
EÆ
ient Routing in Opti
al Networks�Alok Aggarwal Amotz Bar-Noyy Don CoppersmithRajiv Ramaswami Baru
h S
hieber Madhu SudanIBM Resear
h DivisionT. J. Watson Resear
h CenterYorktown Heights, NY 10598Abstra
tThis paper studies the problem of dedi
ating routes to 
onne
tions in opti
al networks. Inopti
al networks, the vast bandwidth available in an opti
al �ber is utilized by partitioning itinto several 
hannels, ea
h at a di�erent opti
al wavelength. A 
onne
tion between two nodes isassigned a spe
i�
 wavelength, with the 
onstraint that no two 
onne
tions sharing a link in thenetwork 
an be assigned the same wavelength. This paper 
onsiders opti
al networks with andwithout swit
hes, and di�erent types of routing in these networks. It presents optimal or near-optimal 
onstru
tions of opti
al networks in these 
ases and algorithms for routing 
onne
tions,spe
i�
ally permutation routing for the networks 
onstru
ted here.

�This work was supported in part by a grant No. MDA 972-92-C-0075 from ARPA. An earlier version appearedat the ACM Symposium on Dis
rete Algorithms, 1994.yCurrent address: Dept. of EE-Systems, Tel Aviv University, Israel. e-mail: amotz�eng.tau.a
.il.



1. Introdu
tionFiber-opti
 networking te
hnology using wavelength division multiplexing (WDM) o�ers the poten-tial of building large wide-area networks 
apable of supporting thousands of nodes and providing
apa
ities of the order of gigabits-per-se
ond to ea
h node in the network [Gre92, Ram93, CNW90℄.In WDM opti
al networks, the vast bandwidth available in opti
al �ber is utilized by partitioningit into several 
hannels, ea
h at a di�erent opti
al wavelength. Ea
h wavelength 
an 
arry datamodulated at bit rates of several gigabits per se
ond.In general, su
h a network 
onsists of wavelength routers inter
onne
ted by point-to-point �ber-opti
 links (Figure 1). Ea
h link 
an support a 
ertain number of wavelengths. Wavelength routersare the analogs of swit
hes in traditional networks. Ea
h router is an endpoint of several opti
allinks. Ea
h link is 
onne
ted to either an input port of the router or an output port. The routerdetermines whi
h in
oming signal is to be transmitted to whi
h outgoing link. There is a signi�
antamount of varian
e in the fun
tionality of a router | in terms of when it determines the routingpattern, how it determines the routing pattern and if it 
hanges the signals it transmits in anyfundamental way. The one 
ommon feature that all routers share is that they 
annot route twosignals on the same wavelength on the same outgoing link. We shall presently summarize the main
ategories of wavelength routers. In addition to routers and links, a network also 
onsists of severalend nodes. Ea
h node is 
onne
ted to a router of the network and 
onsists of a tunable opti
alre
eiver and tunable opti
al transmitter. The transmitter 
an be tuned to transmit on any of theavailable wavelengths and the re
eiver 
an be tuned to re
eive on any of the available wavelengths.
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Figure 1: A WDM network 
onsisting of wavelength routers inter
onne
ted by point-to-point �ber-opti
 links. Some of the wavelength routers have nodes atta
hed to them that form the sour
esand destinations for network traÆ
.Wavelength routers. The simplest form of a wavelength router is a non-re
on�gurable router.In a non-re
on�gurable router, the in
oming to outgoing pattern is determined stati
ally and 
an1



not be swit
hed on
e the router is built. The main feature of su
h routers is the fa
t that therouting pattern 
an be a fun
tion of the wavelength of the in
oming signal. Thus for ea
h inputport and ea
h wavelength, the router asso
iates a �xed set of output ports on to whi
h it willtransmit the in
oming signal on the same wavelength (as the in
oming signal). Figure 2 showssu
h a wavelength router. It is a passive (unpowered) devi
e, and 
an be realized in many forms.The realization here uses passive wavelength demultiplexers and multiplexers.
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on�gurable (swit
hless) wavelength router with 3 ports 
apable of handling 3wavelengths per port.A se
ond form of a wavelength router is the wavelength-independent re
on�gurable swit
h. (Inprevious versions of the paper this swit
h was also 
alled an elementary swit
h.) These swit
hesare fun
tionally identi
al to swit
hes in the 
lassi
al networks. Ea
h swit
h 
an be dynami
allyre
on�gured to 
hange its input-output pattern. However, the input-output pattern is independentof the wavelength of the in
oming signal. Thus for a �xed 
on�guration of the swit
h, there isa �xed set of output ports on to whi
h an in
oming signal is transmitted independent of theirwavelengths.A third form of wavelength router whi
h generalizes both the above forms is the wavelength-sele
tive re
on�gurable swit
h. (In previous versions of the paper this swit
h was also 
alled a gener-alized swit
h.) As in the wavelength-independent 
ase, the input-output pattern of the wavelength-sele
tive swit
h 
an also be swit
hed dynami
ally. However, in this 
ase the routing pattern 
analso be a fun
tion of the wavelength of the in
oming signal. Thus for a �xed 
on�guration, forevery input port and wavelength of the in
oming signal, the swit
h asso
iates a �xed set of outputports onto whi
h it transmits this signal. It is 
lear that this swit
h 
an simulate either of therouters mentioned earlier. It is also true that a 
ombination of non-re
on�gurable routers andwavelength-independent re
on�gurable swit
hes 
an simulate a wavelength-sele
tive re
on�gurableswit
h. (See Figures 3(a) and (b) for an example of how a wavelength-sele
tive swit
h is simulatedby wavelength multiplexers and demultiplexers, and wavelength independent swit
hes.)Lastly, we mention that the literature has also 
onsidered a 
lass of wavelength routers withan additional feature { that of wavelength 
onversion. Su
h routers are 
apable of 
hanging thewavelength of an in
oming signal before transmitting it to an outgoing opti
al. It is possibleto 
onsider a variant of all the above routers (re
on�gurable and non-re
on�gurable) with this2
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(a)

(b)Figure 3: Two types of re
on�gurable wavelength swit
hes, ea
h with 3 ports 
apable of handling3 wavelengths per port. They 
an swit
h ea
h wavelength at its input ports independent of theother wavelengths. The swit
hes 
an be re
on�gured to allow di�erent inter
onne
tion patterns.(a) This router uses wavelength-independent swit
hes in 
ombination with passive wavelength de-multiplexers and multiplexers. (b) This router uses a wavelength-sele
tive swit
h.additional feature. However in this paper we shall not be 
onsidering this type of wavelengthrouter.Classi�
ation of Networks. Based on the above 
lassi�
ation of routers, we 
onsider networkswhi
h have a subset of these routers available. The �rst 
lass of networks that we 
onsider arenon-re
on�gurable, or swit
hless networks. The only form of wavelength routers available in su
hnetworks are the non-re
on�gurable routers. Swit
hless networks are of pra
ti
al importan
e be-
ause the network 
omponents are passive and hen
e reliable, and moreover, all the 
ontrol is doneoutside the network, making network 
ontrol easier. Another motivation for studying su
h networksis that they form important 
omponents in the 
onstru
tion of re
on�gurable networks whi
h wedes
ribe next (Se
tion 3).The se
ond 
lass of networks, whi
h we 
all re
on�gurable networks, are networks whi
h 
onsistof some non-re
on�gurable routers and some re
on�gurable routers. Within the 
lass of re
on�g-urable networks we 
onsider two sub
ases: (i) networks that allow only wavelength-independentre
on�gurable swit
hes and non-re
on�gurable routers, and (2) networks that allow wavelength-sele
tive re
on�gurable swit
hes and non-re
on�gurable ones.In swit
hless networks, on
e the routing pattern is set, the only 
hoi
e remaining is in sele
t-ing the wavelength at whi
h ea
h node transmits and the wavelength at whi
h it re
eives. Inre
on�gurable networks, additional degrees of freedom are obtained by 
hanging the settings of3



the swit
hes. We assert that opti
al swit
hes will be required to build large networks be
ause theswit
hless network requires a large number of wavelengths to support even simple traÆ
 patterns(as will be seen later in this paper).Problems and parameters of interest. In an opti
al network several node pairs may requestto be \
onne
ted". A 
onne
tion between a pair of nodes is a path 
onne
ting the two nodes anda wavelength. A set of 
onne
tions is legal if no two paths using the same wavelength overlap on alink (or an edge). (See, for example, Figure 1 whi
h shows a 
onne
tion from node A to node C onwavelength �1 and a 
onne
tion from C to E also on �1. However the 
onne
tion from B to D mustbe 
arried on a di�erent wavelength, �2.) The primary task we are interested in is the 
onstru
tionof networks whi
h allows for a fairly general 
lass of 
onne
tion requests to be legally 
onne
ted.A se
ond task is the task of de
iding how to set up the 
onne
tions satisfying a given 
olle
tion of
onne
tion requests in the given network. For the networks we 
onstru
t we end up solving thisse
ond task easily, though in general networks this problem may be mu
h harder.In general the number of wavelengths required is a key parameter that we seek to minimize.For non-re
on�gurable networks, the number of routers and their degree are not as important andwe shall ignore these parameters in this paper.In the 
ase of re
on�gurable networks again the parameter of interest is the number of wave-lengths, but this time the number of re
on�gurable swit
hes used and their degree also be
omesimportant. In parti
ular, it appears that the 
ost of 
onstru
ting swit
hes handling more thana �xed number of ports may be too high. Thus in this paper we restri
t attention to boundeddegree swit
hes and analyze the number of swit
hes used as a fun
tion of the number of availablewavelengths.1.1. TerminologyA permutation network is a network that 
an su

essfully route all sets of 
onne
tions where ea
htransmitter is 
onne
ted to a single re
eiver and ea
h re
eiver to a single transmitter.A permutation network handles 
onne
tion establishment requests and 
onne
tion terminationrequests. A 
onne
tion establishment request spe
i�es the transmitter and re
eiver between whi
ha 
onne
tion is to be established. It is assumed that both the transmitter and the re
eiver areidle when a 
onne
tion establishment request is initiated. In this 
ase a permutation networkmust always be able to set up this 
onne
tion. A 
onne
tion termination request spe
i�es a pair(transmitter, re
eiver) that are 
urrently 
onne
ted and terminates this 
onne
tion. FollowingBene�s [Ben62℄, we distinguish between two types of non-blo
king permutation networks (NBNs):rearrangeably NBNs, where existing 
onne
tions 
an be rerouted to a

ommodate a new 
onne
tionestablishment request, and wide-sense NBNs, where existing 
onne
tions 
annot be rerouted toa

ommodate a new 
onne
tion establishment request.An oblivious routing s
heme always uses the same wavelength to satisfy a given 
onne
tion4



request, regardless of the other 
onne
tions in the network. Oblivious s
hemes are 
learly on-lines
hemes. (An on-line s
heme is a s
heme that does not require the prior knowledge of futurerequests.) In partially oblivious routing, the wavelength that 
an be used to satisfy a 
onne
tionrequest must be 
hosen from a subset of the available wavelengths in the network.The 
ongestion of a routing algorithm is the maximum number of paths that go over a singleedge in the network. The dilation of a routing algorithm is the maximum number of edges in apath used by the routing algorithm.1.2. Previous WorkThe simplest form of a swit
hless opti
al network is a broad
ast star network, shown in Figure 4.In a star network, a transmission from a node is broad
ast to all the nodes in the network. Clearlya star network with n nodes requires n wavelengths for permutation routing. Also it is suÆ
ient toprovide ea
h node with a �xed-tuned transmitter at a wavelength di�erent from the other nodes,and a tunable re
eiver in order to be able to route permutations. An alternative is to make thetransmitters tunable and the re
eivers �xed-tuned.
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Figure 4: A broad
ast star network.However by using wavelength routers it is possible to route n 
onne
tions using fewer than nwavelengths even in swit
hless networks. Barry and Humblet [BH92℄ showed that permutationrouting in a swit
hless network with n nodes requires 
(pn) wavelengths. They also showed [BH92,BH93a℄ that oblivious permutation routing requires at least bn=2
+1 wavelengths and 
an be doneusing dn=2e+ 2 wavelengths.In a re
on�gurable network with w available wavelengths, Barry and Humblet [BH93a℄ showedthat the number of wavelength-independent 2�2 swit
hes required to support permutation routingis 
(n log(n=w2))y. For the spe
ial 
ase in whi
h the transmitters are �xed-tuned and the re
eiversare tunable, Pieris and Sasaki [PS93℄ showed that the number of wavelength-independent 2 � 2yAll logarithms in this paper are to the base 2. 5



swit
hes required for permutation routing is 
(n log(n=w)), and 
onstru
ted su
h a network usingO(n log(n=w)) wavelength-independent swit
hes.Pankaj [Pan92℄ obtained bounds on the number of wavelengths required for permutation rout-ing in 
ertain network topologies using wavelength-sele
tive swit
hes. His network 
onsisted of nwavelength-sele
tive swit
hes of �xed degree with ea
h node being 
onne
ted to a di�erent router.For this model, Pankaj showed that 
(logn) wavelengths are required for permutation routing. Healso showed that rearrangeably non-blo
king permutation routing 
an be done with O(log2 n) wave-lengths and wide-sense non-blo
king permutation routing with O(log3 n) wavelengths in popularinter
onne
tion networks su
h as the shu�e ex
hange, de Bruijn, and hyper
ube networks.1.3. Contributions of This WorkWe present almost tight bounds for most of the problems 
onsidered in the earlier papers. Ourresults are summarized in Table 1.Our �rst set of results are for swit
hless networks. We prove that oblivious permutation routingin swit
hless networks 
an be done using dn=2e + 2 wavelengths, and prove that this is optimal;i.e., oblivious permutation routing in su
h networks requires dn=2e + 2 wavelengths. The upperbound has been obtained independently by Barry and Humblet [BH92, BH93a℄. They have alsoobtained a lower bound that is lower than ours by at least 1. We demonstrate the existen
e of aswit
hless permutation network using O(pn logn) wavelengths. This result has been also obtainedindependently by Barry and Humblet [BH93b℄. Both results give networks whi
h are non-blo
kingin the wide-sense. We also give a polynomial time algorithm whi
h di
tates the tuning of thetransmitters and re
eivers as the requests 
ome online.Unfortunately the above result is not a 
onstru
tive one. We 
omplement it with a 
onstru
tiveversion whi
h is only slightly weaker. De�ne �(n) = 2(log n)0:8+o(1) . We show how to 
onstru
t aswit
hless permutation network using O (pn�(n)) wavelengths.z We also provide non-trivial upperbounds for partially oblivious networks.An important fa
t in our results for swit
hless networks is that the wavelength routers are notof �xed degree. In other words we ignore the 
omplexity of swit
hless (passive) wavelength routers.In a
tive swit
hes however the 
omplexity of a swit
h strongly depends on its degree, and all our
onstru
tions for re
on�gurable networks use swit
hes of �xed degree.For re
on�gurable networks with wavelength-independent swit
hes, we show the existen
e of awide-sense non-blo
king network using O(n log nlogww2 ) wavelength-independent swit
hes and 
on-stru
t a wide-sense non-blo
king network using O �n log n�(w)w2 � wavelength-independent swit
hes.Clearly all of these results apply also for rearrangeably non-blo
king networks.For re
on�gurable networks with wavelength-sele
tive swit
hes, we prove that any permutationnetwork using w wavelengths requires 
( nw log nw2 ) wavelength-sele
tive swit
hes of 
onstant degree.zUnfortunately, pn�(n) < n only for n > 1010. 6



Non-Re
on�gurable (Swit
hless) NetworksNumber of WavelengthsLower Bound Upper BoundsPrevious OursOblivious Routing �n2 �+ 2 dn2 e+ 2 [BH92℄ dn2 e+ 2Non-oblivious (existen
e) 
(pn) [BH92℄ O(pn logn)[BH93b℄ O(pn log n)Non-oblivious (
onstru
tive) 
(pn) [BH92℄ O(pn�(n)Partially oblivious (k � 3) 
(pn) [BH92℄ O�n k+12k�1 k k2k�1�Re
on�gurable NetworksNumber of WavelengthsO(n) wavelength-sele
tive swit
hes Lower Bound Upper BoundsPrevious OursFixed topologies O(log2 n) [Pan92℄(rearrangeable)
(log n) [Pan92℄ O(log3 n) [Pan92℄(wide-sense) O(log n)Arbitrary topologies 
[
minfd;pmg℄(existential) (**) O[
minfd;pmg℄Number of Swit
hes (w = number of wavelengths)Lower Bound Upper BoundsPrevious OursWavelength-independent swit
hes(existen
e) 
�n log nw2� [BH92℄ O �n log n logww2 �Wavelength-independent swit
hes(
onstru
tive) 
�n log nw2� [BH92℄ O �n log n�(w)w2 �Wavelength-sele
tive swit
hes 
� nw log nw2� O � nw log nw �Table 1: Summary of results.The results hold for both rearrangeable and wide-sense non-blo
king 
ases unless spe
i�ed oth-erwise. Notations used in the table: The number of nodes is n, 
 denotes 
ongestion, d denotesdilation, m is the number of edges in the network, k denotes the number of wavelengths availablefor a 
onne
tion, and �(n) = 2(log n)0:8+o(1) .(**) We show that there exist networks and 
onne
tion requests that require 
(
minfd;pmg)wavelengths to be 
onne
ted. 7



We 
onstru
t a permutation network with w wavelengths and O( nw log nw ) wavelength-sele
tive 4�4swit
hes. Thus we 
an 
onstru
t a permutation network with n wavelength-sele
tive swit
hes usingonly O(log n) wavelengths, an improvement over Pankaj's results [Pan92℄.Next we 
onsider networks with arbitrary topologies and arbitrary (not just permutation) 
on-ne
tion establishment requests. We derive an upper bound on the number of wavelengths requiredfor any routing s
heme in terms of 
ongestion and dilation for the given routing and the givennetwork. We show that there exists a 
lass of networks for whi
h this bound 
annot be improved.The rest of the paper is organized as follows. Se
tion 2 deals with non-re
on�gurable (swit
hless)networks and Se
tion 3 with re
on�gurable networks (with swit
hes). There are several openproblems remaining to be solved; Se
tion 4 gives a few su
h problems.2. Non-Re
on�gurable Opti
al NetworksIn this se
tion we 
onsider non-re
on�gurable (or swit
hless) opti
al networks. We use � =f�1; : : : ; �wg to denote the set of available wavelengths. Observe that in su
h a network on
ewe de
ide whi
h wavelength a transmitter 
hoose to transmit on, the set of re
eivers whi
h 
an re-
eive this signal is �xed. This allows us to model the network as a bipartite multigraphx G(T;R;E)and a labelling fun
tion ` : E ! �, where T is the set of transmitters and R is the set of re
eiversand for an edge e from a transmitter t to a re
eiver r, the label `(e) denotes the wavelength whi
h t
an use to establish a 
onne
tion to r. Sin
e t may transmit to r using many possible wavelengths,there 
an be multiple edges between t and r. Thus two or more edges between a transmitter t anda re
eiver r will have di�erent labels. A \tuning 
on�guration" of the re
eivers and transmittersis formally des
ribed by a fun
tion W : T [ R ! �. The tuning 
on�guration is interpreted asfollows. Every transmitter t transmits on the wavelength W (t). Every re
eiver r re
eives on thewavelength W (r). If e 
onne
ts transmitter t 2 T to re
eiver r 2 R, then whenever t transmitsusing wavelength `(e), re
eiver r may re
eive this information only if it tunes to this wavelength.Moreover, sin
e the network has no swit
hes, all the re
eivers 
onne
ted to t with edges labelled`(e) re
eive t's message if they tune to this wavelength. Consequently, if a re
eiver r is tuned to awavelength �, then only one transmitter that is 
onne
ted to r by an edge labelled � may use thiswavelength.Note that on
e the graph G and the labeling are determined, the only 
hoi
e remaining is inthe tuning 
on�guration of the transmitters and re
eivers. This motivates the following de�nition:A tuning 
on�guration W : T [ R ! � is valid for a permutation � : T ! R in a network G,if for every t 2 T , W (�(t)) = W (t) and for every pair of distin
t transmitters t1; t2 2 T , eitherW (�(t1)) 6= W (t2) or if W (�(t1)) = W (t2) = �, then there is no edge labelled � between �(t1)and t2 in G.We 
onsider the problem of 
onstru
ting a non-blo
king network using a minimum number ofxA multigraph is a graph with multiple edges allowed between nodes.8
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onstru
tion of G for the 
ase b = 2; k = 2. The edges are labelled with thewavelengths used for 
ommuni
ation.wavelengths.We remark that the assumption that G is bipartite is made only to make the presentation 
learer.We 
an a
hieve the same results for networks where some of the nodes are both transmitters andre
eivers. In this paper we 
onsider the spe
ial 
ase of jT j = jRj = n. However, most of the results
an be extended to the 
ase where jT j 6= jRj.2.1. Rearrangeably Non-Blo
king NetworksBarry and Humblet [BH92℄ proved that any non-re
on�gurable rearrangeable NBN requires at least(1 + �(n))pn=e wavelengths, where e is the base of the natural logarithm, and �(n) goes to zerofaster than (lnpn)=pn. We show that there exists a rearrangeably NBN that uses O(pn logn)wavelengths. We show how to 
onstru
t a network that uses pn�(n) wavelengths (re
all that�(n) = 2(log n)0:8+o(1)).In our upper bounds, the network has the following stru
ture. The transmitter set T is parti-tioned into b blo
ks T0; : : : ; Tb�1 ea
h of 
ardinality either dn=be or bn=b
, where b is a parameter tobe �xed later. (For 
larity of exposition we from now on omit the d:e b:
 operators.) The re
eiverset R is partitioned k times, with k to be �xed later. Ea
h partition 1 � i � k partitions R intob blo
ks Ri0; : : : ; Rib�1. (The 
ardinality of ea
h su
h blo
k may vary.) Our 
onstru
tion will usew = b � k wavelengths, denoted �i;j, for 1 � i � k and 0 � j � b� 1. The edges of the network arelabelled as follows: for 1 � i � k, 0 � j � b� 1, and 0 � a � b� 1, all the transmitters in Ta are
onne
ted to all the re
eivers in Ri(a+j) mod b by edges labelled �i;j. The 
onstru
tion for the 
aseb = 2; k = 2 is illustrated in Figure 5. 9



The 
onstru
tion above has the following two properties:G1 The transmitters are partitioned into b blo
ks where transmitters in ea
h blo
k are identi
ally
onne
ted to all of the re
eivers.G2 For any wavelength �, if transmitters t1 and t2 belong to di�erent blo
ks, then the set ofre
eivers 
onne
ted to t1 by edges labelled � is disjoint from the set of re
eivers 
onne
ted tot2 by edges labelled �.To get a rearrangeably NBN, it is ne
essary and suÆ
ient to 
onstru
t a network su
h that forany permutation � = �(1); : : : ; �(n), there is a way to tune the transmitters and re
eivers su
hthat the 
onne
tion requests (t; �(t)), for 1 � t � n, are satis�ed. A given tuning satis�es these
onne
tion requests if the following two properties are satis�ed for all 1 � t � n: (i) Both t and �(t)are tuned to the same wavelength �, and there exists an edge e 
onne
ting t to �(t) with `(e) = �.(ii) For all transmitters t0 6= t su
h that there exists an edge e0 labelled � 
onne
ting t0 to �(t), t0is not tuned to �.Consider a permutation � = �(1); : : : ; �(n) that is to be routed. Property [G2℄ of our networkimplies that we 
an tune the transmitters of ea
h blo
k independently from the transmitters ofother blo
ks. This is be
ause transmitters from di�erent blo
ks do not interfere. Property [G1℄implies that in order to route �, for any blo
k of transmitters Ti, we have to use n=b di�erentwavelengths. For this, the n=b destination re
eivers of the transmitters in Ti have to belong to n=bdi�erent blo
ks. Note that these blo
ks may belong to di�erent partitions.Given the network G, de�ne the bipartite graph H(S;B; F ), where S, the input set, 
orrespondsto the set of re
eivers (i.e., S = R), andB, the output set, 
orresponds to the set of blo
ks of re
eivers(i.e., B = fRij : 1 � i � k; 0 � j � b� 1g). A node r 2 S is 
onne
ted by an edge in F to Rij 2 B ifand only if the 
orresponding re
eiver r belongs to the 
orresponding blo
k Rij. This 
onstru
tionis illustrated in Figure 6.Observe that the graph H is 
hara
terized by the following two properties.H1 The degree of ea
h node in S is at most k.H2 For 1 � i � k, ea
h node in S is 
onne
ted to exa
tly one node from the set fRi0; : : : ; Rib�1g.Theorem 1: A network G(T;R;E) with Properties [G1℄ and [G2℄ is non-blo
king i� the 
orre-sponding graph H(S;B; F ) has the following mat
hing property:H3 The subgraph indu
ed by any subset of n=b re
eivers and their neighbors in B 
ontains amat
hing of 
ardinality n=b.Proof: We �rst prove that ifG(T;R;E) is non-blo
king thenH(S;B; F ) has the mat
hing property.Let S0 � S be a set of 
ardinality at most n=b. Then 
onsider a permutation � from T to R10
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Figure 6: The 
onstru
tion of H.whi
h maps only transmitters in the set T0 to elements of S0. (Su
h a permutation exists sin
ejT0j = n=b � jS0j.) Sin
e G is non-blo
king there exists a tuning 
on�guration of the transmittersand re
eivers whi
h is valid for �. Now 
onsider the assignment to the verti
es of S0 whi
h assignsto a vertex r 2 S0 the vertex Rij if the re
eiver r 2 R is tuned to the wavelength �i;j. Based onthe validity of the tuning we have that no two verti
es in S0 are assigned the same vertex Rij inB. Furthermore, sin
e the tuning assigns a wavelength �i;j to a re
eiver r only if r 2 Rij, we havethat r is adja
ent to its assigned vertex in the graph H. Thus the assignment above 
onstitutes amat
hing in H.We now prove the other dire
tion, i.e., G(T;R;E) is non-blo
king ifH(S;B; F ) has the mat
hingproperty. Given a permutation � : T ! R, we wish to 
onstru
t a tuning 
on�guration W that isvalid for �. Our strategy will be to 
onstru
t a tuning of the transmitters su
h that if we extend it tothe re
eivers by the mapping W (�(t)) =W (t), then the tuning is valid. Re
all that Property [G2℄of the 
onstru
tion implies that transmitters of ea
h blo
k 
an be tuned independently from thetransmitters of other blo
ks. Fix a blo
k of transmitters Ta. The destination re
eivers of thetransmitters in Ta may be any subset of n=b re
eivers. Thus for any subset of n=b re
eivers, there
eivers must belong to di�erent blo
ks. By the de�nition of H, this translates to the mat
hingproperty [H3℄. 2In the rest of this se
tion we prove the existen
e of a graph H with properties [H1℄, [H2℄,and [H3℄ for b = pn= log n and k = 4 log n. Then, we show how to 
onstru
t su
h a graph withb = 2p2n and k = 2�(n).The results of [FFP88℄ imply the existen
e of a graph H having all three properties in whi
hb = pn and k = O(log n). The following theorem improves this result by a fa
tor of plog n.Theorem 2: There exists a graph H(S;B; F ) with properties [H1℄, [H2℄, and [H3℄ in whi
h b =pn= log n and k = 4 log n. 11



Proof: We 
onstru
t H(S;B; F ) probabilisti
ally as follows. Let jSj = n, and let B be partitionedinto k blo
ks B1; : : : ; Bk of 
ardinality b ea
h. We let ea
h vertex in S pi
k k neighbors { one inea
h Bi independently and at random. We now analyze the probability that this graph has themat
hing property: i.e., any subset of up to n=b verti
es from S is 
ontained in some mat
hing.By Hall's Theorem [Hal35℄, su
h a mat
hing does not exist if and only if there exists a set A ofat most n=b verti
es from S su
h that jN(A)j < jAj, where N(A) denotes the set of neighbors ofA. Sin
e the degree of every vertex is k, it suÆ
es to 
onsider sets A of 
ardinality it at least k.Let � and a1; : : : ; ak satisfy the 
onditions: k � � � n=b and Pi ai < �. Fix a set A � S and setsAi � Bi su
h that � = jAj and ai = jAij. The probability that N(A) � [iAi is at most Qki=1(aib )�.Thus, the probability that there exist A and Ai's of 
ardinality � and ai respe
tively su
h thatjN(A)j < jAj is at most  n�! kYi=1 bai!�aib �� �  ne2�k�2kk�1bk�1!� :Thus if kb � 
n=b � 
� for some 
onstant 
 � 2 and k = 4 log
 n, then this probability goes tozero as n��(�). For a �xed �, there are at most �k = n4 log
 � 
hoi
es for the ai's. Sin
e there areat most n=b 
hoi
es for �, it follows that the probability that there exist � and ai's su
h that thishappens is bounded by (n=b) �maxk���n=bfn��(�)+4 log
 �g = o(1).Thus under the 
onditions k = 4 log n and b = pn= log n, we get that with a positive probability,H(S;B; F ) has the required three properties. 2Theorem 3: A graph H(S;B; F ) with properties [H1℄, [H2℄, and [H3℄ in whi
h b = 2p2n andk = 2�(2n) 
an be 
onstru
ted.Proof: First, we de�ne a 
on
entrator.De�nition: An (x; y; `)-
on
entrator with expansion � is a network with x inputs and y outputssu
h that every set of t � ` inputs expands to at least �t outputs. The size of the network is thenumber of edges and the depth of the network is the length of the longest path from an input toan output.We use the following result from Wigderson and Zu
kerman [WZ93℄.Theorem 4 (WZ93): For all x, there are expli
itly 
onstru
tible (x; 2�px;px)-
on
entratorswith expansion �, depth 1 and size �x � �(x).We now show how to apply Theorem 4. For our 
ase, we set x = 2n and � = 1 and get thatthere exists a bipartite graph H 0(S0; B0; F 0), where jS0j = 2n, B0 = 2p2n, and jF 0j = 2n � �(2n)with the desired mat
hing property. However, graph H 0 does not satisfy Properties [H1℄ and [H2℄.We modify H 0 so that it satis�es these two properties. First, we 
onsider a subgraph of H 0 whi
hex
ludes all input nodes whose degree is more than two times the average degree in H 0. Spe
i�
ally,the degree of ea
h input node in this subgraph is at most 2�(2n). Clearly, this subgraph still hasthe desired mat
hing property. Be
ause the size of the original graph H 0 is 2n � �(2n), there are atleast n input nodes in this subgraph. Next, we dupli
ate ea
h output node 2�(2n) times and split12



the neighbors of ea
h output node among the 
opies as follows. We number the edges outgoingfrom ea
h input node with the numbers 1 to 2�(2n). Now, the �rst 
opy will have as edges thesubset of the edges of the original node numbered 1, the se
ond will have the subset numbered 2,and so forth. It is easy to see that the resulting graph has all the three properties. 22.2. Wide-Sense Non-Blo
king NetworksIn this subse
tion we apply the above results to wide-sense NBNs.De�nition: A 
onne
tion request is one-sided if it spe
i�es only an input. It is satis�ed by
onne
ting the input to any of its neighboring outputs. A network H is wide-sense one-sided NBNif it 
an satisfy any sequen
e of one-sided 
onne
tion and termination requests without rerouting.De�nition: A network H is a-limited wide-sense one-sided NBN if it 
an satisfy any sequen
e ofrequests in whi
h at most a transmitters are 
onne
ted simultaneously.We show that to get a wide-sense NBN G, it is suÆ
ient to make the 
orresponding graph Hn=b-limited wide-sense one-sided NBN.Theorem 5: A network G(T;R;E) with Properties [G1℄ and [G2℄ is wide-sense NBN if and onlyif the 
orresponding graph H(S;B; F ) is n=b-limited wide-sense one-sided NBN.Proof: The proof is similar to the proof of Theorem 1. We �rst prove that if G(T;R;E) is wide-sense NBN then H(S;B; F ) is n=b-limited wide-sense one-sided NBN. We have to show how tosatisfy in H any sequen
e of one-sided 
onne
tion and termination requests as long as no morethan n=b 
onne
tions are a
tive simultaneously. We do this by 
onverting a sequen
e of one-sided
onne
tion and termination requests in H to a sequen
e of 
onne
tion and termination requestsin G, and then identify the mat
hes in H with the wavelengths used to satisfy the requests in G.Consider a request to 
onne
t vertex s 2 S in H. Re
all that s 
orresponds to a re
eiver in G.We asso
iate with it a request to 
onne
t one of the transmitters in T0 to the re
eiver s. (Sin
e nomore than n=b 
onne
tions are a
tive, and be
ause of the way we 
onvert termination requests, weare guaranteed to �nd a transmitter in T0 that is not a
tive.) Suppose that the wavelength used tosatisfy this 
onne
tion request in G is �i;j. Then, we mat
h s to Rij. As in the proof of Theorem 1it 
an be argued that sin
e G is an NBN, Rij must be unmat
hed in H. A request to terminate the
onne
tion of vertex s in H, translates to a termination request of the 
onne
tion that requestedre
eiver s in G.We now prove the reverse dire
tion, i.e., If H(S;B; F ) is n=b-limited wide-sense one-sided NBNthen G(T;R;E) is wide-sense NBN. Consider a sequen
e of 
onne
tion requests in G. Re
all thatProperty [G2℄ of our 
onstru
tion implies that transmitters of ea
h blo
k 
an be tuned indepen-dently from the transmitters of other blo
ks. Thus is suÆ
es to 
onsider only the 
onne
tionrequests in whi
h all transmitters are from some �xed blo
k Ta. The destination re
eivers of thetransmitters in Ta at any given time, may be any subset of at most n=b re
eivers. Thus, in order tosatisfy any sequen
e of requests for this blo
k in G, at any given time, all the re
eivers 
onne
ted13



to transmitters in Ta must belong to di�erent blo
ks. By the de�nition of H, this translates to theproperty that H must be n=b-limited wide-sense one-sided NBN. 2The following theorem is from [FFP88℄.Theorem 6 (FFP88): A network H(S;B; F ) is a-limited wide-sense one-sided NBN if every setX of inputs of 
ardinality at most 2a has at least 2jXj neighbors.We remark that by following the proof in [FFP88℄ we 
an a
tually prove that for our spe
ial 
asewe may weaken the property, and 
onsider only sets of 
ardinality at most a.We 
on
lude that the graph H(S;B; F ) is n=b-limited wide-sense one-sided NBN if it has thefollowing property.H4 Every set X of inputs of 
ardinality at most 2n=b has at least 2jXj neighbors.Note that Property [H4℄ is stronger than Property [H3℄.Theorem 7: There exists a graph H(S;B; F ) with properties [H1℄, [H2℄, and [H4℄ in whi
h b =pn= log n and k = 10 log n.Proof: The proof is the same as the proof of Theorem 2. The only di�eren
e is in the value of the
onstants. 2Theorem 8: A graph H(S;B; F ) with properties [H1℄, [H2℄, and [H4℄ in whi
h b = 4pn andk = 2�(4n) 
an be 
onstru
ted.Proof: We follow the 
onstru
tion given in the proof of Theorem 3. We use an expli
it 
onstru
tionof (4n; 8pn; 2pn)-
on
entrators with expansion 2, depth 1, and size 8n � �(4n), and extra
t from ita graph with properties [H1℄, [H2℄, and [H4℄ in whi
h b = 8pn and k = 2�(4n). 2There is one problem with our 
onstru
tion. Any algorithm that de
ides how to tune thetransmitters and re
eivers appears not to be polynomial. Borrowing terminology from [FFP88℄ wehave to maintain the maximum 
riti
al set of inputs. For this, it appears that after ea
h request,we have to 
he
k all subsets of idle inputs. Below, we show how to alleviate this problem. Weremark that it is not always easy to get polynomial de
ision algorithms for the routing questionsbased on the existential results. Arora, Leighton and Maggs [ALM90℄ give one su
h algorithm fortheir routing problem, other instan
es may be found from their paper. Our te
hnique seems to bedi�erent from the previous methods.We get a polynomial de
ision algorithm by strengthening the properties H has to satisfy.Theorem 9: A network H(S;B; F ) is a-limited wide-sense one-sided NBN and has a polynomialtime de
ision algorithm if for every set X of inputs of 
ardinality at most a, even after we arbitrarilyerase half of the edges adja
ent to ea
h input in X, X has at least 2jXj neighbors.Proof: At any stage, let A denote the subset of S 
orresponding to mat
hing requests. For v 2 A,let T �(v) denote its mat
hed vertex in B and let T �(A) denote the set of all mat
hed verti
es in14



B. The algorithm maintains: (i) a 
riti
al set C whi
h 
ontains the set A, and (ii) a mat
h T (v)for every vertex v 2 C, su
h that T is an extension of T �. The sets C, and T (C) = fT (v)jv 2 Cgsatisfy the following invariants.Invariant 1: For ea
h x 2 C n A, jN(x) \ T (C)j � 12j N(x)j; i.e., for ea
h vertex x in C that is notin A, at least half of the neighbors of x are in T (C).Invariant 2: For every x 62 C, jN(x) \ T (C)j � 12j N(x)j; i.e., at least half of the neighbors of ea
hof the verti
es not in C is outside T (C).Invariant 3: jT (C)j = jCj � 2jAj � 1.We remark that the 
riti
al set above is not equivalent to the 
riti
al set in [FFP88℄, though itattempts to 
apture the same set. We also remark that 
riti
al set is not unique and is a fun
tionof T .We now show how the algorithm satis�es 
onne
tion and termination requests, maintainingthese invariants (under the assumption that these invariants held prior to these requests).Case 1: A 
onne
tion request for x 2 C. In this 
ase the algorithm mat
hes x to T (x). The setC and the map T remain un
hanged. It is easy to see that invariants (1){(3) above still hold.Case 2: A 
onne
tion request for x 62 C. In this 
ase the algorithm pi
ks a tentative mat
h tox, denoted t(x), outside T (C). Su
h a neighbor must exist due to Invariant (2) above. Now, we
ompute the new inputs that have to be added to C. This is done in
rementally. Let D be the
urrent set of new inputs (D is initialized to fxg), and let D0 be the set of outputs tentativelymat
hed to these inputs (D0 is initially ft(x)g). While there exists an y outside D [ C su
h thatmore than half of its neighbors are in D0 [ T (C), �nd an output y0 outside D0 [ T (C) su
h thatD [ fyg 
an be mat
hed to D0 [ fy0g, and add y to D and y0 to D0.This is done as follows. First, �nd a mat
hingM1 of D[fyg to outputs outside T (C). Observethat as long as jDj < a, it follows from Invariant (2) and the property of H asserted in the theoremthat D [ fyg satis�es the 
onditions of Hall's Theorem [Hal35℄, and hen
e su
h a mat
hing exists.(In the 
laim below we prove that if su
h a vertex y exists, then jC [Dj < 2jAj + 1, or jDj � jAj.Sin
e we deal with a 
onne
tion request jAj < a, and thus also jDj < a.) Consider the graph givenby the union of M1 and the mat
hing M0 of D to D0. The 
onne
ted 
omponent of this graph thatin
ludes y must be an odd path that starts with y and ends with an output y0 not in D0. The linksof the path alternate between M0 and M1. The rest of the 
omponents must be either even pathsor even 
y
les with alternating links. We 
onstru
t the desired mat
hing as follows: all the verti
esfrom D that are in the \even" 
omponents are mat
hed using the edges from M0; vertex y, and allother the verti
es from D that are in the \odd" 
omponent are mat
hed using the edges from M1.It is easy to see that the new mat
hing mat
hes D [fyg to D0 [fy0g. We update D to be D[fyg,D0 to be D0 [ fy0g, and t(x) to be the mate of x in the new mat
hing.We repeat this step till no su
h vertex y is found. Then, we update our mat
hing T �(x) to bethe �nal t(x), the new set A to be A [ fxg, the new set C to be C [ D, and the new set C 0 to15



be C 0 [D0. It is 
lear that the invariants (1) and (2) hold upon termination. It remains to showthat the pro
edure does eventually terminate and that when it does Invariant (3) above holds. Thefollowing 
laim shows that termination must o

ur when jC [Dj � 2jAj+1. In addition of provingtermination, sin
e the size of A is in
remented by one upon termination, this shows that Invariant(3) holds after the sets are updated.Claim: If jC [Dj = 2jAj + 1 then there is no input vertex y outside C [D su
h that more thanhalf of the neighbours of y are in T (C) [D0.Proof: To obtain a 
ontradi
tion suppose that su
h a vertex y exists. We get that more than halfof the neighbors of every input in I = (C n A) [ (D n fxg) [ fyg are in a subset of outputs of size2jAj+ 1. Sin
e jAj � a� 1, jIj = jCj � jAj+ jDj � 1 + 1 = 2jAj+ 1� jAj = jAj+ 1 � a. However,the 
ardinality of the neighbors set of I is jT (C)[D0j = jC [Dj = 2jAj+1 < 2jIj; a 
ontradi
tionto the property of H stated in the theorem. 2Case 3: A termination request for x. Let x be an input for whi
h a 
onne
tion is terminated andlet T (x) be its mat
hed output. We now need to show how to update C so that invariants (1){(3)are satis�ed. The obvious solution would be to retain the old C, but this may violate Invariant(3). Instead, we 
onstru
t the set C \from s
rat
h", as follows. Initially, we set C to be A, andT (C) to be T �(A). In
rementally, we grow C similar to the previous 
ase: As long as there existsan input y 62 C su
h that more than half the neighbours of y are in T (C), then add y to C. Notethat y must have been in C also before the termination and thus T (y) is de�ned. We add T (y)to T (C). This pro
edure is repeated until no su
h vertex y is found. Again, it is 
lear that if thepro
ess terminates invariants (1) and (2) hold. An argument similar to that in the 
laim above,shows that the pro
ess indeed terminates and that Invariant (3) holds as well. 2We 
on
lude that the graph H(S;B; F ) is n=b-limited wide-sense one-sided NBN and has apolynomial time de
ision algorithm if it has the following property.H5 For every subset X of inputs of 
ardinality at most n=b, even after we arbitrarily erase halfof the edges adja
ent to ea
h input in X, subset X has at least 2jXj neighbors.Note that this property does not seem to imply Property [H4℄.Theorem 10: There exists a graph H(S;B; F ) with properties [H1℄, [H2℄, [H3℄, and [H5℄ in whi
hb = pn= log n and k = 16 log n.Proof: We follow the 
onstru
tion given in the proof of Theorem 2. The 
onstru
tion would yielda graph that does not have Property [H5℄ if there exists a set A of a verti
es from S of 
ardinalityat most n=b, and a set T of verti
es from B, with 
ardinality less than 2a, su
h that for ea
h inputw in A half the neighbours of w are in T . For a �xed size a, we upper bound the probability thatsets A � S of size a, and T � B of size at most 2a with the above property exist by: na! kk=2!a � k=2Yi=1 b4a=k!�4a=kb �a �  ne322k�4ak=2�3kk=2�2bk=2�2 !a :16



Thus if kb � 
n=b � 
a for some 
onstant 
 � 32 and k � 2 log
 n, then this probability goes tozero as n��(a), and the probability that there exist a su
h that this happens 
an now be boundedby o(1).Thus under the 
onditions k = 32 log n and b = pn= logn, we get that with a positive proba-bility, H(S;B; F ) has the required four properties. 2We remark that a similar 
onstru
tion is used in [BRSU93℄ to obtain eÆ
ient routing in \
lassi
al"networks.2.3. Oblivious and Partially Oblivious RoutingIn this se
tion we assume that whenever a transmitter has to 
ommuni
ate with a re
eiver itmust use one out of a �xed number k of wavelengths. In previous se
tions we 
onsidered the 
asek = w, where w denotes the total number of wavelengths available. Here, we 
onsider the 
asek < w. The 
ase k = 1 is 
alled the oblivious routing problem sin
e there is no freedom in 
hoosingwavelengths. Note that this implies that G is a graph rather than multigraph. The 
ase k � 1is 
alled the partially oblivious routing problem. In this 
ase, G is a multigraph with boundedmultipli
ity.An oblivious routing network 
an be des
ribed by an n�n matrix M . The entry M(i; j) in thematrix is an integer in the range 1; : : : ; w where w is the total number of wavelengths in the solution.The entry M(i; j) indi
ates that i transmits to j using wavelength M(i; j) in any permutation �(:)for whi
h �(i) = j.Lemma 11: Let the matrix M be a solution to the oblivious routing. If � = M(i; j) = M(i0; j0)for i 6= i0 and j 6= j0, then M(i; j0) 6= � and M(i0; j) 6= �. Conversely if this 
ondition is satis�edfor all (i; j) then M is a solution to the oblivious routing.Proof: If eitherM(i; j0) orM(i0; j) is � then any permutation �(:) su
h that �(i) = j and �(i0) = j0
an not be satis�ed. Conversely if the 
ondition holds, then a 
onne
tion from i to j 
an always be
arried on � without interfering with any other 
ommuni
ation. 2De�ne a legal 
oloring of an n � n matrix M to be an assignment of 
olors to the entries ofM with the following property: if � is the 
olor of M(i; j) and M(i0; j0) for i 6= i0 and j 6= j0,then M(i; j0) and M(i0; j) are not 
olored with �. The above lemma redu
es the oblivious routingproblem to the problem of �nding a legal 
oloring of an n� n matrix with a minimum number of
olors. We �rst prove that dn=2e+2 
olors are needed and then 
onstru
t an optimal solution withdn=2e+ 2 
olors.Theorem 12: For n � 6 and n = 4, any legal 
oloring of an n � n requires at least dn=2e + 2
olors.Proof: To obtain a 
ontradi
tion, assume that we are given a legal 
oloring with dn=2e+1 
olors.We mark ea
h entry of the matrix with either R or C a

ording to the following rule:17



An entry M(i; j) is an R-entry if its 
olor appears more than on
e in row i; it is aC-entry if its 
olor appears more than on
e in 
olumn j. In 
ase its 
olor does notappear again in both row i and 
olumn j it is marked arbitrarily.Sin
e the 
oloring is legal it follows that an R-entry 
annot mat
h the 
olor of any other entry in its
olumn and a C-entry 
annot mat
h the 
olor of any other entry in its row. For ea
h line (row or
olumn), let N(line) be the number of entries in the line marked 
ompatibly with the line: N(row)
ounts the number of R-entries in that row, and N(
olumn) 
ounts the number of C-entries in that
olumn. It follows that the sum of N(line) over all 2n lines is n2 sin
e ea
h entry is 
ounted on
e,either in its row or in its 
olumn. Thus the average value for N(line) is n=2.Assume now that n � 4 is even. Sin
e all the C-entries in a row (or all R-entries in a 
olumn)are 
olored with di�erent 
olors, it follows that the number of 
olors in ea
h line is at least 1+n�N(line). Consequently, 1 + n � N(line) � n=2 + 1 whi
h implies that N(line) � n=2. However,sin
e the average value for N(line) is n=2, it must be that N(line) = n=2. Sin
e the number of
olors is n=2 + 1, all of the lines have the following stru
ture: one 
olor appears n=2 times andea
h of the other n=2 
olors appears exa
tly on
e. We refer to the 
olor that appears n=2 timesas the dominating 
olor of the line. For n � 4: 2 � (n=2 + 1) < 2n. Therefore, there are threelines with the same dominating 
olor, say 
. Without loss of generality, assume that two of theselines are rows. We 
laim that in this 
ase 
 
annot appear in any entry outside these two rows { a
ontradi
tion. To see this, note that sin
e the 
oloring is legal, the entries 
olored 
 in these tworows 
annot share a 
olumn. Sin
e there are n entries 
olored 
 in these two rows, for every 
olumnin the matrix, there is an entry in one of these rows 
olored 
. However, this implies that 
 
annotappear anywhere else in all of these 
olumns.Assume now that n � 7 is odd. In this 
ase we assume that we are given a legal 
oloring with(n+ 3)=2 
olors. Similar arguments to the even 
ase show that 1 + n�N(line) � (n+ 3)=2. Thisimplies that N(line) � (n � 1)=2. However, sin
e the average value for N(line) is n=2, it followsthat there are at least n lines with N(line) = (n� 1)=2. Sin
e the number of 
olors is (n + 3)=2,all these lines have the following stru
ture: one 
olor appears (n� 1)=2 times and ea
h of the other(n+1)=2 
olors appears exa
tly on
e. We refer to the 
olor that appears (n� 1)=2 times in su
h aline as the dominating 
olor of the line, and to the line as a dominated line. For n � 7, the numberof 
olors (n+ 3)=2 is stri
tly less than the number of dominated lines n. Therefore, there are twodominated lines with the same dominating 
olor, say 
. Suppose that these two lines are one rowand one 
olumn. Consider the entry where this row and this 
olumn interse
t. This entry 
annotbe 
olored by 
. If this entry is an R-entry (respe
tively, a C-entry), then this row (respe
tively,
olumn) has at least (n� 1)=2 + 1 entries marked R (respe
tively, C), 
ontradi
ting the de�nitionof a dominated line. Thus, these two lines are either both rows or both 
olumns. Without lossof generality assume that both are rows. The entries 
olored 
 in these two rows 
annot share a
olumn. Sin
e there are n� 1 entries 
olored 
 in these two rows, there is only one 
olumn where
olor 
 may 
olor entries not in these two rows. So, if we eliminate these two rows, and the one
olumn, we are left with an (n� 2) � (n� 1) matrix that is legally 
olored with (n+ 1)=2 
olors.18



We pro
eed to show that this is impossible.As before, we mark the (n�2) �(n�1) entries with R and C. By similar arguments, we get thatN(row) � (n�1)=2 and N(
olumn) � (n�3)=2. We refer to the lines for whi
hN(row) = (n�1)=2or N(
olumn) = (n � 3)=2 as dominated lines. In a dominated line there must be a dominating
olor appearing N(line) times while all the other 
olors appear exa
tly on
e. To lower bound thenumber of dominated lines note that if for all rows, N(Row) > (n � 1)=2 and for all 
olumnsN(
olumn) > (n � 3)=2, the sum of N(line) over all lines is at least n+12 (n � 2) + n�12 (n � 1) =2n2�3n�12 . However, there are only (n � 1)(n � 2) entries in the matrix. Therefore, there are atleast 2n2�3n�12 � (n� 1)(n� 2) = 3n�52 dominated lines.For n > 7: 2 � (n+ 1)=2 < (3n� 5)=2. Therefore, there exists a 
olor whi
h dominates at leastthree dominated lines. Following the same arguments as before it 
an be shown that these threelines 
annot be either all rows or all 
olumns. Thus, one of these lines is a row and one is a 
olumn.We get a 
ontradi
tion by examining the entry where these lines interse
t, as before.The remaining 
ase is when n = 7, and the number of 
olors is four. Again, no 
olor dominatesthree lines or one line and one 
olumn. Sin
e 2 � (7+ 1)=2 = (3 � 7� 5)=2, it follows that ea
h of thefour 
olors dominates exa
tly two lines. One of them must dominate two 
olumns be
ause thereare only 7 � 2 = 5 rows. Moreover, this 
olor appears in these two dominated 
olumns and in atmost one row. If we omit these three lines, we are left with a 4 � 4 matrix that is 
olored legallywith the remaining three 
olors. This is impossible by the even 
ase proved earlier. 2We note that for n = 2; 3; 4 we need n 
olors to 
over the matrix. The 
ase n = 5 is uniquesin
e we 
an 
olor a 5� 5 matrix with 4 < d5=2e + 2 
olors as shown in Figure 7.1 1 3 4 23 4 1 1 22 2 3 4 13 4 2 2 14 3 4 3 1Figure 7: Optimal solution for the oblivious routing for n = 5 with 4 wavelengthsNow, we 
onstru
t a solution using dn=2e + 2 wavelengths for n � 6. We will 
onstru
t amatrix M satisfying the 
onditions of Lemma 11. For an even n, the idea of the 
onstru
tion iswell demonstrated by the routing matrix presented in Figure 8. In the example n = 12, and thewavelengths are denoted by 0; : : : ; 7. In general, for an even n, we have the following matrix. Theentries of wavelength 0 are Mn[0; i℄, for i = 0; : : : ; n=2 � 2, Mn[j; n=2 � 1℄, for j = 1; : : : ; n=2 � 1,Mn[n=2; i℄, for i = n=2; : : : ; n � 2, Mn[j; n � 1℄, for j = n=2 + 1; :::; n � 1. It is easy to see thatwavelength 0 obeys the 
onditions of Lemma 11. Now, for � = 1; : : : ; n=2 � 1, the entries ofwavelength � are given by adding � (modulo n) to the row index and subtra
ting � (modulo n)from the 
olumn index of every entry of wavelength 0. Again, it is easy to see that these wavelengths19



also obey the 
onditions of Lemma 11. The rest of the entries are �lled with the two wavelengthsleft. The entries of wavelength n=2 are Mn[i; n � i � 1℄, for i = 0; : : : ; n � 1, and the entries ofwavelength n=2 + 1 are Mn[i; n=2 � i� 1℄, Mn[n=2 + i; n� i� 1℄, for i = 0; : : : ; n=2� 1.0 0 0 0 0 7 j 5 4 3 2 1 61 1 1 1 7 0 j 5 4 3 2 6 12 2 2 7 1 0 j 5 4 3 6 2 23 3 7 2 1 0 j 5 4 6 3 3 34 7 3 2 1 0 j 5 6 4 4 4 47 4 3 2 1 0 j 6 5 5 5 5 5{ { { { { { j { { { { { {5 4 3 2 1 6 j 0 0 0 0 0 75 4 3 2 6 1 j 1 1 1 1 7 05 4 3 6 2 2 j 2 2 2 7 1 05 4 6 3 3 3 j 3 3 7 2 1 05 6 4 4 4 4 j 4 7 3 2 1 06 5 5 5 5 5 j 7 4 3 2 1 0Figure 8: Optimal solution for the oblivious routing for n = 12 with 8 wavelengthsNext, assume that n is odd. The matrix Mn is the matrix Mn�1 with an additional top lineand an additional last 
olumn. Sin
e dn=2e + 2 = (n + 1)=2 + 2 = (n � 1)=2 + 3, we have anextra wavelength whi
h is denoted by (n � 1)=2 + 2. The entries are as follows: (i) Mn[0; j℄ =Mn[i; n� 1℄ = (n� 1)=2 + 2, for j = 0 : : : n� 2 and i = 1 : : : n� 1, (ii) M [0; n� 1℄ = (n� 1)=2, and(iii) Mn[i; j℄ =Mn�1[i� 1; j℄, for i = 1 : : : n� 1 and j = 0 : : : n� 2.The following theorem is implied by the above 
onstru
tion.Theorem 13: The matrix Mn is a solution to the oblivious routing using dn=2e+ 2 wavelengths.2.3.1. Partially Oblivious RoutingWe now 
onsider the 
ase of partially oblivious routing. Let k be a bound on the number ofwavelengths permitted to be used between any pair of transmitter re
eiver. In 
ase k = O(log n)then w = 
(pn) wavelengths are required, O(pn logn) are suÆ
ient (existentially), and pn�(n)are suÆ
ient (
onstru
tively). (See Se
tion 2.1.)The existential upper bound for k = o(log n) 
an be a
hieved as follows. Assume as in the 
aseof the k = O(log n) that we are looking at partitions of the re
eivers. If the degree is k this impliesthat we are looking at k di�erent partitions. Assume that ea
h su
h partition is to b blo
ks ea
hof 
ardinality n=b. In this 
ase the number of wavelengths is w = kb. To get the bound we have to�nd the minimum w su
h that the failure probability is less than 1.20



Assume that n=b � kb, otherwise the failure probability is 
learly 1. Let � = n=b. Borrowingthe terminology of the proof of Theorem 2, we fail if and only if there exists a set A of � verti
esfrom S, su
h that jN(A)j < �. For a �xed set A � S and sets Ai � Bi (where ai = jAij) su
h thatj [i Aij = � � 1, the probability that N(A) � [iAi is at most Qki=1(aib )�. Thus, the probabilitythat there exist A and Ai's of 
ardinality � and ai respe
tively su
h that jN(A)j < � is at most n�! kYi=1 n=�ai !� ain=��� �  n�! n=��=k � 1!�(�� k)�kn �� k�1Yi=1  n=��=k! �2kn!�� e2��1�(2k�3)�+2n(k�2)�+1k(k�1)�+1 :For k = 2, this expression is less than 1 if � � 
 log n= log logn, for some 
onstant 
. This givesw = kn=� = O(n log logn= log n). Things look better for k > 2. Then, this expression is less than1 if � � 
 log n(k�2)=(2k�3)k(k�1)=(2k�3), for some 
onstant 
. Thus, the number of wavelengths isO�n k�12k�3 k k�12k�3� :For example, for k = 3 it is O(n2=3), for k = 4 it is O(n3=5), and so on. As k in
reases theexponent of n tends from above to 1=2. Note that for su
h values it is always the 
ase thatkb = kn=� � � = n=b.3. Re
on�gurable Opti
al NetworksIn this se
tion we 
onsider re
on�gurable opti
al networks, i.e., networks with opti
al swit
hes.The number of wavelengths required to support a parti
ular traÆ
 set in re
on�gurable networksis expe
ted to be mu
h smaller than in swit
hless networks, and is a fun
tion of the number ofswit
hes in the network. We remind the reader that the networks of this se
tion 
ontinue to usenon-re
on�gurable routers whi
h were used in Se
tion 2.We 
onsider the problem of 
onstru
ting a re
on�gurable opti
al NBN. Our goal is to studythe tradeo�s between the number of swit
hes and the number of di�erent wavelengths used in thenetwork. As in Se
tion 2 we di�erentiate between rearrangeably NBNs and wide-sense NBNs, and
onsider several variations of this problem. These variants arise be
ause of di�erent 
apabilitiesthat 
an be attributed to the transmitters, or re
eivers, or the swit
hes.We 
onsider two kinds of opti
al swit
hes: wavelength-sele
tive swit
hes and wavelength--independent swit
hes. Wavelength-sele
tive swit
hes, 
onsidered by Pankaj [Pan92℄, are morepowerful than wavelength-independent swit
hes in that they 
an 
hange their state di�erentlyfor di�erent wavelengths. Wavelength-independent swit
hes are 
onsidered in [BH92, PS93℄; theseswit
hes may not be set di�erently for di�erent wavelengths.21



3.1. Non-Blo
king Networks with Wavelength-Sele
tive Swit
hesPankaj [Pan92℄ 
onsidered networks with n wavelength-sele
tive swit
hes of �xed degree with ea
hof the n input (and output) nodes being 
onne
ted to a di�erent swit
h. For this model, 
(log n)wavelengths are required for permutation routing [Pan92℄. Pankaj also showed that rearrangeablynon-blo
king permutation routing 
an be done with O(log2 n) wavelengths and wide-sense non-blo
king permutation routing with O(log3 n) wavelengths.Theorem 14 proves a lower bound of 
( nw log nw2 ) on the number of 
onstant degree swit
hesrequired as a fun
tion of the number of nodes n and wavelengths w. Theorem 16 
reates a permu-tation network using w wavelengths and s = O( nw log nw ) 
onstant degree swit
hes. In our networkthe input nodes are partitioned into s groups of size n=s{ ea
h. Ea
h su
h group is 
onne
ted toan \opti
al 
ombiner": a non-re
on�gurable router with n=s input ports and one output port thatroutes any signal on any input port on to the unique output port. The output ports of the s 
om-biners are ea
h 
onne
ted to a di�erent swit
h. Similarly, the output nodes are partitioned into sgroups of size n=s ea
h. Ea
h su
h group is 
onne
ted to an \opti
al splitter": a non-re
on�gurablerouter with one input port and n=s output ports that routes any signal 
oming in on the input nodeon to all output nodes. The input ports of the s splitters are ea
h 
onne
ted to a di�erent swit
h.For the spe
ial 
ase of n swit
hes 
onsidered by Pankaj, we have a network that uses O(log n)wavelengths and n swit
hes to route permutations in whi
h ea
h input (output) node is 
onne
tedto a di�erent swit
h. Thus, improving over the result obtained by Pankaj. Theorem 17 obtains asimilar result for the wide-sense non-blo
king network.Theorem 14: Permutation routing of n messages using w wavelengths requires 
( nw log nw2 ) wavelength-sele
tive swit
hes of 
onstant degree.Proof: Let s denote the number of 
onstant degree swit
hes required, and let 
 be the degree ofthese swit
hes. Using an argument similar to that used in [BH92℄, we observe that the numberof swit
hing states in the network is upper bounded by 
wsw2n. This must be greater than thenumber of \traÆ
 states" in the network, whi
h is n! for permutation routing. Thus we have
wsw2n � n!;and using Stirling's approximation this yields s = 
( nw log nw2 ). 2Our 
onstru
tions are based on the following proposition given in [Lei92, Thm. 1.16,p.190℄.Proposition 15: Given any permutation � from k` elements to k` elements fxijgk;`i=1;j=1, � 
anbe expressed as the produ
t of three permutations �1, �2 and �3, where �1 and �3 preserve the\row" index of the elements and �2 preserves the \
olumn" index. (A permutation � preserves the\row" index if there are k permutations �1; : : : ; �k from ` elements to ` elements, su
h that for ea
hxij, �(xij) = xij0, where j0 = �i(j). A permutation that preserves the \
olumn" index is de�nedsimilarly.){To avoid 
umbersome notation we assume that s divides n. Otherwise, b�
 and d�e have to be added appropriately.22



Theorem 16: We 
an 
onstru
t an opti
al re
on�gurable rearrangeably NBN with w wavelengthsand O( nw log nw ) wavelength-sele
tive 4� 4 swit
hes.Proof: The network G we 
onstru
t uses a \traditional" rearrangeably non-blo
king network H fornw inputs and nw outputs, as a \bla
k box". It is well-known that su
h networks using s = O( nw log nw )2�2 swit
hes exist. (See, e.g. [Lei92℄.) Su
h networks 
an be 
onstru
ted inm = O(log nw ) layers ofnw swit
hes ea
h, where the input nodes are 
onne
ted to the �rst layer of swit
hes and the outputsare 
onne
ted to the last layer.The swit
hes of G 
orrespond to the swit
hes of H, and the �rst two input and output portsof ea
h 4 � 4 swit
h of G are 
onne
ted as the 
orresponding swit
h of H. Note however, thatsin
e the swit
hes of G are wavelength-sele
tive, we 
an view this portion of G as w rearrangeablyNBNs superimposed, one for ea
h wavelength. Denote a swit
h of G by Si;j, where i denotes itslayer index and j denotes its position within the layer. The third and fourth ports of the swit
hes
onne
t all the swit
hes in the same position in all the layers 
y
li
ally. Spe
i�
ally, the third(fourth) output port of Si;j is 
onne
ted to the third (resp. fourth) input port of Si+1;j, where the�rst layer is 
onsidered the su

essor of the last layer.In addition, as mentioned above, the input nodes are partitioned into s groups of size n=s ea
h.Ea
h su
h group is 
onne
ted to an \opti
al 
ombiner", whose output is 
onne
ted to a di�erentswit
h. Similarly, the output nodes are partitioned into s groups of size n=s ea
h. Ea
h su
h groupis 
onne
ted to an \opti
al splitter", whose input is 
onne
ted to a di�erent swit
h. We partitionthe (input and output) nodes into n=w sets of w nodes ea
h, where ea
h su
h set 
orresponds tothe nodes 
onne
ted to swit
hes in the same position in all the layers, and view them as w 
olumnsof size n=w ea
h.To route a permutation � in this network, we de
ompose � into �1 � �2 � �3 using Proposition 15above with k = nw and ` = w, a

ording to the partition of the nodes into w 
olumns of size n=wea
h. Let �(i; j) = (i0; j0), and let �1(i; j) = (i; j00), �2(i; j00) = (i0; j00), �3(i0; j00) = (i0; j0). We assignthe input (i; j) the wavelength �j00 , and route it as follows. Using the third ports we route (i; j)to swit
h S1;j. Note that sin
e ea
h input in a row is assigned a di�erent wavelength, this 
an bedone. Then, using the rearrangeably NBN for wavelength �j00 we route (i; j) to the fourh outputport of Sm;j0 Finally, using the fourth ports we route (i; j) from Sm;j0 to Si0;j0. Again, sin
e all theoutputs in a row are assigned a di�erent wavelength, this 
an be done. 2Theorem 17: We 
an 
onstru
t an opti
al re
on�gurable wide-sense NBN with 2w�1 wavelengthsand O( nw log nw ) wavelength-sele
tive swit
hes.Proof: The idea here is similar to that of Theorem 16. The network here is the same as the oneabove, ex
ept for two di�eren
es: (1) We repla
e the rearrangeably NBN H in that 
onstru
tionwith a wide-sense NBN with n=w inputs and n=w outputs. It is well-known that su
h networksusing s = O( nw log nw ) swit
hes exist [ALM90℄. (2) To route a 
onne
tion establishment requestfrom input (i; j) to output (i0; j0) we look for a wavelength �k that is not 
urrently in use at thethird ports of swit
hes in position i in all the layers, and also not in use at the fourth ports of23



swit
hes in position i0 in all the layers. At the time of establishing a new 
onne
tion, at most w� 1wavelengths are used at the third ports of swit
hes in position i (to 
onne
t at most w � 1 otherinputs) and at most w � 1 wavelengths are used at the fourth ports of swit
hes in position i0 (to
onne
t at most w � 1 other outputs). Sin
e there are a total of 2w � 1 wavelengths, we are thusguaranteeed to �nd a 
ommon wavelength that is not in use in all these ports. 23.2. Non-Blo
king Networks with Wavelength-Independent Swit
hesNetworks with wavelength-independent swit
hes merit 
onsideration sin
e wavelength-sele
tiveswit
hes are mu
h harder to build than wavelength-independent swit
hes. As for the wavelength-sele
tive 
ase there is a trade-o� between the number of swit
hes and the number of wavelengthsused. Barry and Humblet [BH92℄ showed that in a wavelength-independent swit
h network withw wavelengths, the number of swit
hes must be 
(n log nw2 ) for both rearrangeable and wide-sense NBNs. Pieris and Sasaki [PS93℄ 
onstru
ted su
h networks that use O(n log nw ) wavelength-independent swit
hes. Here, we show tighter upper bounds on the number of swit
hes required insu
h networks by 
ombining the arguments from Se
tions 2 and the previous subse
tion.Theorem 18: Given w wavelengths, there exists an opti
al rearrangeable NBN of size n that usesO(n log nlogww2 ) wavelength-independent swit
hes. Furthermore, we 
an 
onstru
t an opti
al rear-rangeable NBN that uses O(n log n�(n)w2 ) wavelength-independent swit
hes.Proof: Our 
onstru
tion is shown in Figure 9. Again, we use Proposition 15 about de
ompositionsof permutations. We �rst present an informal des
ription: The network is 
onstru
ted in three lay-ers. The �rst and third layer are used to do the \row" permutations and the se
ond layer does the\
olumn" permutation. The �rst and third layer are 
onstru
ted from m wavelength-independentswit
hes with n=m inputs and n=m outputs. Ea
h su
h swit
h is basi
ally a \traditional" rear-rangeable NBN and thus 
an be built from nm log( nm ) 2�2 swit
hes. (See, e.g. [Lei92℄.) The middlelayer is 
onstru
ted from n=m 
opies of a non-re
on�gurable network with m inputs and outputs.(The parameter m is to be 
hosen as a fun
tion of the number of wavelengths w as des
ribed below.)We now des
ribe the 
onstru
tion more formally.Fix m = w2logw . Let F be a non-re
on�gurable rearrangeable NBN for m inputs and m outputs.Su
h a network exists, as shown in Se
tion 2. We will use nm 
opies of F labelled F1; : : : ; F nm . LetH be a \traditional" rearrangeable network with nm inputs and outputs. We will need 2m 
opiesof H labelled H1j and H2j for j 2 f1; : : : ;mg. Let the inputs for our opti
al network G be labelled(i; j) for i 2 f1; : : : ;mg and j 2 f1; : : : ; nmg. Then, the edges of G (apart from the edges within F 'sand the H's) are as follows:The input (i; j) of G is 
onne
ted to the jth input of H1i.The jth output of H1i is 
onne
ted to the ith input of Fj .The ith output of Fj is 
onne
ted to the jth input of H2i.24
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m, n/mFigure 9: A permutation network using w wavelengths and O(n log nw ) wavelength-independentswit
hes.The jth output of H2i is 
onne
ted to the (i; j)th output of G.All edges ex
ept those within the F 's 
an 
arry any of the legal wavelengths, but in the way they areused will only 
arry one wavelength at a time. Observe that the network uses n log nm = n log n logww2swit
hes.We now show how to route a permutation �. We use the row-
olumn-row de
omposition withk = m and ` = nm and de
ompose � into �1 � �2 � �3. Consider a sour
e (i; j) and let �1(i; j) = (i; j0)and �2(i; j00) = (i0; j00) and �(i0; j00) = (i0; j0). Then the path assigned to this request is from the(i; j)th sour
e to the j00th output of H1i. From there it gets routed through the network Fj00 tothe i0th output node of Fj00 . From there on we use the network H2i0 to 
ontinue the path on tothe sink (i0; j0). Note that at most m sour
es use the j00th 
olumn in �2. All these requests use thenetwork Fj00 to route these pairs from their row sour
e to their row destination. In order to do so,we pi
k their wavelengths as di
tated by Fj00 . This 
hoi
e �xes the wavelength of all 
onne
tionsrouted using the j00th 
olumn in
luding the one with sour
e (i; j). This determines the path andwavelength assignment of a sour
e-sink pair. It is an easy exer
ise to verify that no two paths ofthe same wavelength overlap on any edge.Lastly by redu
ing m above to w2=�(w), we 
an use the 
onstru
tive non-re
on�gurable rear-rangeable NBN above. This yields the 
onstru
tive bound 
laimed in the assertion. 2Theorem 19: Given w wavelengths, there exists an opti
al wide-sense NBN of size n that usesO(n log nlogww2 ) wavelength-independent swit
hes. Furthermore, we 
an 
onstru
t an opti
al wide-sense NBN that uses O(n log n�(n)w2 ) wavelength-independent swit
hes.Proof: The proof is similar to the proof of Theorem 18. The network here is almost the sameas the one above, ex
ept for some minor di�eren
es: The �rst layer uses m n=m-input, 2n=m-25



output \traditional" wide-sense NBNs. The middle layer 
onsists of 2n=m wide-sense swit
hlessNBNs with m-inputs and m-outputs as des
ribed in Se
tion 2. The third layer uses m 2n=m-inputn=m-output wide-sense NBNs that 
an route any permutation of upto n=m elements at a time. (Itis easy to see that the 
onstru
tion in [ALM90℄ also yields imbalan
ed wide-sense NBNs that arerequired here. All one has to do is use a 2n=m to 2n=m NBN and throw away half the inputs oroutputs as the 
ase may be.)Similar to the proof of Theorem 17, we 
an argue that any sequen
e of 
onne
tion requests withat most one 
onne
tion requested from any sour
e or sink at any time 
an be routed in this network.In parti
ular to satisfy a request from (i; j) to (i0; j0) we �rst determine the 
orre
t middle levelnetwork to use to set up this 
onne
tion. For ea
h of the networks H1i and H2i0 upto n=m�1 of thenetworks from the middle layer may already be in use. This still allows for at least one (a
tuallyat least two) networks from the middle level whi
h neither network is using. This network 
an nowbe used to set up this 
onne
tion. 2Finally, we 
onsider the spe
ial 
ase where only the transmitters 
an be tuned whereas thewavelengths of the re
eivers are �xed (or vi
e-versa). For this 
ase we have the following theorem.Theorem 20: Given w wavelengths, we 
an 
onstru
t an opti
al wide-sense NBN of size n inwhi
h only the transmitters (re
eivers) are tunable that uses �(n log nw ) wavelength-independentswit
hes of 
onstant degree.Proof: We prove for the 
ase in whi
h only the transmitters are tunable. The other 
ase is similar.The lower bound proof is similar to the proof of Theorem 14. Let s denote the number of 
onstantdegree swit
hes required, and let 
 be the degree of these swit
hes. Using an argument similarto that used in [BH92℄, we observe that the number of swit
hing states in the network is upperbounded by 
swn. This must be greater than the number of \traÆ
 states" in the network, whi
his n! for permutation routing. Thus we have
swn � n!;and using Stirling's approximation this yields s = 
(n log nw ). The upper bound proof is similar tothe proof of Theorem 19. We use a three-layer 
onstru
tion with the �rst layer using m 
opies ofn=m to 2n=m \traditional" wide-sense NBNs. The middle layer 
onstru
tion is 2n=m 
opies of aswit
hless NBN but di�erent from the one in the proof of Theorem 19. The third layer is again m
opies of 2n=m to n=m \traditional" wide-sense NBNs.Sin
e in this network the re
eivers 
annot be tuned, the destination of a request determines thewavelength of a 
onne
tion. This prevents us from using the NBNs used in Theorem 19. Instead, weuse a non-re
on�gurable NBN that uses w wavelengths to route upto w messages with non-tunablere
eivers. (Constru
tion of su
h a network is easy as shown in Figure 4.) This for
es m = w andshows that the number of swit
hes is at most O(n log nw ).To route a message from input (i; j) to output (i0; j0) the message is allotted to the kth non-re
on�gurable network in the middle layer if no message with sour
e from ith row or destined to26



the i0th row is 
urrently using the kth network. On
e again sin
e the number of su
h networksis twi
e the number of elements per row, there must be an unused network whi
h 
an be used toa
hieve this permutation. 23.3. Bounding Number of Wavelengths via Congestion and DilationIn this se
tion, we give bounds on the number of wavelengths required to route a set of messages onopti
al networks with n nodes, ea
h having a wavelength-sele
tive swit
h. Our bounds here relatethe number of wavelengths to two 
lassi
al parameters asso
iated with routing: the 
ongestion andthe dilation.Given a graph G with n nodes andm edges, suppose some messages 
an be routed in it su
h thatthe maximum 
ongestion (i.e., number of messages using any edge) is 
 and the maximum dilation(i.e., the maximum path length from any sour
e to any sink) is d. Clearly at least 
 wavelengths arerequired in order to realize the routing. Now 
onstru
t a new graph Gp with ea
h path in G beinga node in Gp with an edge between two nodes in Gp if the 
orresponding paths in G overlap on anyedge in G. Then, the problem of assigning wavelengths to paths in G redu
es to that of 
oloringnodes in Gp. Sin
e the maximum degree of a node in Gp is (
� 1)d, (
 � 1)d + 1 wavelengths aresuÆ
ient to a
hieve this routing. Our �rst observation shows that if the dilation is suÆ
iently largethen it is possible to beat this bound. In parti
ular, if d > pm then 2
pm wavelengths suÆ
e toroute the messages. Next we show that this bound is optimal up to a 
onstant fa
tor, in that thereexist graphs and message requests for whi
h 
(
minfd;pmg) wavelengths are required to routethe given messages.Lemma 21: For any graph G, and any set of routing requests with 
ongestion of 
, 2
pm wave-lengths are suÆ
ient to a
hieve the given routing.Proof: The number of paths of length at least pm is at most 
pm. Give ea
h su
h path its owndedi
ated wavelength. Ea
h of the remaining paths (of length less than pm), 
on
i
ts with fewerthan 
pm paths, so again 
an be given a wavelength without 
on
i
ting by a greedy 
oloring ofthe interferen
e graph of the paths of length less than pm. 2Theorem 22: There exist graphs and message routing requests whi
h 
an be routed with 
ongestion
 and dilation d, but require w = 
(
minfd;pmg) wavelengths under any routing.Proof: De�ne the graph G with n transmitters and n re
eivers as depi
ted in Figure 10. Inaddition to the transmitters and re
eivers, G has n 
olumns, ea
h 
olumn i 
onsists of 2n � 1nodes: ai;j; j = 1; : : : ; n and bi;j ; j = 1; : : : ; n � 1. The edges are as follows: For i = 1; : : : ; n,ti is 
onne
ted to a1;i and ri is 
onne
ted to an;i. For j = 1; : : : ; n � 1 and i = 1; : : : ; n, bi;j is
onne
ted to ai;j and ai;j+1. For j = 1; : : : ; n and i = 3; 5; : : : ; n, ai;j is 
onne
ted to ai�1;j. Forj = 1; : : : ; n � 1 and i = 2; 4; : : : ; n, bi;j is 
onne
ted to bi�1;j. Note that the number of edges isO(n2). 27
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b i,2

b i,n−1

a i,nFigure 10: The network example used to prove Theorem 22.There are n requests. The transmitter and the re
eiver of the ith 
onne
tion are nodes tiand rn�i+1 respe
tively. It is not hard to verify that for any 
hoi
e of n paths satisfying these n
onne
tion, any two paths interse
t in at least one edge. Consequently ea
h path needs a uniquewavelength, whi
h implies that the number of wavelengths is n.It is possible to 
onstru
t n paths su
h that the 
ongestion is 
onstant and the dilation isO(n). This is done as follows. For 1 � i < n=2, the path from ti to rn�i+1 is 
omposed of threeparts: (i) to a1;i and then \straight" to ai;i (using nodes bj;i and aj;i), (ii) down to bi;n�i+1, (iii)\straight" to an;n�i+1 and rn�i+1 (using nodes bj;n�i+1 and aj;n�i+1). The paths for n=2 < i � nand for i = n=2 (in 
ase n is even) are symmetri
. Sin
e in this graph n = O(pm), it follows thatw = 
(minfd;pmg).By letting repla
ing ea
h original transmitter by 
 transmitters all 
onne
ted in to the originaltransmitter, and the same for the original re
eivers, we 
an for
e any value for the 
ongestion 
.The theorem follows sin
e the number of wavelengths in this 
ase is O(
n). 24. Open ProblemsThere are several unresolved problems related to the models in this paper; some of them are listedbelow:1. We do not have tight bounds for swit
hless non-oblivious networks. The same is also true forthe swit
hless, partially oblivious networks that allow at most k wavelengths on any edge.2. Our 
onstru
tive algorithms for the wide-sense, non-oblivious networks take exponential time28



in many 
ases; it would be useful to obtain polynomial time 
onstru
tive algorithms for these
ases.3. We provided an algorithm to 
onvert any network with m edges that routes messages with
ongestion 
, dilation d, into a network that uses O(
(min(d;pm))) wavelengths, and we alsogave a network and a message pattern for whi
h this bound is optimal up to a 
onstant fa
torHowever, a mu
h more interesting and pra
ti
ally useful question is getting a good bound onthe number of wavelengths required for a given network and a given message pattern. Here,we have no results and getting even an approximate bound on the number of wavelengthswould be very interesting.4. One resear
h topi
 not studied in this paper is that of stri
t-sense non-blo
king networks. Astri
t-sense non-blo
king network is one that allows a new 
onne
tion to be always routedthrough irrespe
tive of how the previous 
onne
tions were routed.5. Another topi
 not studied here is the use of wavelength 
onverters. A wavelength 
onverter
an 
onvert a signal from one wavelength to another. Clearly all the upper bounds in thepaper hold for networks with wavelength 
onverters. We 
an also show that the lower boundshold for networks with stati
 wavelength 
onverters. With dynami
 
onverters, we are addingstates to the network and hen
e the lower bounds may not apply.A related model not studied here is that of networks that are not all-opti
al. In these networks,a 
onne
tion need not be 
arried on a single wavelength all the way to its destination; it 
ouldbe 
arried on one wavelength to an intermediate node, where it is re
eived and swit
hedele
troni
ally onto another wavelength enroute to its destination. In this 
ase, it is alsopossible to multiplex several 
onne
tions on to a single wavelength, allowing pa
ket swit
hing.6. The area of fault toleran
e in opti
al networks is an open area for resear
h. Also, there is theset of problems of dynami
ally maintaining topology of opti
al networks (espe
ially when thelinks are 
reated and/or destroyed), and maintaining information regarding link utilization,
ongestion, et
.A
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