where b ∈ {0, 1}. Let A denote the oracle
Xk+1(0, ·) and let B denote the oracle Xk+1(1, ·). The contents of these oracles are described
in Figure 2. The verifier performs the following actions.

1. Linearity tests:

(a) Linearity-test(A;n).

(b) Linearity-test(B;n2).

(c) For i = 1 to k Linearity-test(Xi;m).

2. Consistency tests: For i = 1 to k Linear-concat-corr-test(i, A,Xi;m, . . . ,m︸ ︷︷ ︸
k

, n−mk).

21

Oracle Contents What contents mean to V ⊕

X1

X2

· · ·
Xk

Each Xi is a function from
GF(2)m to GF(2)

Each Xi is a linear function and
encodes a bit string using the
encoding E⊕m. The concatena-
tion of these bit strings is a sat-
isfying assignment s.

Xk+1:
(has 2 suboracles)

A A : GF(2)n → GF(2) A = E⊕(z), where z is the
C-augmented representation of
the satisfying assignment s.

B B : GF(2)n
2

→ GF(2) B = quadz

Figure 2: Different oracles in the proof and what V ⊕ expects in them

3. Quadratic test: Quadratic-corr-test(A,B;n).

4. Circuit tests:

(a) Pick r ∈R GF(2)n−km+1.

(b) Let P : GF(2)n → GF(2) be the degree 2 polynomial P (z) =
∑n−km+1
j=1 r(j)Pj(z).

(c) If Linear-self-corr(B, coeffP ;n2) 6= 0 then reject.

5. If none of the tests above reject then accept.

We start by observing that it is easy to reorganize the description above so that V ⊕ first
tosses its random strings, and then generates a circuit C ′ and then queries the oracles
X1, . . . , Xk+1 such that the function computed by C ′ on the responses of the oracles is the
output of V ⊕. The following proposition lists the parameters used by V ⊕.

Proposition 35

1. V ⊕ tosses 2km+ n(k + 5) + 4n2 random coins.

2. V ⊕ probes the oracles in 6k + 12 places.

3. The computation of V ⊕’s verdict as a function of the oracle responses can be expressed
as a circuit of size at most 26k+12.

We now show that the verifier (V ⊕, E⊕, (E⊕)−1) satisfies the completeness condition.

Lemma 36 For a circuit C of size n with km inputs, let the m bit strings x1, . . . , xk
satisfy C(x1 . . . xk) = accept and for 1 ≤ i ≤ k, let Xi = E⊕(xi). Then there exists
an oracle Xk+1 such that for every R ∈ {0, 1}r (V ⊕)X1,...,Xk+1(C;R) = accept (where
r = 2km+ n(k + 5) + 4n2).

22

Proof: Let z be the C-augmented representation of the string x1 . . . xk. Let A = E⊕(z)
and let B = quadz and let Xk+1 be given by Xk+1(0, ·) = A and Xk+1(1, ·) = B. It can
be easily verified that the X1, . . . , Xk+1 as defined pass every one of the tests performed by
V ⊕.

Lemma 37 There exists a constant e < 1 (specifically, e = 35/36), such that if the ver-
ifier V ⊕ accepts input C with probability > e given access to oracles X1, . . . , Xk+1, then
C((E⊕m)−1(X1), . . . , (E⊕m)−1(Xk)) = accept.

Proof: Let δ be chosen so as to minimize e = max{1−δ, 1/2+6δ, 3/4+8δ}, subject to the
condition δ < 2/9. (This happens at δ = 1/36.) We will show that this value of e suffices
to prove the assertion.

Let X1, . . . , Xk and Xk+1 = (A,B) be oracles such that V ⊕ accepts C with probability
greater than e. Then by the fact that the linearity tests (Step 1) accept with probability
greater than e ≥ 1− δ and by Theorem 27 we find that there exist strings x1, . . . , xk, z and
z′ such that the oracles Xi are 2δ close to the functions E⊕m(xi) respectively; and the oracles
A and B are 2δ close to Lz and Lz′ respectively.

Based on the fact that the quadratic consistency test (Step 3) accepts with probability
greater than 3/4 + 8δ, and the soundness condition of Proposition 33, we find that Lz′ =
quadz and thus B is 2δ-close to quadz.

Let z1, . . . , zk be m bit strings which form the prefix of z. Next we use the fact that the ac-
ceptance probability of the verifier V ⊕ in Step 4(c) is high to show that z = C-aug(z1 . . . zk)
and that C accepts on input z1 . . . zk.

Claim 38 If V ⊕ accepts in Step 4(c) with probability more than 1/2 + 4δ, then z =
C-aug(z1, . . . , zk) and C(z1, . . . , zk) = accept.

Proof: Assume for contradiction that either z 6= C-aug(z1 . . . zk) or C does not accept on
input z1 . . . zk. Then it must be the case that there exists an index j ∈ {1, . . . , n−mk+ 1}
such that the polynomial Pj(z) 6= 0. In such a case, then for a randomly chosen vector
r ∈ GF(2)n−mk+1, the polynomial P =

∑
j r

(j)Pj , will also be non-zero at z with probability
1/2 (taken over the random string r.)

Now consider the event that the verifier V ⊕ accepts in Step 4(c). For this event to occur,
at least one of the following events must also occur:

• P (z) = 0: The probability of this event is at most 1/2, as argued above.

• quadz(coeffP) 6=Linear-self-corr(B, coeffP ;n2): Since B is 2δ close to quadz this event
happens with probability at most δ, by Proposition 28.

Thus the probability that the verifier will accept in Step 4(c) is at most 1/2 + 4δ.

Finally we use the fact that concatenation tests (Step 2) accept with high probability to
claim that zi must equal xi for every i. Recall that for every i ∈ [k] the concatenation test
with oracle access to A and Xi accepts with probability at least 1/2 + 6δ. Furthermore, A
and Xi are 2δ close to linear functions Lz and Lxi respectively. By applying the soundness
guaranee in Proposition 30, we find that Lz is the concatenation of functions f1, . . . , fk+1

where fi(·) = Lxi = E⊕(xi). Combining these conditions for i = 1 to k we find that Lz is the

23

concatenation of of E⊕(x1), . . . , E⊕(xk), f for some linear function f : GF(2)n−km → GF(2).
This implies that the prefix of imply zi = xi for all i.

Thus we conclude that if V ⊕ accepts C with probability greater than e given oracle access
to X1, . . . , xk+1, then C accepts on input (E⊕m)−1(X1) . . . (E⊕m)−1(Xk).

Proof of Theorem 15: The inner verifier system (V ⊕, E⊕, (E⊕)−1) yields the required
system. Given k <∞, let c1 = 3k+9 and let p = 6k+12 and let e be as given by Lemma 37.
Then, by Proposition 35 and Lemmas 36 and 37, it is clear that (V ⊕, E⊕, (E⊕)−1) forms a
(k, c1 log n, p, 2p, 1, e) inner verifier system.

24

7 Parallelization

The goal of this section is to prove Theorem 14 by constructing the inner verifier mentioned
in it (i.e., one that only makes a constant number of queries, expects an oracle with poly-
logarithmic answer size, and uses logarithmic number of random bits). The theorem will be
proved in Section 7.5. The starting point is a verifier constructed by Arora and Safra [6],
which uses O(log n) random bits and queries the proof in poly(log n) places. (Actually the
number of queries in their strongest result is (log log n)O(1) but we don’t need that stronger
result. In fact, even the weaker verifier of Babai, Fortnow, Levin and Szegedy [14] would suf-
fice for our purpose after some modification. This modification would cut down the number
of random bits needed in [14] by using the idea of recycling randomness [32, 65].)

The following theorem was only implicit in the earlier versions of [6] but is explicit in the
final version.

Theorem 39 ([6]) For every constant k, there exist constants c1, c2, c3 and e < 1 such that
a (k, c1 log n, logc2 n, logc3 n, 1, e) inner verifier exists.

The shortcoming of this verifier is that it makes logc2 n queries to the proof. We will show
how to “aggregate” its queries into O(1) queries, at the cost of a minor increase in the
answer size (though the answer size remains poly(log n)). The aggregation uses the idea of
a multivariate polynomial encoding [13] and a new, efficient, low-degree test for checking the
correctness of its codewords. It also uses a procedure described in Section 7.4.

7.1 Multivariate polynomial encodings

Let F be any finite field. The following fact will be used over and over again.

Proposition 40 For every k distinct elements x1, . . . , xk ∈ F and k arbitary elements
y1, . . . , yk ∈ F , there exists a univariate polynomial p of degree at most k − 1 such that
p(xi) = yi for all i = 1, 2, . . . , k.

Proposition 40 has an analogue for the multivariate case. Recall that F (d)
m is the family

of m-variate polynomials over F of total degree at most d. Let H be a subset of F and
h = |H| − 1. The multivariate analogue states that for each sequence of values for the set
of points in Hm, there is a polynomial in F

(mh)
m that takes those values on Hm. (This

polynomial need not be unique.)

Proposition 41 Let H ⊆ F and h = |H| − 1. For each function s:Hm → F , there is a
polynomial ŝ ∈ F (mh)

m such that

ŝ(u) = s(u) ∀u ∈ Hm.

Clearly, if s1 and s2 are two distinct functions from Hm to F , then ŝ1 6= ŝ2. Furthermore,
if mh/ |F | < 0.25, then Lemma 21 implies that the distance between ŝ1 and ŝ2 is at least
0.75.

Proposition 41 defines a mapping from F (h+1)m to F
(mh)
m . Since 0, 1 ∈ F , we can so use

this mapping to define a map from bit strings in {0, 1}(h+1)m to polynomials in F (mh)
m . This

map will be called a polynomial encoding in the rest of the paper. If the bit string has length
n < (h+ 1)m, we first extend it to a bit string of length (h+ 1)m in some canonical way.

25

Definition 42 For n,m,H, F satisfying |H|m ≥ n and |F | ≥ 2mh, the (n,m,H, F) poly-
nomial encoding Pn,m,H,F maps n-bit strings to functions from Fm to F that was described
in the previous paragraph.

The polynomial decoding function P−1
n,m,H,F maps {Fm → F} to n-bit strings and is defined

as follows. Given any r:Fm → F , first find the nearest polynomial r̃ in F
(mh)
m (if there is

more than one choice, break ties arbitrarily), then construct the sequence s of values of r̃ on
Hm, then truncate s to its first n values, and finally, interpret each value as a bit in some
canonical way (e.g., the most significant bit in its binary representation).

Notice that for every bit string s ∈ {0, 1}n, the encoding/decoding pair defined above satisfy
P−1
n,m,H,F ◦ Pn,m,H,F (s) = s,

Note that if we are encoding a string of length n, we can choose Hm = O(n) and |F | =
poly(h), so that the size of the encoding, which is essentially |Fm| is still poly(n). Such
a choice requires m ≤ O(logn

loglogn) and h = Ω(log(O(1) n). Our parameters will be chosen
subject to these conditions.

7.2 Lines representation of polynomials: Testing and correcting

In designing the verifier we will need two algebraic procedures. The first, called the low
degree test, efficiently determines if a given oracle O : Fm → F is δ-close to some degree d
polynomial, where δ is some small constant. Low degree tests were invented as part of work
on proof checking [13, 14, 42, 6, 56, 90]. Efficiency is of paramount concern to us, so we
would like the test to make as few queries to the oracle as possible. Most low degree tests
known make poly(m, d, 1/δ) queries. However, Rubinfeld and Sudan [90] give a test (which
requires an auxiliary oracle in addition to O) whose number of queries depends on d but not
on m. Arora and Safra [6] give a test whose number of queries depends only on m but not
on d. We observe in this paper that the two analyses can be combined to give a test whose
number of queries is independent of d and m. This test and its analysis is essentially from
[90]. Our only new contribution is to use a result from [6] (Theorem 69 in the appendix)
instead of a weaker result from [90].

The second procedure in this section does the following: Given an oracle O : Fm → F
which is δ-close to a polynomial p, find the value of p at some specified point x ∈ Fm. This
procedure is described below in Section 7.2.2.

7.2.1 Low degree test

To describe the low degree test, we need the notion of a line in Fm.

Definition 43 Given x, h ∈ Fm, let lx,h : F → Fm denote the function lx,h(t) = x + th.
With some abuse of notation, we also let lx,h denote the set {lx,h(t)|t ∈ F} and call it the
line through x with slope h.

Remark: Note that different (x, h) ∈ F 2m can denote the same line. For instance, the lines
lx,h and lx,c·h are the same for every c ∈ F − {0}.

Let p:Fm → F be a degree d polynomial and lx,h be any line. Let g be the function that
is the restriction of p to line lx,h, i.e., g(t) = p(lx,h(t)). Then g is a univariate polynomial
of degree d. Thus we see that the restriction of p to any line is a univariate polynomial of
degree d. It is a simple exercise to see that the converse is also true if |F | is sufficiently large:

26

If a function p:Fn → F is such that the restriction of p to every line in Fm is a univariate
degree d polynomial, then f itself is a degree d polynomial (see, for example, [90] or [49]
— the latter contains a tight analysis of condition under which this equivalence holds). As
we will see, the low degree test relies on a stronger form of the converse: if for “most” lines,
there is a univariate degree d polynomial that agrees with f on “most” points of the line,
then f itself is δ-close to a degree d polynomial.

The test receives as its input two oracles: the first a function f :Fm → F , and the second
an oracle B : F 2m → F

(d)
1 where, for each pair (x, h) ∈ F 2m, B(x, h) is a univariate

polynomial of degree d. In what follows we use the notation B(x, h)[t], for t ∈ F , to denote
the evaluation of this polynomial at t. (It may be useful to the reader to think of B as a
function from L to F (d)

1 , where L is the set of all lines in Fm.) The oracle B is motivated
by the following alternate representation of a degree d polynomial.

Definition 44 Let p ∈ F (d)
m be an m-variate polynomial of degree d. The line represen-

tation of p is the function linesp : F 2m → F
(d)
1 defined as follows: Given x, h ∈ Fm, the

univariate polynomial p′ = linesp(x, h) is the polynomial p′(t) = p(lx,h(t)).

We now describe our test.

Poly-test(f,B;m, d, F):
/* Tests if f : Fm → F is close to a degree d polynomial.

Expects an auxiliary oracle B : F 2m → F
(d)
1 . */

Pick x, h ∈R Fm and t ∈R F;
Let q(·) = B(x, h). /* q(·) ∈ F (d)

1 . */
If f(x+ th) 6= q(t) then reject else accept.

The properties of the test are summarized below.

Theorem 45 (follows by combining [90, 6]) There exist constants δ0 > 0 and α < ∞
such that for δ ≤ δ0, d ∈ Z+ if F is a field of cardinality at least α(d+1)3, then the following
holds:

1. For any function p ∈ F (d)
m , the probability that Poly-test(p, linesp;m, d, F) accepts is 1.

2. If oracles f and B satisfy Pr[Poly-test(f,B;m, d, F) accepts] ≥ 1−δ, then there exists
a polynomial p ∈ F (d)

m such that ∆(f, p) ≤ 2δ.

We note that Part 1 is trivial from the comments made above. The nontrivial part, Part 2,
is proved in Appendix (Section A).

7.2.2 Correcting Polynomials

The procedure in this section is given an oracle O : Fm → F which is known to be close to
a polynomial p. It needs to find the value of p at some specified point x ∈ Fm. We now
describe a procedure which computes p(x) using few probes into O and an auxiliary oracle
B. The procedure owes its origins to the work of Beaver and Feigenbaum [17] and Lipton
[76]. The specific analysis given below is borrowed from the work of Gemmell, Lipton,
Rubinfeld, Sudan and Wigderson [56] and allows the number of queries to be independent
of d, for error bounded away from 1.

27

Poly-self-corr(A,B, x;m, d, F):
/* Expects A : Fm → F, B : F 2m → F

(d)
1 and x ∈ Fm. */

Pick h ∈R Fm and t ∈R F − {0};
Let q(·) = B(x, h) /* q(·) ∈ F (d)

1 */
If q[t] 6= A(x+ th) then reject else output B(x, h)[0].

Proposition 46

1. For a polynomial p ∈ F
(d)
m and its associated lines representation linesp, the output

of the procedure Poly-self-corr(p, linesp, x;m, d, F) is p(x) with probability 1, for every
x ∈ Fm.

2. If there exists a polynomial p ∈ F
(d)
m such that ∆(A, p) = ε, then ∀x ∈ Fm, ∀B :

F 2m → F
(d)
1 ,

Pr
h,t

[Poly-self-corr(A,B, x;m, d, F) 6= p(x) or reject] ≤ 2
√
ε+

d

|F | − 1
.

Proof: The proof of the first part is straightforward. We now prove the second part. For
any x ∈ Fm and t ∈ F −{0}, notice that the random variable x+ th is distributed uniformly
in Fm, if h is picked uniformly from Fm. Thus since ∆(A.p) = ε, we have

Pr
h∈Fm,t∈F−{0}

[p(x+ th) 6= A(x+ th)] = ε.

For x, h ∈ Fm call the line lx,h bad if

Pr
t∈F−{0}

[p(x+ th) 6= A(x+ th)] >
√
ε.

By Markov’s inequality, we have

Pr
h∈Fm

[lx,h is bad] <
ε√
ε

=
√
ε.

Now consider the random choices of h and t. We have the following cases:

Case: The line lx,h is bad: This event happens with probability at most
√
ε, taken over ran-

dom choices of h. In this case the procedure Poly-self-corr may output something other
than reject or p(x).

Case: lx,h is not bad: We now fix x and h and consider the random choice of t. We have
the following subcases:

Case: B(x, h) = p|lx,h : In this case the output is either B(x, h)[0] = p(x) or reject.

Case: B(x, h) 6= p|lx,h : Again we have the following subcases:

Case: B(x, h)[t] 6= A(x+ th): In this case the procedure rejects.

Case: B(x, h)[t] = A(x+ th) 6= p(x+ th): This happens with probability at most√
ε (taken over the choice of t), since the line lx,h is not bad. In this case the

procedure’s output is not necessarily p(x, h).

28

Case: B(x, h)[t] = A(x+ th) = p(x+ th): For this event to happen the polyno-
mials B(x, h) and p|x,h must agree at t, an event which happens with prob-
ability at most d/(|F | − 1) for distinct degree d polynomials.

Thus, summing up over all the choices of the bad events, we find that the probability of not
rejecting or producing as output p(x) is at most 2

√
ε+ d

|F |−1 .

7.3 Concatenation and testing

Recall that an inner verifier is presented a proof with many oracles. Each oracle contains an
encoding of a binary string using some fixed encoding scheme. For purposes of this section
the encoding used is the multivariate polynomial encoding. The procedure described next
allows the verifier to do the following: given k + 1 oracles X,X1, X2, . . . , Xk, to check that
X contains the concatenation of the information in X1, . . . , Xk.

Let ζ1, . . . , ζ|F | be some enumeration of the elements of F .

Definition 47 For k ≤ |F |, given polynomials p1, . . . , pk ∈ F (d)
m , their concatenated poly-

nomial concatp1,...,pk is an element of F (d+k−1)
m+1 that, for every i ∈ {1, . . . , k} and x ∈ Fm,

satisfies concatp1,...,pk(x, ζi) = pi(x).

Remark: (i) Notice that concatp1,...,pk does exist, one such polynomial can be obtained
by an interpolation on p1, . . . , pk using Proposition 40. This interpolation maintains the
individual degrees in the first m variables and leads to degree at most k − 1 in the variable
x(m+1)). However, such a polynomial may not be unique. We assume that in such a
case some such polynomial is picked arbitrarily. (ii) To understand the usefulness of this
definition, see Lemma 50 below.

Next we describe a procedure to test if a given polynomial p is indeed the concatenation of
k polynomials with the i-th one being q. In what follows, we switch notation and assume
that the concatenated polynomial has degree d and the polynomials being concatenated
have degree d− k + 1.

Poly-concat-test(t, p, q;m,F):
/* Expects t ∈ F, p : Fm+1 → F, and q : Fm → F.*/

Pick x ∈R Fm;
If p(x, t) 6= q(x) then reject else accept.

Proposition 48 For positive integers d, k, polynomials p1, . . . , pk, q ∈ F
(d−k+1)
m , let p =

concatp1,...,pk ∈ F
(d)
m . If pi = q, then Poly-concat-test(ζi, p, q;m,F) accepts with probability

1, else Poly-concat-test(ζi, p, q;m,F) accepts with probability at most d/|F |.

Proof: Both parts are straightforward and follow from Proposition 21.

In general the functions we will work with may not be actually be polynomials but only close
to some polynomial. We now modify the above test appropriately to handle this situation.

29

Poly-corr-concat-test(t, A,B,C;m, d, F):
/* Expects t ∈ F, A : Fm+1 → F, B : F 2(m+1) → F

(d)
1 ,

and C : Fm → F. */

Pick x ∈R Fm;
If Poly-self-corr(A,B, (x, t);m+ 1, d, F) 6= C(x)

then reject else accept.

Lemma 49 Let A : Fm+1 → F be an oracle which is ε-close to a polynomial p ∈ F
(d)
m+1

for some ε. For any index i ∈ {1, . . . , k}, let pi ∈ F (d)
m be the polynomial given by pi(·) =

p(·, ζi). Given oracles B : F 2(m+1) → F
(d)
1 and C : Fm → F the procedure Poly-corr-concat-

test(ζi, A,B,C;m, d, F) behaves as follows:

1. If A = p, B = linesp and C = pi, then the procedure accepts with probability 1.

2. If there exists an oracle B such that the above procedure accepts with probability ρ,
then ∆(C, pi) < 1− ρ+ 2

√
ε+ d

|F |−1 .

Proof: The first part is straightforward. For the second part we enumerate the different
possible ways in which the procedure Poly-corr-concat-test may accept. For this to happen
it is necessary that Poly-self-corr does not reject. Furthermore, at least one of the following
events must occur: (1) Poly-self-corr(A,B, (x, ζi);m + 1, d, F) does not output p(x, ζi); or
(2) p(x, ζi) = C(x).

Now let δ = ∆(C, pi). Then

Pr
x∈Fm

[p(x, ζi) = C(x)] ≤ 1− δ.

¿From Proposition 46, we have

Pr
x∈Fm

[Poly-self-corr(A,B, (x, ζi);m+ 1, d, F) 6= p(x, ζi) or reject] ≤ 2
√
ε+

d

|F | − 1
.

Thus the probability that the procedure Poly-corr-concat-test accepts is at most 1 − δ +
2
√
ε+ d

|F |−1 . The lemma follows by substituting ρ = 1− δ + 2
√
ε+ d

|F |−1 .

To finish up, we mention an important property of concatenations of polynomials. Roughly
speaking if s1, . . . , sk are any bit strings and s1 ◦ s2 ◦ · · · ◦ sk denotes their concatenation
as strings, then the (polynomial) concatenation of their polynomial encodings is simply the
polynomial encoding of s1 ◦s2 ◦· · ·◦sk. This property will be used in the proof of Lemma 60
later.

Lemma 50 (A structural property of polynomial concatenation) Let H ⊆ F be such
that |H| ≥ k. Let n,m be such that n = |H|m. Suppose s1, . . . , sk ∈ {0, 1}n are any bit-
strings and p1, . . . , pk:Fm → F are their polynomial encodings, that is, Pn,m,H,F (si) = pi.
Then the polynomial encodings satisfy the following property

P−1
n,m+1,H,F (concatp1,...,pk) = s1 ◦ s2 ◦ · · · sk ◦ T, (9)

where T is some bitstring of length n(|H| − k).

30

Proof: Follows trivially from the definition of polynomial encoding.

7.4 Curves and testing

This last section is the crucial part for parallelization. Here we are interested in the following
task. We are given a polynomial p ∈ Fm and we are interested in the value of p at l points
x1, . . . , xl ∈ Fm. The procedure Curve-check described in this section allows us to find all
the values by making only O(1) queries to the oracle for p and some auxiliary oracle O. We
emphasize that the number of queries does not depend upon l, the number of points for
which we desire the value of p. Intuitively speaking, the procedure Curve-check allows us to
“aggregate” queries.

We first introduce the notation of a curve.

Definition 51 A curve through the vector space Fm is a function C : F → Fm, i.e., C
takes a parameter t and returns a point C(t) ∈ Fm. A curve is thus a collection of m
functions c1, . . . , cm, where each ci maps elements from F to F . If each function ci ∈ F (d)

1 ,
then C is a curve of degree d.

Remark: As in the case of lines, it will be convenient to think of a curve C as really the
set C = {C(t)}. Thus curves really form a generalization of lines, with lines being curves of
degree 1.

The following lemma will be useful in our next definition.

Lemma 52 Given l points x1, . . . , xl ∈ Fm, and l distinct elements t1, . . . , tl ∈ F , there
exists a degree l − 1 curve C such that C(ti) = xi. Furthermore, C can be constructed using
poly(l,m) field operations and in particular given t ∈ F , the point C(t) can be computed
using poly(l,m) field operations.

Proof: Follows from Proposition 40 and the fact that polynomial interpolation and eval-
uation can be performed in polynomial time.

For the next definition, recall that ζ1, . . . , ζ|F | is a fixed enumeration of the elements of F .

Definition 53 For l ≤ |F |, given points x1, . . . , xl ∈ Fm, the curve curvex1,...,xl through
x1, . . . , xl is a curve of degree l − 1 with C(ζi) = xi for i ∈ {1, . . . , l}.

Remark 54 By Lemma 52 we know that such a curve exists and can be constructed and
evaluated efficiently.

We will need one more fact before we can go on. For a function f : Fm → F and a curve
C : F → Fm, we let p|C : F → F denote the function p|C(t) = p(C(t)).

Proposition 55 Given a curve C : F → Fm of degree l and a polynomial p ∈ F (d)
m , the

function p|C(t) is a univariate polynomial in t of degree at most (l − 1)d.

The basic idea that allows us to aggregate queries is that instead of simply asking for the
value of the polynomial p at the points x1, . . . , xl, we will ask for the univariate polynomial
p|C , where C = curvex1,...,xl .

31

Curve-check(p,O, x1, . . . , xl;m, d, F):
/* Expects p : Fm → F, O : Fml → F

(d(l−1))
1 , x1, . . . , xl ∈ Fm. */

Let q(·) = O(x1, . . . , xl).
Pick t ∈R F.
If q(t) 6= p(curvex1,...,xl)[t]

then reject
else output q(ζ1), . . . , q(ζl).

Proposition 56 Given a degree d polynomial p : Fm → F , if O(x1, . . . , xl) = p|curvex1,...,xl ,
then Curve-check outputs p(x1), . . . , p(xl) with probability 1. Conversely, if O(x1, . . . , xl) 6=
p|curvex1,...,xl , then Curve-check accepts with probability at most d(l−1)

|F | .

The proof of the above proposition is a straightforward consequence of the fact that two
distinct degree d(l − 1) univariate polynomials can agree in at most d(l−1)

|F | places.

Finally we present a version of the above curve-check which works for functions which are
only close to polynomials but not equal to them. Note that this algorithm needs access to
an oracle B that contains, for every line in Fm, a univariate degree d polynomial.

Curve-corr-check(A,B,O, x1, . . . , xl;m, d, F):
/* Expects A : Fm → F, B : F 2m → F

(d)
1 ,

O : Fml → F
(d(l−1))
1 , and x1, . . . , xl ∈ Fm. */

Let q(·) = O(x1, . . . , xl).
Pick t ∈R F.
If q(t) 6= Poly-self-corr(A,B, curvex1,...,xl(t);m, d, F)

then reject
else output q(ζ1), . . . , q(ζl).

Remark: Notice that Curve-corr-check only looks at one location in each of its three oracles.

The following Lemma proves the correctness of this procedure.

Lemma 57 Let A : Fm → F be an oracle which is ε-close to some polynomial p ∈ F (d)
m

for ε < .01. Given oracles B : Fm → F and oracle O, and points x1, . . . , xl ∈ Fm, the
procedure Curve-corr-check behaves as follows:

1. If A = p, B = linesp and O(x1, . . . , xl) = p|curvex1,...,xl , then Curve-corr-check outputs
p(x1), . . . , p(xl) with probability 1.

2. The probability that Curve-corr-check does not reject and outputs a tuple other than
(p(x1), . . . , p(xl)) is at most 2

√
ε+ d

|F |−1 + dl−1
|F | .

Lemma 57 follows by a straightforward combination of Propositions 46 and 56, since Propo-
sition 46 says that the result of Poly-self-corr(A,B, curvex1,...,xl(t);m, d, F) is p(x) with high
probability.

32

7.5 Parallelization: Putting it together

In this section we prove Theorem 14.

Let k ∈ Z+ be any constant. Let V seq be a (k, c1 log n, logc2 n, logc3 n, 1, e) inner verifier as
guaranteed to exist by Theorem 39. We construct a new inner verifier V par with the desired
parameters.

Let C be a circuit of size n and km input nodes. Given such a circuit as input, the
inner verifier V par expects the proof to contain k + 1 oracles X1, X2, . . . , Xk+1. These
oracles contain some information which V par can examine probabilistically (by using O(k)
queries). This information is meant to convince V par that there exist some other k+1 oracles
Y1, . . . , Yk+1 which make V seq accept input C with high probability (and consequently, that
C is a satisfiable circuit).

The main idea is that X1, . . . , Xk, Xk+1 each contains a polynomial that (supposedly) en-
codes a bit string. These k+ 1 bit strings (supposedly) represent a sequence of k+ 1 oracles
that would have been accepted by V seq with probability 1. Given such oracles V par first
performs low degree tests (using only O(k) queries to the proof; see Section 7.2.1) to check
that the provided functions are close to polynomials. Next, V par tries to simulate the actions
of V seq on the preimages of the polynomials (i.e., the strings encoded by the polynomials).
The simulation requires reconstructing poly(log n) values of the polynomials, which can be
done using Procedure Curve-corr-check of Section 7.2. Note that this step requires only O(k)
queries to the proof, even though it is reconstructing as many as poly(log n) values of the
polynomials.

Now we formalize the above description. First we recall how V seq acts when given C as
input. V seq expects the proof to contain k + 1 oracles Y1, Y2, . . . , Yk+1. Let

N = Maximum number of bits in any of Y1, . . . , Yk+1 (10)
r = number of random bits used by V seq on input C (11)

(Eseq, (Eseq)−1) = encoding/decoding scheme of V seq (12)

On random string R ∈ {0, 1}r, let the queries of V seq be given by the tuples (i1(C,R),
q1(C,R)), . . . , (il(C,R), ql(C,R)), where a pair (i, q) indicates that the i-th oracle Yi is
being queried with question q. By Theorem 39, the number of queries l ≤ logc3 n and the
maximum size of an oracle N ≤ nc1 l (this is because the verifier uses only c1 log n random
bits, each of which results in ≤ l queries to the oracles; each query results in an answer of
1 bit).

The verifier V par fixes w = logN
log logN , F to be a finite field of size Θ(logmax{2+c3,6}N),

and picks a subset H of cardinality logN (arbitrarily). Let d = log2N
log logN + k − 1. Notice

that under this choice of H and w, we have |H|w ≥ N . The encoding scheme used by
the parallel verifier system is Epar = PN,w,H,F ◦ Eseq, where PN,w,H,F is the polynomial
encoding defined in Section 7.1. (In other words, computing Epar(s) involves first computing
Eseq(s), and then using PN,w,H,F to encode it using a polynomial.) The decoding scheme
is (Epar)−1 = (Eseq)−1 ◦ (PN,w,H,F)−1. Recall that the encoding PN,w,H,F used a canonical
mapping from [N] to Hw. We need to refer to this mapping while describing the actions of
the verifier V par, so we give it the name #. Thus the image of q ∈ [N] is #(q) ∈ Hw.

Of the k + 1 oracles in the proof, the verifier V par views the last oracle Xk+1 as consisting
of four suboracles, denoted by Xk+1(1, ·), Xk+1(2, ·), Xk+1(3, ·) and Xk+1(4, ·) respectively.
Let us use the shorthand Z, A, B, O respectively for these suboracles. Figure 7.5 describes
the contents of all the oracles.

Notice that the oracle O as described in Figure 7.5 above has |F |(w+1)l entries, which for
our choices of l, w is superpolynomial in n. However, we shall see below —in Step 3(d)—

33

Oracle Contents What contents mean to V par

X1

X2

· · ·
Xk

Each Xi is a function from Fw

to F
Each Xi is a polynomial encod-
ing of a bit string; the ith bit-
string is the ith oracle for V seq.

Xk+1:
(has 4 suboracles)

Z Z:Fw → F Polynomial that encodes the k+
1th oracle needed by V seq

A A:Fw+1 → F Encodes the concatenation of
X1, . . . , Xk and Z as defined in
Definition 47.

B B:F 2(w+1) → F
(d)
1 . Contains,

for each line in Fw+1, a univari-
ate degree d polynomial.

Allows low degree test to be
performed on A

O O:F (w+1)l → F
(d(l−1))
1 Con-

tains, for each degree l curve
in F (w+1)l, a univariate degree
d(l − 1) polynomial

Allows the procedure Curve-
corr-check to reconstruct up to
l values of the polynomial clos-
est to A.

Figure 3: Different oracles in the proof and what V par expects in them

that the verifier will need only 2r = poly(n) entries from this oracle (and so the rest of
the entries need not be present). Specifically, step 3(d) requires an entry in O only for the
curve that passes through the points z1, . . . , zl mentioned in that step. The tuple of points
z1, . . . , zl is generated using a random string R ∈ {0, 1}r, so there are only 2r such tuples
that the verifier can generate in all its runs.

Now we describe the verifier V par. (After each step we describe its intuitive meaning in
parentheses.) Recall that ζ1, . . . ζ|F | are the elements of field F .

1. Run Poly-test(A,B;w + 1, d, F). (If this test accepts, the verifier can be reasonably
confident that A is close to a degree d polynomial.)

2. Concatenation tests:
For i = 1 to k, run Poly-concat-corr-check(ζi, A,B,Xi;w, d, F).
Run Poly-concat-corr-check(ζk+1, A,B,Z;w, d, F).
(If all these tests accept, then the verifier can be reasonably confident that the Xi’s
and Z are close to degree d polynomials and that A is their concatenation in the sense
of Definition 47.)

3. (Next, the verifier tries to simulate V seq using P−1
N,w,H,F (X1), . . . ,P−1

N,w,H,F (Xk), and
P−1
N,w,H,F (Z) as the k + 1 oracles. It uses the Curve-corr-check procedure to produce

any desired entries in those oracles.)

(a) Pick R ∈ {0, 1}r.
(b) Let (i1(C,R), q1(C,R)), . . . , (il(C,R), ql(C,R)) be the questions generated by

V seq on random string R. For conciseness, denote these by just (i1, q1), . . . , (il, ql).

(c) For j = 1 to l, Let hj = #(qj) and zj = (hj , ζij). Note that each zj ∈ Fw+1.

(d) Run Curve-corr-check(A,B,O, z1, . . . , zl;w + 1, d, F) and let (a1, . . . , al) be its
output.

34

(e) If any of the responses a1, . . . , al is not a member of {0, 1} then reject.
(f) If V seq rejects on random string R and responses a1, . . . , al, then reject.

4. If none of the above procedures rejects then accept.

Proposition 58 Given a circuit C of size n on km inputs, for some k < ∞, the verifier
V par has the following properties:

1. There exists a constant αk such that V par tosses at most αk log n coins.

2. V par probes the oracles 3k + 5 times.

3. There exists a constant βk such that the answer size of the oracles are bounded by
logβk n.

4. There exists a constant γk such that the computation of V par’s verdict as a function
of the oracles responses can be expressed as a circuit of size logγk n.

Proof: Step 1 (low degree test) makes 2 queries one each into the oracles A and B.
The total randomness used here is (2(w + 1) + 1) log |F |. Step 2 (concatenation tests)
makes 3 queries into the oracles A, B, Xi for each value of i ∈ {1, . . . , k}. The number of
random coins tossed in this step is k(2(w + 2)) log |F |. In Step 3(a) V par tosses r random
coins. In addition in Step 3(d) it tosses log |F |(w + 3) coins. Step 3(d) also makes three
additional queries. Thus the total number of coins tossed is (2wk+3w+2k+6) log |F |+r ≤
13wk log |F |+ r. By the choice of the parameters w and |F | above this amounts to at most
13k(2+ c2) logN + c1 log n which in turn is at most 13k(2+ c2 +1)c1 log n. Lastly we bound
the size of the circuit that expresses its decision. Note that all of the verifier’s tasks, except
in Step 3(f), involve simple interpolation and field arithmetic, and they can be done in time
polynomial (more specifically in time cubic) in log |F | and d, k and l. By Theorem 39 the
action in Step 3(f) involves evaluating a circuit of size logc3 n. Thus the net size of V par’s
circuit is bounded by some polynomial in log n.

We now analyze the completeness and soundness properties of V par.

Lemma 59 Let C be a circuit with km inputs and size n. Let x1, . . . , xk be such that
C(x1, . . . , xk) accepts. For i = 1 to k, let Xi = PN,w,H,F (Eseq(xi)). Then, there exists an
oracle Xk+1 such that, for all R,

(V par)X1,...,Xk+1(C;R) = accept.

Proof: By the definition of an inner verifier, there is a string π such that (V seq)E
seq(x1),...,Eseq(xk),π

accepts C with probability 1. Let Z be the polynomial PN,w,H,F (π) that encodes π. No-
tice that the Xi’s as well as Z are polonomials of degree m|H| = log2N

log logN . Let A =
concatX1,...,Xk,Z . Then A is a polynomial of degree at most d = m|H| + k − 1. Let
B = linesA. Let O be the oracle which, given any tuple of points z1, . . . , zl ∈ Fw+1 as
a query, returns the univariate degree d(l− 1) polynomial A|curvez1,...,zl , where curvez1,...,zl
is the curve defined in Definition 53. Let Xk+1 be the oracle combining Z, A, B and O, i.e.,
such that Xk+1(1, ·) = Z(·), Xk+1(2, ·) = A(·), Xk+1(3, ·) = B(·), Xk+1(4, ·) = 0(·), Then it
is clear that (V par)X1,...,Xk+1 accepts C with probability 1.

Lemma 60 There exists an error parameter e < 1, such that for oracles X1, . . . , Xk+1,
if the verifier (V par)X1,...,Xk+1 accepts C with probability greater than e, then for xi =
(Eseq)−1(P−1

N,w,H,F (Xi)), the circuit C accepts on input x1 . . . xk.

35

Proof: Let δ0 be as in Theorem 45. Let eseq < 1 denote the error of the verifier V seq. We
will show that e = max{.999, 1− δ0, 1− (1− eseq)(.4)} satisfies the stated condition.

Suppose the test Poly-test(A,B;w + 1, d, F) accepts A with probability max{.999, 1 − δ0}.
Then, by the soundness condition of Theorem 45, there exists a degree d polynomial p :
Fw+1 → F , such that ∆(A, p) ≤ min{2δ0, .002} ≤ .002. (Notice that to apply Theorem 45
we need to ensure that |F | ≥ α(d + 1)3. This does hold for our choice of F and d — the
latter is o(log2N) and the former is Ω(log6N).)

Now suppose each of the concatenation tests accepts with probability at least .999. Let
ε = ∆(A, p) and let pi(·) = p(·, ζi). Then, by Lemma 49, the distance ∆(Xi, pi) ≤ (1 −
.999) + 2

√
ε + d

|F | which (given the choice of d and |F |) is at most 1/4. Thus pi is the
unique polynomial with distance at most 1/4 from Xi. Similarly, pk+1 is the unique degree
d polynomial with distance at most 1/4 to Z.

For i = 1, . . . , k+ 1, let Yi = P−1
N,w,H,F (Xi) = P−1

N,w,H,F (pi) be the decodings of the pi’s. We
now show that V seq accepts the proof oracles Y1, . . . , Yk+1 with reasonable probability, thus
implying — since V seq is an inner verifier — that (Eseq)−1(Y1)(Eseq)−1(Y2) · · · (Eseq)−1(Yk)
is a satisfying assignment to the input circuit C. This will prove the theorem.

In the program of V par, consider fixing R ∈ {0, 1}r. Suppose further that R is such that veri-
fier V par accepts after Step 3 with probability more than 0.6 (where the probability is over the
choice of the randomness used in Step 3(d)). We show that then the verifier (V seq)Y1,...,Yk+1

accepts on random string R. Recall that whether or not V par accepts after Step 3 depends
upon whether or not (a1, . . . , al), the output of Curve-corr-check, is a satisfactory reply to
the queries of verifier V seq using the random string R. By Proposition 46, the probability
that the procedure Curve-corr-check outputs something other than p(z1), . . . , p(zl) is at most
2
√
ε+ d
|F |−1 + dl

|F | . By our choice of |F |, d, and ε, we have 2
√
ε+ d
|F |−1 + dl

|F | < 0.6. Thus if the
probability that the verifier V par accepts in step 3 is more than 0.6 it must be the case that
p(z1), . . . , p(zl) is a satisfactory answer to the verifier V seq. But p is simply a polynomial
encoding of the concatenation of Y1, . . . , Yk, Yk+1. Lemma 50 implies that if we were to run
V seq on the oracles Y1, . . . , Yk+1 using random string R, then the answer it would get is
exactly p(z1), . . . , p(zl)! We conclude that V seq accepts the oracles Y1, . . . , Yk+1 on random
string R.

Now we finish the proof. Suppose V par accepts in Step 3(f) with probability more than 1−
(1−eseq)(1−0.4). Then the fraction of R ∈ {0, 1}r for which it accepts with probability more
than 0.6 must be at least 1−eseq. We conclude that V seq accepts the oracles Y1, . . . , Yk, Yk+1

with probability at least 1− eseq, whence we invoke soundness property of V seq to conclude
that (Eseq)−1(Y1), . . . , (Eseq)−1(Yk) is a satisfying assignment to the circuit C. Since Yi =
P−1
N,h,w,F (Xi), the theorem has been proved.

Finally, we prove Theorem 14.

Proof of Theorem 14: The system (V par,P ◦Eseq, (Eseq)−1 ◦ (P)−1) shall be the desired
inner verifier system. Given k < ∞, let αk, βk and γk be as in Proposition 58. We let
c1 = αk, p = 3k + 5, c2 = γk, c3 = βk. Further, let e be as in Lemma 60. Then, by
Proposition 58 and Lemmas 59 and 60, we see that (V par,P ◦Eseq, (Eseq)−1 ◦ (P)−1) forms
a (k, c1 log n, p, logc2 n, logc3 n, e) inner verifier system.

36

8 Conclusions

We briefly mention some new results that have appeared since the first circulation of this
paper.

New non-approximability results. Many new results have been proved regarding the
hardness of approximation. Lund and Yannakakis [78] show that approximating the chro-
matic number of a graph within a factor nε is NP-hard, for some ε > 0. They also show
that if NP 6⊆ Dtime(npoly(logn)), then Set Cover cannot be approximated within a factor
0.5 log n in polynomial time. In a different work, Lund and Yannakakis [79] show hardness
results for approximation versions of a large set of maximum subgraph problems. (These
problems involve finding the largest subgraph that satisfies a a property Π, where Π is a
nontrivial graph property closed under vertex deletion.) Khanna, Linial and Safra [71] study
the hardness of coloring 3-colorable graph. They show that coloring a 3-colorable graph with
4 colors is NP-hard. Arora, Babai, Stern, and Sweedyk [3] prove hardness results for a col-
lection of problems involving integral lattices, codes, or linear equations/inequations. These
include Nearest Lattice Vector, Nearest Codeword, and the Shortest Lattice Vector under
the `∞ norm. Karger, Motwani, and Ramkumar [70] prove the hardness of approximating
the longest path in a graph to within a 2log1−ε n factor, for any ε > 0.

There are many other results which we haven’t mentioned here; see the compendium [37]
or the survey [4].

Improved analysis of outer verifiers. Our construction of an efficient outer verifier
for NP languages (Theorem 17) can be viewed as constructing a constant prover 1-round
proof system that uses O(log n) random bits. (The “constant prover” means the same as
“constant number of queries” in our context.) Recent results have improved the efficiency
of this verifier. Bellare, Goldwasser, Lund and Russell [21] construct verifiers that use only
4 queries and logarithmic randomness to get the error down to an arbitrarily small constant
(with polyloglog sized answer sizes). Feige and Kilian [43] construct verifiers with 2 queries,
arbitrarily small error, and constant answer sizes. Tardos [96] shows how to get verifier that
makes 3 queries and whose error goes down subexponentially in the answer size. Finally,
all these constructions have been effectively superseded by Raz’s proof [87] of the “parallel
repetition conjecture.” This conjecture was open for a long time, and allows constructions
of a verifier that makes 2 queries, and whose error goes down exponentially with the answer
size. Very recently, Raz and Safra [88] have constructed verifiers making constant number of
queries with logarithmic randomness and answer size, where the error is as low as 2− log1−ε n

for every ε > 0. An alternate construction is given in Arora and Sudan [7].

Better non-approximability results. Part of the motivation for improving the con-
struction of outer verifiers is to improve the ensuing non-approximability results. The result
for MAX-3SAT in this paper, we only demonstrate the existence of an ε > 0 such that
approximating MAX-3SAT within a factor 1 + ε is NP-hard. But the improved verifier con-
structions mentioned above have steadily provided better and better values for this ε. This
line of research was initiated by Bellare, Goldwasser, Lund, and Russell [21] who provided
improved non-approximability results with explicit constants for a number of problems, such
as MAX 3SAT, MAX CLIQUE, Chromatic Number and Set Cover. Since then a number of
works [20, 23, 41, 43, 44, 50, 61, 62, 63] have focussed on improving the non-approximability
results. These results have culminated with some remarkably strong inapproximability re-
sults listed below. The attributions only cite the latest result in a long sequence of papers
- the interested reader can look up the cited result for details of the intermediate results.

37

1. H̊astad [63] has shown that MAX 3SAT is NP-hard to approximate within a factor
7/8− ε, for every ε > 0.

2. H̊astad [62] has shown that MAX CLIQUE is hard to approximate to within a factor
n1−ε, for every positive ε, unless NP = RP.

3. Feige and Kilian [44], combined with H̊astad [63], show that Chromatic number is
hard to approximate to within a factor n1−ε, for every positive ε, unless NP = RP.

4. Feige [41] shows that Set Cover is hard to approximate to within (1− o(1)) lnn unless
NP ⊂ DTIME(nlog logn.

We note all the results above are tight.

A related issue is the following: “What is the smallest value of q for which NP = ∪c>0PCP(c log n, q)?”
We have shown that q <∞, but did not give an explicit bound (though it could potentially
be computed from this paper). But q has since been computed explicitly and then reduced
through tighter analysis. It has gone from 29 [21] to to 22 [43] to 16 [20] to at most 9 (which
is the best that can be inferred directly from [63] - though this result is not optimized.)
Parameters that are somewhat related to q are the free-bit parameter introduced by Feige
and Kilian [43] and the amortized free-bit parameter introduced by Bellare and Sudan [23].
Reducing the latter parameter is necessary and sufficient for proving good inapproximability
results for MAX CLIQUE [20], and H̊astad [61, 62] has shown how to make this parameter
smaller than every fixed δ > 0 .

Other technical improvements. As a side-product of our proof of the main theorem,
we showed how to encode an assignment to a given circuit so that somebody else can check
that it is a satisfying assignment by looking at O(1) bits in the encoding. Babai [11] raised
the following question: How efficient can this encoding be? In our paper, encoding an
assignment of size n requires poly(n) bits. This was reduced to n2+ε by Sudan [95]. The
main hurdle in further improvement seemed to be Arora and Safra’s proof [6] of Theorem 69,
which requires a field size quadratic in the degree. Polishchuk and Spielman [86] present a
new proof of Theorem 69 that works when the field size is linear. By using this new proof,
as well as some other new ideas, they bring the size of the encoding down to n1+ε.

Some of the other results of this paper have also found new proofs with a careful attention
to the constants involved. In particular, the low-degree test Theorem 45 has been improved
significantly since then. Arora and Sudan [7] show that part 2 of Theorem 45 can be
improved to show that if a function passes the low degree test with probability ε then it
is 1 − ε-close to some degree d polynomial. A similar result for a different test was shown
earlier by Raz and Safra [88]. The proof of the correctness of the linearity test (Theorem 27)
has also been improved in works by Bellare, Goldwasser, Lund and Russell [21] and Bellare,
Coppersmith, Hastad, Kiwi and Sudan [19].

Transparent math proofs. We briefly mention an application that received much atten-
tion in the popular press. Consider proofs of theorems of any reasonable axiomatic theory,
such as Zermelo-Fraenkel set theory. A turing machine can check such proofs in time that
is polynomial in the length of the proof. This means that the language

{(φ, 1n) : φ has a proof of length n in the given system}

is in NP (actually, it is also NP-complete for most known systems). Our main theorem
implies that a certificate of membership in this language can be checked probabilistically by
using only O(log n) random bits and while examining only O(1) bits in it. In other words,

38

every theorem of the axiomatic system has a “proof” that can be checked probabilistically
by examining only O(1) bits in it. (Babai, Fortnow, Levin, and Szegedy [14] had earlier
shown that proofs can be checked by examinining only poly(log n) bits in them.)

Actually, by looking at Remark 18, a stronger statement can be obtained: there is a
polynomial-time transformation between normal mathematical proofs and our “probabilis-
tically checkable certificates of theoremhood.”

Surprising algorithms: There has also been significant progress on designing better ap-
proximation algorithms for some of the problems mentioned earlier. Two striking results
in this direction are those of Goemans and Williamson [57] and Arora [2]. Goemans and
Williamson [57] show how to use semidefinite programming to give better approximation
algorithms for MAX-2SAT and MAX-CUT. Arora [2] has discovered a polynomial time
approximation scheme (PTAS) for Euclidean TSP and Euclidean Steiner tree problem.
(Mitchell [80] independently discovered similar results a few months later.) These were
two notable problems not addressed by our hardness result in this paper since they were
not known to be MAX SNP-hard. Arora’s result finally resolves the status of these two
important problems.

8.1 Future Directions

Thus far our main theorem has been pushed quite far (much further than we envisioned at
the time of its discovery!) in proving non-approximability results. We feel that it ought to
have many other uses in complexity theory (or related areas like cryptography). One result
in this direction is due to Condon et al. [34, 35], who use our main theorem (actually, a
stronger form of it that we did not state) to prove a PCP-style characterization of PSPACE.
We hope that there will be many other applications.

Acknowledgments

This paper was motivated strongly by the work of Arora and Safra [6] and we thank Muli
Safra for numerous discussions on this work. We are grateful to Yossi Azar, Mihir Bellare,
Tomas Feder, Joan Feigenbaum, Oded Goldreich, Shafi Goldwasser, Magnus Halldorsson,
David Karger, Moni Naor, Steven Phillips, Umesh Vazirani and Mihalis Yannakakis for
helpful discussions since the early days of work on this paper. We thank Manuel Blum,
Lance Fortnow, Jaikumar Radhakrishnan, Michael Goldman and the anonymous referees
for pointing out errors in earlier drafts and giving suggestions which have (hopefully) helped
us improved the quality of the writeup.

39

References

[1] S. Arora. Probabilistic Checking of Proofs and Hardness of Approximation Problems.
PhD
thesis, U.C. Berkeley, 1994. Available from http://www.cs.princeton.edu/~arora
.

[2] S. Arora. Polynomial-time approximation schemes for Euclidean TSP and other
geometric problems. Proceedings of 37th IEEE Symp. on Foundations of Computer
Science, pp 2-12, 1996.

[3] S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approximate
optima in lattices, codes, and systems of linear equations. Journal of Computer and
System Sciences, 54(2):317-331, April 1997.

[4] S. Arora and C. Lund. Hardness of approximations. In Approximation Algorithms
for NP-hard problems, D. Hochbaum, ed. PWS Publishing, 1996.

[5] S. Arora, R. Motwani, S. Safra, M. Sudan, and M. Szegedy. PCP and
approximation problems. Unpublished note, 1992.

[6] S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization of
NP. To appear Journal of the ACM. Preliminary version in Proceedings of the Thirty
Third Annual Symposium on the Foundations of Computer Science, IEEE, 1992.

[7] S. Arora and M. Sudan. Improved low degree testing and its applications. Proceed-
ings of the Twenty Eighth Annual Symposium on the Theory of Computing, ACM,
1997

[8] G. Ausiello, A. D’Atri, and M. Protasi. Structure Preserving Reductions among
Convex Optimization Problems. Journal of Computer and Systems Sciences, 21:136-
153, 1980.

[9] G. Ausiello, A. Marchetti-Spaccamela and M. Protasi. Towards a Unified
Approach for the Classification of NP-complete Optimization Problems. Theoretical
Computer Science, 12:83-96, 1980.

[10] L. Babai. Trading group theory for randomness. Proceedings of the Seventeenth An-
nual Symposium on the Theory of Computing, ACM, 1985.

[11] L. Babai. Transparent (holographic) proofs. Proceedings of the Tenth Annual Sympo-
sium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science
Vol. 665, Springer Verlag, 1993.

[12] L. Babai and L. Fortnow. Arithmetization: a new method in structural complexity
theory. Computational Complexity, 1:41-66, 1991.

[13] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-
prover interactive protocols. Computational Complexity, 1:3-40, 1991.

[14] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking computations in
polylogarithmic time. Proceedings of the Twenty Third Annual Symposium on the
Theory of Computing, ACM, 1991.

[15] L. Babai and K. Friedl. On slightly superlinear transparent proofs. Univ. Chicago
Tech. Report, CS-93-13, 1993.

40

[16] L. Babai and S. Moran. Arthur-Merlin games: a randomized proof system, and a
hierarchy of complexity classes. Journal of Computer and System Sciences, 36:254-276,
1988.

[17] D. Beaver and J. Feigenbaum. Hiding instances in multioracle queries. Proceedings
of the Seventh Annual Symposium on Theoretical Aspects of Computer Science, Lecture
Notes in Computer Science Vol. 415, Springer Verlag, 1990.

[18] M. Bellare. Interactive proofs and approximation: reductions from two provers in
one round. Proceedings of the Second Israel Symposium on Theory and Computing
Systems, 1993.

[19] M. Bellare, D. Coppersmith, J. Håstad, M. Kiwi and M. Sudan. Linearity
testing in characteristic two. IEEE Transactions on Information Theory 42(6):1781-
1795, November 1996.

[20] M. Bellare, O. Goldreich and M. Sudan. Free bits, PCPs and non-
approximability — towards tight results. To appear SIAM Journal on Computing.
Preliminary version in Proceedings of the Thirty Sixth Annual Symposium on the
Foundations of Computer Science, IEEE, 1995. Full version available as TR95-024
of ECCC, the Electronic Colloquium on Computational Complexity, http://www.eccc
.uni-trier.de/eccc/.

[21] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilistically
checkable proofs. Proceedings of the Twenty Fifth Annual Symposium on the Theory
of Computing, ACM, 1993. (See also Errata sheet in Proceedings of the Twenty Sixth
Annual Symposium on the Theory of Computing, ACM, 1994).

[22] M. Bellare and P. Rogaway. The complexity of approximating a nonlinear pro-
gram. Journal of Mathematical Programming B, 69(3):429-441, September 1995. Also
in Complexity of Numerical Optimization, Ed. P. M. Pardalos, World Scientific, 1993.

[23] M. Bellare and M. Sudan. Improved non-approximability results. Proceedings of
the Twenty Sixth Annual Symposium on the Theory of Computing, ACM, 1994.

[24] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-prover inter-
active proofs: How to remove intractability assumptions. Proceedings of the Twentieth
Annual Symposium on the Theory of Computing, ACM, 1988.

[25] P. Berman and G. Schnitger. On the complexity of approximating the independent
set problem. Information and Computation 96:77–94, 1992.

[26] M. Bern and P. Plassmann. The steiner problem with edge lengths 1 and 2. Infor-
mation Processing Letters, 32:171–176, 1989.

[27] A. Blum, T. Jiang, M. Li, J. Tromp, and M. Yannakakis. Linear approximation
of shortest superstrings. Journal of the ACM, 41(4):630-647, July 1994.

[28] M. Blum. Program checking. Proc. FST&TCS, Springer L.N.C.S. 560, pp. 1–9.

[29] M. Blum and S. Kannan. Designing Programs that Check Their Work. Proceedings
of the Twenty First Annual Symposium on the Theory of Computing, ACM, 1989.

[30] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications
to numerical problems. Journal of Computer and System Sciences, 47(3):549-595, De-
cember 1993.

41

[31] J. Cai, A. Condon, and R. Lipton. PSPACE is provable by two provers in one
round. Journal of Computer and System Sciences, 48(1):183-193, February 1994.

[32] A. Cohen and A. Wigderson. Dispersers, deterministic amplification, and weak
random sources. Proceedings of the Thirtieth Annual Symposium on the Foundations
of Computer Science, IEEE, 1989.

[33] A. Condon. The complexity of the max word problem, or the power of one-way in-
teractive proof systems. Proceedings of the Eighth Annual Symposium on Theoretical
Aspects of Computer Science, Lecture Notes in Computer Science Vol. 480, Springer
Verlag, 1991.

[34] A. Condon, J. Feigenbaum, C. Lund and P. Shor. Probabilistically Checkable
Debate Systems and Approximation Algorithms for PSPACE-Hard Functions. Pro-
ceedings of the Twenty Fifth Annual Symposium on the Theory of Computing, ACM,
1993.

[35] A. Condon, J. Feigenbaum, C. Lund and P. Shor. Random debaters and
the hardness of approximating stochastic functions. SIAM Journal on Computing,
26(2):369-400, April 1997.

[36] S. Cook. The complexity of theorem-proving procedures. Proceedings of the Third
Annual Symposium on the Theory of Computing, ACM, 1971.

[37] P. Crescenzi and V. Kann, A compendium of NP optimization problems. Technical
Report, Dipartimento di Scienze dell’Informazione, Università di Roma “La Sapienza”,
SI/RR-95/02, 1995. The list is updated continuously. The latest version is available by
anonymous ftp from nada.kth.se as Theory/Viggo-Kann/compendium.ps.Z.

[38] E. Dahlhaus, D. Johnson, C. Papadimitriou, P. Seymour, and M. Yan-
nakakis. The complexity of multiway cuts. SIAM Journal on Computing, 23:4, pp.
864–894, 1994.

[39] W. De la Vega and G. Lueker. Bin Packing can be solved within 1 + ε in Linear
Time. Combinatorica, vol. 1, pages 349–355, 1981.

[40] R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. In
Richard Karp (ed.), Complexity of Computation, AMS, 1974.

[41] U. Feige. A threshold of ln n for Set Cover. In Proceedings of the Twenty Eighth
Annual Symposium on the Theory of Computing, ACM, 1996.

[42] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Interactive
proofs and the hardness of approximating cliques. Journal of the ACM, 43(2):268-292,
March 1996.

[43] U. Feige and J. Kilian. Two prover protocols – Low error at affordable rates. Pro-
ceedings of the Twenty Sixth Annual Symposium on the Theory of Computing, ACM,
1994.

[44] U. Feige and J. Kilian. Zero knowledge and chromatic number. Proceedings of the
Eleventh Annual Conference on Complexity Theory , IEEE, 1996.

[45] U. Feige and L. Lovász. Two-prover one-round proof systems: Their power and
their problems. Proceedings of the Twenty Fourth Annual Symposium on the Theory
of Computing, ACM, 1992.

42

[46] L. Fortnow, J. Rompel, and M. Sipser. On the power of multi-prover interactive
protocols. Theoretical Computer Science, 134(2):545-557, November 1994.

[47] R. Freivalds. Fast Probabilistic Algorithms. Proceedings of Symposium on Mathe-
matical Foundations of Computer Science, Springer-Verlag Lecture Notes in Computer
Science, v. 74, pages 57–69, 1979.

[48] K. Friedl, Zs. Hátsági and A. Shen. Low-degree testing. Proceedings of the Fifth
Symposium on Discrete Algorithms, ACM, 1994.

[49] K. Friedl and M. Sudan. Some improvements to low-degree tests. Proceedings of
the Third Israel Symposium on Theory and Computing Systems, 1995.

[50] M. Fürer. Improved hardness results for approximating the chromatic number. Pro-
ceedings of the Thirty Sixth Annual Symposium on the Foundations of Computer Sci-
ence, IEEE, 1995.

[51] M. Garey and D. Johnson. The complexity of near-optimal graph coloring. Journal
of the ACM, 23:43-49, 1976.

[52] M. Garey and D. Johnson. “Strong” NP-completeness results: motivation, exam-
ples and implications. Journal of the ACM, 25:499-508, 1978.

[53] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

[54] M. Garey, D. Johnson and L. Stockmeyer. Some simplified NP-complete graph
problems. Theoretical Computer Science 1:237-267, 1976.

[55] P. Gemmell and M. Sudan. Highly resilient correctors for polynomials. Information
Processing Letters, 43(4):169-174, September 1992.

[56] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson. Self-
testing/correcting for polynomials and for approximate functions. Proceedings of the
Twenty Third Annual Symposium on the Theory of Computing, ACM, 1991.

[57] M. Goemans and D. Williamson. Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of the ACM,
42(6):1115-1145, November 1995.

[58] O. Goldreich. A Taxonomy of Proof Systems. In Complexity Theory Retrospective
II, L.A. Hemaspaandra and A. Selman (eds.), Springer-Verlag, New York, 1997.

[59] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of inter-
active proof-systems. SIAM J. on Computing, 18(1):186-208, February 1989.

[60] R. Graham. Bounds for certain multiprocessing anomalies, Bell Systems Technical
Journal, 45:1563-1581, 1966.

[61] J. Håstad. Testing of the long code and hardness for clique. Proceedings of the Twenty
Eighth Annual Symposium on the Theory of Computing, ACM, 1996.

[62] J. Håstad. Clique is hard to approximate within n1−ε. Proceedings of the Thirty
Seventh Annual Symposium on the Foundations of Computer Science, IEEE, 1996.

[63] J. Håstad. Some optimal inapproximability results. Proceedings of the Twenty Eighth
Annual Symposium on the Theory of Computing, ACM, 1997,

43

[64] O. Ibarra and C. Kim. Fast approximation algorithms for the knapsack and sum of
subset problems. Journal of the ACM, 22:463-468, 1975.

[65] R. Impagliazzo and D. Zuckerman. How to Recycle Random Bits. Proceedings
of the Thirtieth Annual Symposium on the Foundations of Computer Science, IEEE,
1989.

[66] D. Johnson. Approximation algorithms for combinatorial problems. J. Computer and
Systems Sci. 9:256-278, 1974.

[67] V. Kann. Maximum bounded 3-dimensional matching is MAX SNP-complete. Infor-
mation Processing Letters, 37:27-35, 1991.

[68] N. Karmakar and R. Karp. An Efficient Approximation Scheme For The One-
Dimensional Bin Packing Problem. Proceedings of the Twenty Third Annual Sympo-
sium on the Foundations of Computer Science, IEEE, 1982.

[69] R. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W.
Thatcher, editors, Complexity of Computer Computations, Advances in Computing
Research, pages 85–103. Plenum Press, 1972.

[70] D. Karger, R. Motwani, and G. Ramkumar. On approximating the longest path
in a graph. Algorithmica, 18(1):82-98, May 1997.

[71] S. Khanna, N. Linial, and S. Safra. On the hardness of approximating the chro-
matic number. Proceedings of the Second Israel Symposium on Theory and Computing
Systems, 1993.

[72] S. Khanna, R. Motwani, M. Sudan, and U. Vazirani. On syntactic versus compu-
tational views of approximability. To appear SIAM Journal on Computing. Preliminary
version in Proceedings of the Thirty Fifth Annual Symposium on the Foundations of
Computer Science, IEEE, 1994.

[73] P. Kolaitis and M. Vardi. The decision problem for the probabilities of higher-
order properties. Proceedings of the Nineteenth Annual Symposium on the Theory of
Computing, ACM, 1987.

[74] D. Lapidot and A. Shamir. Fully parallelized multi-prover protocols for NEXP-time.
Journal of Computer and System Sciences, 54(2):215-220, April 1997.

[75] L. Levin. Universal’ny̆ıe pereborny̆ıe zadachi (Universal search problems : in Russian).
Problemy Peredachi Informatsii, 9(3):265–266, 1973. A corrected English translation
appears in an appendix to Trakhtenbrot [97].

[76] R. Lipton. New directions in testing. In J. Feigenbaum and M. Merritt, editors, Dis-
tributed Computing and Cryptography, volume 2 of DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, pages 191–202. American Mathematical
Society, 1991.

[77] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic Methods for Inter-
active Proof Systems. J. ACM, 39, 859–868, 1992.

[78] C. Lund and M. Yannakakis. On the hardness of approximating minimization prob-
lems. Journal of the ACM, 41(5):960-981, September 1994.

[79] C. Lund and M. Yannakakis. The approximation of maximum subgraph problems.
Proceedings of ICALP 93, Lecture Notes in Computer Science Vol. 700, Springer Verlag,
1993.

44

[80] J. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: Part II- A sim-
ple PTAS for geometric k-MST, TSP, and related problems. Preliminary manuscript,
April 30, 1996. To appear in SIAM J. Computing.

[81] R. Motwani. Lecture Notes on Approximation Algorithms. Technical Report, Dept.
of Computer Science, Stanford University (1992).

[82] C. Papadimitriou and M. Yannakakis. Optimization, approximation and complex-
ity classes. Journal of Computer and System Sciences 43:425-440, 1991.

[83] C. Papadimitriou and M. Yannakakis. The traveling salesman problem with dis-
tances one and two. Mathematics of Operations Research, 1992.

[84] A. Paz and S. Moran. Non-deterministic polynomial optimization problems and
their approximation. Theoretical Computer Science, 15:251-277, 1981.

[85] S. Phillips and S. Safra. PCP and tighter bounds for approximating MAXSNP.
Manuscript, Stanford University, 1992.

[86] A. Polishchuk and D. Spielman. Nearly Linear Sized Holographic Proofs. Pro-
ceedings of the Twenty Sixth Annual Symposium on the Theory of Computing, ACM,
1994.

[87] R. Raz. A parallel repetition theorem. Proceedings of the Twenty Seventh Annual
Symposium on the Theory of Computing, ACM, 1995.

[88] R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. Proceedings of the Twenty
Eighth Annual Symposium on the Theory of Computing, ACM, 1997.

[89] R. Rubinfeld. A Mathematical Theory of Self-Checking, Self-Testing and Self-
Correcting Programs. Ph.D. thesis, U.C. Berkeley, 1990.

[90] R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with appli-
cations to program testing. SIAM Journal on Computing 25(2):252-271, April 1996.

[91] S. Sahni. Approximate algorithms for the 0/1 knapsack problem, Journal of the ACM,
22:115-124, 1975.

[92] S. Sahni and T. Gonzales. P-complete approximation problems. Journal of the
ACM, 23:555-565, 1976.

[93] J. Schwartz. Probabilistic algorithms for verification of polynomial identities. Journal
of the ACM, 27:701-717, 1980.

[94] A. Shamir. IP = PSPACE. Journal of the ACM, 39(4):869-877, October 1992.

[95] M. Sudan. Efficient Checking of Polynomials and Proofs and the Hardness of Approx-
imation Problems. Ph.D. Thesis, U.C. Berkeley, 1992. Also appears as ACM Distin-
guished Theses, Lecture Notes in Computer Science, no. 1001, Springer, 1996.

[96] G. Tardos. Multi-prover encoding schemes and three prover proof systems. Proceed-
ings of the Ninth Annual Conference on Structure in Complexity Theory , IEEE, 1994.

[97] B. Trakhtenbrot. A survey of Russian approaches to Perebor (brute-force search)
algorithms. Annals of the History of Computing 6:384-400, 1984.

[98] L. Welch and E. Berlekamp. Error correction of algebraic block codes. US Patent
Number 4,633,470 (filed: 1986).

45

[99] M. Yannakakis. On the approximation of maximum satisfiability. Journal of Algo-
rithms, 17(3):475-502, November 1994.

[100] D. Zuckerman. On unapproximable versions of NP-complete problems. SIAM Jour-
nal on Computing, 25(6):1293-1304, December 1996

A Correctness of the low degree test

This section proves the correctness of the Low Degree test by proving part (2) of Theorem 45.
Let m and d be arbitrary positive integers that should be considered fixed in the rest of this
section. Let F be a finite field. Recall that the test receives as its input two oracles: the
first a function from Fm to F , and the second an oracle B that gives, for each line in Fm,
a univariate polynomial of degree d. As already explained in Section 7.2, we will view B as
a function from F 2m to F (d)

1 (recall that F (d)
1 is the set of univariate degree d polynomials

over F). We will call any such oracle a d-oracle.

Definition 61 Let f :Fm → F be any function, (x, h) ∈ F 2m, and g be a univariate degree
d polynomial. For t ∈ F , we say that g describes f at the point lx,h(t) if

f(x+ th) = g(t).

Recall that the test picks a random line and a random point on this line, and checks whether
the univariate polynomial provided in B for this line describes f at this point.

Therefore we define the failure rate of B with respect to f , denoted δ
(B)
f , as

δ
(B)
f ≡ Pr

x,h∈Fm,t∈F
[f(x+ th) 6= B(x, h)[t]] . (13)

We wish to prove part (2) of Theorem 45, which asserts the existence of some δ0 > 0
(independent of d, q,m) for which the following is true: if f :Fm → F is any function and B
is any d-oracle such that δ(B)

f ≤ δ0, then f is 2δ(B)
f -close to F (d)

m . (Note that the Theorem
also has a technical requirement, namely that |F | is sufficiently large.)

To simplify the proof exposition, we first give a simple characterization of the d-oracle B
that minimizes δ(B)

f .

Definition 62 For a function f : Fm → F and points x, h ∈ Fm, a degree d line
polynomial for f on the line lx,h (or just line polynomial on lx,h, when d and f are
understood from context) is a univariate degree d polynomial that describes f on more (or at
least as many) points on lx,h than every other univariate degree d polynomial. We let P (f,d)

x,h

denote this polynomial. (If there is more than one choice possible for P
(f,d)
x,h , we choose

between them arbitrarily.)

Remark 63 The line polynomial may be equivalently defined as a univariate degree d poly-
nomial that is closest to the restriction of f to the line. Thus it follows from Lemma 21 that
if the restriction is (1/2−d/ |F |)-close to some degree d polynomial, then the line polynomial
is uniquely defined. In the case when the line polynomial is not uniquely defined, we assume
that some polynomial is picked arbitrarily but consistently. More specifically, notice that the
lines lx,h and lx+t1h,t2h are identical for every t1 ∈ F and t2 ∈ F − {0}. We will assume
that P (f,d)

x,h = P
(f,d)
x+t1h,t2h

. This will simplify our notation in the following proof.

46

For f :Fm → F , we denote by B(f,d) a d-oracle in which B(f,d)(x, h) = P
(f,d)
x,h for every

(x, h) ∈ F 2m. We denote by δf,d the quantity δ
(B(f,d))
f , i.e., the failure rate of B(f,d) with

respect to f . Notice that by Remark 63, we have that

δf,d = Pr
x,h∈Fm,t∈F

[
P

(f,d)
x,h [t] = f(x+ th)

]
= Pr

x,h∈Fm,t∈F

[
P

(f,d)
x+th,h[0] = f(x+ th)

]
= Pr

x′=x+th,h∈Fm

[
P

(f,d)
x′,h [0] = f(x′)

]
(14)

Proposition 64 If f :Fm → F is any function and d > 0 any integer, then every d-oracle
has failure rate at least δf,d with respect to f .

Proof: Let C be any oracle. The definition of a line polynomial implies that for every
pair (x, h) ∈ F 2m, the number of points in lx,h at which the polynomial C(x, h) describes
f is no more than the number at which B(f,d) describes f . By averaging over all (x, h), the
proposition follows.

It should be clear from Proposition 64 that the following result suffices to prove part 2 of
Theorem 45.

Theorem 65 (The Section’s Main Theorem) There are fixed constants δ0 > 0 and
α < ∞ such that the following is true. For all integers m, d > 0 and every field F of
size αd3, if f :Fm → F is a function such that δf,d ≤ δ0, then f is 2δf,d-close to F (d)

m .

We note that our proof of Theorem 65 will provide an explicit description of the polynomial
closest to f . For any function f : Fm → F , define another function f̂d:Fm → F as follows:

f̂d(x) ≡ plurality1
h∈Fm

{
P

(f,d)
x,h (0)

}
∀x ∈ Fm. (15)

(Note that the line lx,h passes through x. Further, x is the point x+ 0 ·h, so P (f,d)
x,h (0) is the

value produced by the line polynomial P (f,d)
x,h at x. Thus f̂d(x) is the most popular value

produced at x by the line polynomials of the lines passing through x.)

The proof of Theorem 65 will show, first, that f is close to f̂d and second, that f̂d is a degree
d polynomial. The first statement is easy and is proved in the next lemma. The proof of
the second statement takes up the rest of the section.

Lemma 66 For any function f : Fm → F and any integer d, ∆(f, f̂d) ≤ 2δf,d.

Proof: Let B be the set given by

B =
{
x ∈ Fm| Pr

h∈Fm
[f(x) 6= P

(f,d)
x,h (0)] ≥ 1/2

}
.

1The plurality of a multiset of elements is the most commonly occuring element, with ties being broken
arbitrarily.

47

Now imagine picking (x, h) ∈ F 2m randomly. We have

Pr
x,h

[f(x) 6= P
(f,d)
x,h (0)] ≥ 1

2
· Pr
x

[x ∈ B] (16)

=
|B|

2 |F |m
. (17)

But by (14), we also know that

Pr
x,h

[f(x) 6= P
(f,d)
x,h (0)] = δf,d. (18)

From (17) and (18) we conclude that |B|
2|F |m ≤ δf,d. Furthermore, the definition of f̂d implies

that every x 6∈ B satisfies f̂d(x) = f(x). Hence we have

∆(f, f̂d) ≤
|B|
|F |m

≤ 2δf,d.

Thus the lemma has been proved.

For the rest of the proof of Theorem 65, we will need a certain lemma regarding bivariate
functions. The following definition is required to state it.

Definition 67 For the bivariate domain F × F , the row (resp., column) through x0

(resp., y0), is the set of points {(x0, y)|y ∈ F} (resp., {(x, y0)|x ∈ F}).

Notice that rows and columns are lines. The notion of a line polynomial specializes to rows
and columns as follows.

Definition 68 For a function f : F 2 → F and a row through x0 the row polynomial, is a
univariate polynomial of degree d that agrees with f on more (or at least as many) points on
the row as any other univariate degree d polynomial. We let r(f,d)

x0 denote this polynomial.
(If there is more than one choice for r(f,d)

x0 , we pick one arbitrarily.) We likewise define the
column polynomial c(f,d)

y0 for the column through y0 ∈ F .

The next result (which we will not prove) shows that if f is a bivariate function such that
its row and column polynomials agree with it in “most” points, then f is close to a bivariate
polynomial. This result can be viewed as proving the subcase of Theorem 65 when the
number of variables, m, is 2. This subcase will be crucial in the proof for general m.

Theorem 69 ([6]) There are constants ε0, c > 0 such that the following holds. Let d be
any positive integer, ε ≤ ε0, and F a field of cardinality at least cd3. For f : F 2 → F , let
R,C : F 2 → F be the functions defined as R(x, y) = r

(f,d)
x (y) and C(x, y) = c

(f,d)
y (x). If f

satisfies ∆(f,R) ≤ ε and ∆(f, C) ≤ ε, then there exists a polynomial g : F 2 → F of degree
at most d in each of its variables, such that ∆(f, g) ≤ 4ε.

Corollary 70 Let ε0, c be as given by Theorem 69. Let ε < min{ε0, 1
5 −

d
5|F |}, d be any

non-negative integer and F a field of cardinality at least cd3. Let f :F 2 → F satisfy the
hypothesis of Theorem 69. Let ε′ be such that 0 < ε′ < 1

2 −
2d
|F | − 5ε.

Then if x0, y0 ∈ F satisfy

Pr
x

[f(x, y0) 6= r(f,d)
x (y0)] ≤ ε′ (19)

Pr
y

[f(x0, y) 6= c(f,d)
y (x0)] ≤ ε′ (20)

then r
(f,d)
x0 (y0) = c

(f,d)
y0 (x0).

48

Proof: Theorem 69 implies there exists a polynomial g of degree d each in x and y such
that ∆(f, g) ≤ 4ε. Since ∆(f, C) ≤ ε and ∆(f,R) ≤ ε, we conclude from the triangle
inequality that ∆(g, C),∆(g,R) ≤ 5ε.

To prove the desired statement it suffices to show that r(f,d)
x0 (y0) and c

(f,d)
y0 (x0) are both

equal to g(x0, y0). For convenience, we only show that c(f,d)
y0 (x0) = g(x0, y0); the other case

is identical.

For x ∈ F , let g(x, ·) denote the univariate degree d polynomial that describes g on the row
that passes through x. We first argue that

Pr
x∈F

[g(x, ·) 6= r(f,d)
x (·)] ≤ 5ε+

d

|F |
(21)

The reason is that r(f,d)
x (·) and g(x, ·) are univariate degree d polynomials, so if they are

different, then they disagree on at least |F | − d points. Since ∆(g,R) = Prx,y[g(x, y) 6=
f(x, y)], we have

∆(g,R) ≥ (1− d
|F |) Prx∈F [g(x, ·) 6= r

(f,d)
x (·)],

which implies Prx[g(x, ·) 6= R(x, ·)] ≤ 5ε/(1− d
|F |), and it is easily checked that 5ε/(1− d

|F |) ≤
5ε+ d

|F | , provided 5ε ≤ 1− d
|F | .

Immediately from (21) it follows Prx[g(x, y0) 6= r
(f,d)
x (y0)] ≤ 5ε+ d

|F | . The hypothesis of the

corollary implies that y0 ∈ F is such that Prx[f(x, y0) 6= r
(f,d)
x (y0)] ≤ ε′. Thus we find that

Pr
x

[f(x, y0) 6= g(x, y0)] ≤ Pr
x

[
f(x, y0) 6= r(f,d)

x (y0)
]

+ Pr
x

[
r(f,d)
x (y0) 6= g(x, y0)

]
≤ 5ε+ ε′ +

d

|F |
.

But the previous statement just says that the univariate polynomial g(·, y0) describes f on
all but (5ε+ ε′+ d

|F |) |F | points on the column through y0. Further, the hypothesis also says
that 5ε+ ε′ + d

|F | < 1/2− d
|F | , so we conclude that g(·, y0) is simply the column polynomial

for the column through y0, namely, c(f,d)
y0 . Hence it follows that c(f,d)

y0 (x0) = g(x0, y0), which
is what we desired to prove.

Now we return to the m-variate case of Theorem 65. The next lemma shows that if the
failure rate δf,d is small, then the line polynomials of f are mutually quite consistent.

Lemma 71 Let ε0 and c be as given in Theorem 69. Let d be any positive integer, F be
a field of size at least max{6d, cd3}, and ε be any constant satisfying 0 < ε < min{ 1

36 , ε0}.
Then every function f : Fm → F satisfies:

∀x ∈ Fm, t0 ∈ F, Pr
h1,h2

[
P

(f,d)
x,h1

(t0) 6= P
(f,d)
x+t0h1,h2

(0)
]
≤ 4δf,d

ε
+

4
|F |

.

Remark: Note that when h1 ∈ Fm is random, the line lx,h1 is a random line through x.
When h2 ∈ Fm is also random, the line lx+t0h1,h2 is a random line through x + t0h1. The
two lines intersect at the point x+ t0h1.

49

Proof: We use the shorthand δ for δf,d. Pick h1, h2 ∈R Fm and let M = Mh1,h2 : F 2 → F
be the function given by M(y, z) = f(x+ yh1 + zh2).

The Lemma will be proved by showing that with probability at least 1 − 4(δ/ε + 1/|F |)
(over the choice of h1 and h2), M satisfies the conditions required for the application of
Corollary 70 for y0 = t0 and z0 = 0 and ε′ = ε. Then it will follow that c(M,d)

z0 (y0) =
r

(M,d)
y0 (z0). But note that by definition of M , c(M,d)

z0 = P
(f,d)
x,h1

and r
(M,d)
y0 = P

(f,d)
x+t0h1,h2

. This
suffices to prove the lemma since now we have

P
(f,d)
x,h1

(t0) = c(M,d)
z0 (y0)r(M,d)

y0 (z0) = P
(f,d)
x+t0h1,h2

(0).

We first verify that the first hypothesis for Corollary 70 holds: i.e., that ε and ε′ satisfy
5ε + ε′ + (2d)/|F | < 1/2. Since by the hypothesis of the lemma we have |F | ≥ 6d, we find
that 2d/|F | ≤ 1/3 and thus we need to show that 5ε + ε′ = 6ε < 1/2 − 1/3 = 1/6. The
finally inequality holds since ε < 1/36 by the hypothesis of the lemma.

Next, note that x + yh1 and h2 are random and independent of each other. Thus, by the
definition of δ, we have

∀y 6= 0, ∀z, Pr
h1,h2

[
P

(f,d)
x+yh1,h2

(z) 6= f(x+ yh1 + zh2)
]
≤ δ. (22)

Note that the event P (f,d)
x+yh1,h2

(z) 6= f(x + yh1 + zh2) may be rephrased as r(M,d)
y (z) 6=

M(y, z). We now argue that

Pr
h1,h2

[
Pr
y 6=0,z

[M(y, z) 6= r(M,d)
y (z)] ≥ ε

]
≤ δ

ε
. (23)

To see this, consider the indicator variable Xh1.h2,y,z = 1 that is 1 if P (f,d)
x+yh1,h2

(z) 6= f(x+
yh1 + zh2) and 0 otherwise. In what follows, let Er[A(r)] denote the expectation of A as a
function of the random variable r. In this notation, (22) can be expressed as

∀y 6= 0, ∀z, Eh1,h2 [Xh1,h2,y,z] ≤ δ.

For h1, h2 ∈ Fm, define Yh1,h2 to be Ey 6=0,z[Xh1,h2,y.z] where y and z are chosen uniformly
and independently at random from F − {0} and F respectively. ¿From (22) it follows that

Eh1,h2 [Yh1,h2] = Eh1,h2,y 6=0,z[Xh1,h2,y,z] ≤ max
y 6=0,z

{Eh1.h2 [Xh1,h2,y,z]} ≤
δ

ε
.

(23) now follows by applying Markov’s inequality to the random variable Yh1,h2 .2

Going back to (23), by accounting for the probability of the event y = 0, we conclude:

Pr
h1,h2

[
Pr
y,z

[M(y, z) 6= r(M,d)
y (z)] ≥ ε

]
≤ δ

ε
+

1
|F |

. (24)

Applying Markov’s inequality again to (22) (in a manner similar to the derivation of (23))
but this time fixing z = z0, we get

Pr
h1,h2

[
Pr
y

[M(y, z0) 6= r(M,d)
y (z0)] ≥ ε

]
≤ δ

ε
+

1
|F |

. (25)

We can similarly argue that

Pr
h1,h2

[
Pr
y,z

[M(y, z) 6= c(M,d)
z (y)] ≥ ε

]
≤ δ

ε
+

1
|F |

. (26)

2Recall that Markov’s inequality states that for a non-negative random variable Y , Pr[Y ≥ k] ≤ E[Y]/k.

50

and Pr
h1,h2

[
Pr
z

[M(y0, z) 6= c(M,d)
z (y0)] ≥ ε

]
≤ δ

ε
+

1
|F |

. (27)

Thus with probability at least 1− 4(δ/ε+ 1/|F |), none of the events (24)-(27) happen and
all the hypotheses of Corollary 70 are satisfied.

The next corollary relates the values produced by the line polynomials to the values of the
“corrected” function f̂d.

Corollary 72 Let ε0, c be as given by Theorem 69. Let 0 < ε < min{ 1
36 , ε0}. Then every

function f : Fm → F satisfies

∀x ∈ Fm, t ∈ F, Pr
h∈Fm

[
f̂d(x+ th) 6= P

(f,d)
x,h (t)

]
≤ 8δf,d

ε
+

8
|F |

(28)

if F is a finite field of size at least max{6d, cd3}.

Proof: Let δ = δf,d. Let Bx,t be the set defined as

Bx,t =
{
h ∈ Fm|P (f,d)

x,h (t) 6= pluralityh′{P
(f,d)
x+th′(0)}

}
.

Note that every h 6∈ B, automatically satisfies f̂d(x + th) = P
(f,d)
x,h (t). So the probability

appearing on the left hand side of (28) is bounded from above by |Bx,t||F |m . We will show that
|Bx,t|
|F |m ≤ 2 · (4δ/ε+ 4/|F |).

Imagine picking h, h1 ∈ Fm randomly. Using Lemma 71 we have,

Pr
h,h1

[P (f,d)
x+th,h1

(0) 6= Px,h(t)] ≤ (4δ/ε+ 4/|F |).

But for each h ∈ Bx,t, (by the definition of Bx,t) we have

Pr
h1∈Fm

[
P

(f,d)
x+th,h1

(0) 6= Px,h(t)
]
≤ 1

2
.

Thus Pr
h,h1∈RFm

[
P

(f,d)
x+th,h1

(0) 6= Px,h(t)
]
≥ |Bx,t|

2|F |m
.

Hence we conclude that |Bx,t||F |m ≤ 2(4δ/ε+ 4/|F |).

Even the specialization of the lemma above to the case t = 0 is particularly interesting,
since it says that the “plurality” in the definition of f̂d is actually an overwhelming majority,
provided δf,d is sufficiently small. The next lemma essentially shows that f̂d is a degree d
polynomial.

Lemma 73 Let ε0 and c be as in Theorem 69. Let F be a finite field of size at least
max{6d, cd3} and ε = min{1/36, ε0}. If f : Fm → F is any function for which δ = δf,d
satisfies

256δ
ε2

+
256
ε|F |

+
56δ
ε

+
40
|F |

< 1,

then
∀x, h ∈ Fm f̂d(x) = P

(f̂d,d)
x,h (0).

51

Proof: Pick h1, h2 ∈R Fm and define M : F 2 → F to be

M(y, 0) = f̂d(x+ yh) and M(y, z) = f(x+ yh+ zh1 + yzh2) for z 6= 0.

Notice that by the definition of M , for every y, r(M,d)
y (z) = P

(f,d)
x+yh,h1+yh2

(z) and for every

z 6= 0, c(M,d)
z (y) = P

(f,d)
x+zh1,h+zh2

(y). Finally c(M,d)
0 (y) = P

(f̂d,d)
x,h (y). Thus the 0-th column of

M is independent of h1, h2 and the goal of the lemma is to show that M(0, 0) = c
(M,d)
0 (0).

We will show, by an invocation of Corollary 70, that the event c(M,d)
0 (0) = r

(M,d)
0 (0) happens

with probability strictly greater than 8δ/ε + 8/|F | over the random choices of h1 and h2.
But by Corollary 72, we have M(0, 0) = f̂d(x) = P

(f,d)
x,h1

(0) = r
(M,d)
0 (0) with probability at

least 1 − 8δ/ε − 8/|F |. (Of the three equalities in the chain here — the first and the third
are by definition and the middle one uses Corollary 72.) Our choice of ε, δ implies that
the following event happens with with positive probability (over the choice of h1 and h2):

“f̂d(x) = r
(M,d)
0 (0) = P

(f̂d,d)
x,h (0).” But this event does not mention h1 and h2 at all, so its

probability is either 1 or 0. Hence it must be 1, and the Lemma will have been proved.

Thus to prove the Lemma it suffices to show that the conditions required for Corollary 70
are true for the function M , with ε′ = ε and y0 = z0 = 0.

For z = 0 and all y, we have M(y, z) = f̂d(x + yh + z(h1 + yh2)), by definition. For any
z 6= 0 and y, the probability Prh1,h2 [M(y, z) 6= f̂d(x+ yh+ z(h1 + yh2))] is at most 2δ (by
Lemma 66). Also, for all y, z ∈ F , the probability that f̂d(x + yh + z(h1 + yh2)) does not
equal P f,dx+yh,h1+yh2

(z) is at most 8δ/ε+ 8/|F | (by Corollary 72). Thus we have shown

Pr
h1,h2

[
M(y, z) 6= r(M,d)

y (z)
]
≤ 8δ/ε+ 8/|F |+ 2δ = δ1.

As in the proof of Lemma 71, we can now conclude that

Pr
h1,h2

[
Pr
y,z

[M(y, z) 6= r(M,d)
y (z)] ≥ ε

]
≤ δ1

ε
+

1
|F |

. (29)

and Pr
h1,h2

[
Pr
y

[M(y, 0) 6= r(M,d)
y (0)] ≥ ε

]
≤ δ1

ε
+

1
|F |

. (30)

For the columns the conditions required are shown even more easily. We first observe that
the line lx+zh1,h+zh2 is a random line through Fm for any z 6= 0. Thus we can use the
definition of δ to claim that, for every y ∈ F ,

Pr
h1,h2

[
M(y, z) = f(x+ zh1 + y(h+ zh2)) = P

(f,d)
x+zh1,h+zh2

(y) = c(M,d)
y (z)

]
= δ.

As in the proof of Lemma 71 we can argue that

Pr
h1,h2

[
Pr
y,z

[M(y, z) 6= c(M,d)
z (y)] ≥ ε

]
≤ δ

ε
+

1
|F |

. (31)

and Pr
h1,h2

[
Pr
z

[M(0, z) 6= c(M,d)
z (0)] ≥ ε

]
≤ δ

ε
+

1
|F |

. (32)

Thus with probability at least 1−16(δ1/ε+δ/ε+2/|F |), none of the events (29)-(32) happen
and we can apply Corollary 70.

To conclude we need to show that 1− 16(δ1/ε+ δ/ε+ 2/|F |) > 8δ/ε+ 8/|F | and this follows
from the conditions given in the statement of the lemma.

Now we can prove the main theorem of this section.

52

Proof of Theorem 65: The choice of α and δ0 are made as follows: Let ε = min{1/36, ε0},
where ε0 is as in Theorem 69. Now pick α to be max{c, 600/ε}, where c is as given by
Theorem 69. Now let δ0 = ε2

624 . Notice that δ0 is positive, and α <∞.

Let f : Fm → F be a function over a field F of size at least αd3 such that δf,d < δ0. It can
be verified that δ, ε and F satisfy the conditions required for the application of Lemma 73.
Thus we can conclude that f̂d satisfies

∀x, h f̂d(x) = P
(f̂d,d)
x,h .

Under the condition |F | > 2d + 1, this condition is equivalent to saying f̂d is a degree d
polynomial (see [90]). (See also [49] for a tight analysis of the condition under which this
equivalence holds.) By Lemma 66 ∆(f, f̂d) ≤ 2δf,d. Thus f is 2δf,d-close to a degree d
polynomial.

53

