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Abstract

The Chinese Remainder Theorem states that a positive in-
teger m is uniquely specified by its remainder modulo %
relatively prime integers p1,...,pr, provided m < Hle Pi.
Thus the residues of m modulo relatively prime integers
p1 < p2 < -+ < pp form a redundant representation of

mif m < Hle pi and k < n. This suggests a number-
theoretic construction of an “error-correcting code” that
has been implicitly considered often in the past. In this
paper we provide a new algorithmic tool to go with this
error-correcting code: namely, a polynomial-time algorithm
for error-correction. Specifically, given n residues ri,...,r,
and an agreement parameter ¢, we find a list of all integers

m < Hle pi such that (m mod p;) = r; for at least ¢ val-

ues of ¢ € {1,...,n}, provided t = Q(4 /knll‘;gg%). We also

give a simpler algorithm, with a nearly linear time imple-
mentation, to decode from a smaller number of errors, i.e.,

when t > n — (n — k)ﬂpl—. In such a case there is a
log p1+log pn

unique integer which has such agreement with the sequence
of residues.

One consequence of our result is a strengthening of the rela-
tionship between average-case complexity of computing the
permanent and its worst-case complexity. Specifically we
show that if a polynomial time algorithm is able to guess
the permanent of a random n X n matrix on 2n-bit inte-
gers modulo a random n-bit prime with inverse polynomial
success rate, then then P#*F = BPP. Previous results of
this nature typically worked over a fixed prime moduli or
assumed success probability very close to one (as opposed
to bounded away from zero).
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1 Introduction

The Chinese Remainder Theorem states that a positive in-
teger m is uniquely specified by its remainder modulo %
relatively prime integers p1,...,pr, provided m < Hle Pi.
Thus if we pick n > k relatively prime integers p1 < --- < pn
such that m < Hle pi, then the remainders of m mod-
ulo the p;’s form a redundant encoding of m. Specifi-
cally, m can be recovered given any k of the n» remain-
ders. Thus this representation of integers yields a natu-
ral error-correcting code: given any two integers m,m’ <

Hle pi, the sequences {(m mod p1),...,(m mod p,)} and
{(m' mod p1),...,(m' mod p,)} differ in at least n — &k + 1
coordinates.

This redundancy property of the Chinese remainder repre-
sentation has been exploited often in theoretical computer
science. The Karp-Rabin pattern matching algorithm is
based on this redundancy [20]. This representation was used
to show the strength of probabilistic communication over de-
terministic communication protocols (cf. [23, Exercise 3.6]).
The representation allows for easy arithmetic — addition,
multiplication, subtraction and division — on large inte-
gers and was even proposed as a potential representation
for numbers in computers'. The ability to reduce compu-
tation over large integers to that over small integers is also
employed in complexity-theoretic settings, with a notable
example being its use in showing the hardness of computing
the permanent of 0/1 matrices [40].

The redundancy of the Chinese remainder representation of
integers and its similarity to error-correcting codes raises a
natural algorithmic question:

Given a sequence of integers (ry,...,r,) that
are obtained from taking residues of an integer
m < Hle pi modulo relatively prime integers
p1 < -+ < pn, where some of the residues are
erroneous, can we find m?

If the number of residues that are erroneous is less than
"2;k, then m is uniquely specified by the vector (ry,...,r,).
However this fact is not algorithmic — it is not clear how to

recover m in polynomial time (i.e., in time polynomial in n

! Unfortunately, it does not allow for easy inequality comparisons
— which is presumably why it was not employed.



and log pn). Even in the case where the number of errors

e is larger (but not larger than n — \/W), there exists a
small list containing all integers whose Chinese remainder
representations differ from the vector (r1,...,r,) in at most
e coordinates [16]. Again it is not clear how to recover this
list in polynomial time.

In this paper we present efficient algorithms for solving the
above problems. Specifically we provide polynomial-time
algorithms for the following two tasks:?

1. Unique Decoding: Given n relatively prime integers p1 <
<o < pp; noresidues r1,...,7ryn, with 0 < r; < p;; and
an integer k; find an integer m < Hle p; satisfying

(m mod p;) # r; for at most (n — k)bg;jgfﬁm values

of 1 € {1,...,n}, if such an integer exists. (Theorem 6.)

2. List Decoding (for large error): Given n relatively prime
integers p1 < -+ < pp; n residues ri,...,r,, with 0 <
r; < p;; and an integer k; construct a list of all integers
m satisfying m < Hle pi and (m mod p;) = r; for at

least 4 /2n(k + 2)11‘;—‘;% + lgﬁ + 2logn = O(4 /nkll‘;—‘g%)
values of 1 € {1,...,n}. (Theorem 11.) (We comment
that this list contains at most 1/2n/k integers; cf., [16].)

In the context of coding theory, our algorithms add a new
dimension to the family of codes that are efficiently cor-
rectable. The known examples of asymptotically good error-
correcting codes with efficient algorithms can be classified in
one of two categories:

1. Algebraic codes: These are codes defined using the prop-
erties of low-degree polynomials over finite fields and
include a wide variety of codes such as Reed-Solomon
codes, BCH codes, Alternant codes and algebraic-
geometry codes.  Such codes admit efficient error-
correction algorithms; in fact all the algorithms (for
unique-decoding) are similar in spirit and can be uni-
fied quite nicely [31, 22, 10].

2. Combinatorial codes: A second class of codes with ef-
ficient decoding algorithms evolve from combinatorial
concepts such as expanders, super-concentrators etc.
Examples of this family include the codes of Sipser and
Spielman [36], and Spielman [37]. In both cases, the
description of the code is captured by a graph; and the
existence of a decoding algorithm is then related to com-
binatorial properties of the graph.

Our work provides the first example of a number theoretic
code that is efficiently correctable. To the best of our knowl-
edge - this is the only example which does not fall into one
of the two classes above.

Our algorithms are obtained by abstracting from known
paradigms for correcting algebraic codes: The first of our al-
gorithms abstracts from a large collection of (unique) error-
correcting algorithms for algebraic codes [32, 4, 30, 42]. In
fact, an elegant unification of these results (see [31, 22, 10] or
the full version of this paper [15]) provides the inspiration for
our algorithm. The second algorithm described above ab-
stracts from the recent works on “list-decoding” algorithms

?In fact, the first task can be performed in nearly linear time (The-
orem 16).

[3, 38, 35, 18]. We stress however, that the translation of
the above mentioned algorithms to our case is not immedi-
ate. In particular, the usual “interpolation” methods, that
come in very handy in the algebraic case are not applicable
here. In fact our code is not even linear in the usual sense
and so linear algebra is not applicable in our case. Thus for
solving analogies of “simple” problems in the algebraic case,
we employ integer programming algorithms (in fixed dimen-
sions) [25] for the Unique Decoding task, and the approxi-
mate basis reduction algorithm (in varying dimension) [24]
for the List Decoding task. Owur final algorithms achieve
decoding capabilities comparable to those in algebraic cases
. . . o) .
and in particular, if p, = p;""’ we can decode uniquely from
a constant fraction of errors. We also get a list-decoding al-
gorithm to recover from n — o(n) errors, provided k& = o(n).

Permanent of random matrices One motivation for study-
ing the Chinese remainder representation of integers was to
study the “random self-reducibility” property of the perma-
nent [26].

The standard presentation of this property fizes a prime
p > n 4+ 1, and consists of a randomized reduction of com-
puting the permanent modulo p of a given n X n matrix
to computing the permanent modulo p over uniformly dis-
tributed n x n matrices. Thus we are taking a two parameter
problem (such as Quadratic Non-Residuosity and DLP) and
the process of self-reduction fixes one parameter (here, the
prime p) and randomizes over the second (here, the matrix).
This is analogous to the results of [17, 6] but not to the re-
cent result of Ajtai [1]. Thus, unlike Ajtai’s result, the above
only relates the average and worst case complexities of com-
puting the permanent modulo p for any fixed p. What we
want is a relation between the average and worst case com-
plexities, when average-case complexity refers to all parts of
the input.

Consider, for example, the product distribution
on pairs (M, p), parameterized by size n, where p
is a uniformly distributed n-bit prime and M is a
uniformly distributed n-by-n matrix with 2n-bit
entries.

A naive analysis of the complexity of the permanent on such
instances would work as follows. Suppose we have a heuris-
tic to compute the permanent on instances from the above
distribution. Then, given any pair (M, p), pick at random
many primes pi,...,p:, and then compute the permanent
of M modulo p; for every . In each case use the random-
self-reducibility of the permanent modulo p; to reduce the
computation of the permanent of M modulo p; to n + 1
“random” (but not independent) instances of the permanent
modulo p;. If the heuristic does not make errors very often
(say has error probability less than m) then with high

probability (resp., probability at least 2/3) all calls to the
heuristic get answered correctly. Thus if ¢ is large enough
(e.g., t = O(n) will do), then (applying the Chinese Remain-
der Theorem) we obtain the value of the permanent of M
(over the integers), and can now reduce this modulo p to get
the desired output.

However the reduction as described above i1s not very tol-
erant of errors. This problem has been addressed before in
the case of one of the two parameters, namely in the choice
of the matrix: The results of [13, 14, 38] imply that if for



any prime p, the heuristic computes (M, p) on even a tiny
but non-negligible fraction of the instances correctly then
the permanent can be computed correctly on worst case in-
stances of matrices, but over the same fixed prime p.

Our result complements the above, by allowing a similar
treatment of the second parameter as well. Thus by combin-
ing the two results, we get the following natural statement
(see Theorem 14):

If there exists a heuristic that computes the
permanent of a random pair (M,p), from the
above distribution, with non-negligible probabil-

ity (over the choice of (M, p)), then P#T = BPP.

In independent related work, Cai et al. [9], provide an al-
ternate formulation of the average-case hardness of the per-
manent, which is also hard on all parts of the input. They
consider the hardness of computing the permanent directly
over the integers. They show that if a BPP algorithm com-
putes the permanent (over the integers) of a random n x n
matrix with its entries chosen uniformly from among n-bit
integers with non-negligible property then P#¥ = BPP. In
fact their techniques also extend to providing an alternate
proof of Theorem 14 that does not use the decoding algo-
rithm for the Chinese Remainder code.

Organization of this paper: In Section 2 we define the Chi-
nese Remainder Code. In Sections 3 and 4 we give decoding
algorithms for the Chinese Remainder Code, for small and
large error, respectively. Section 5 gives the application to
the permanent, and in Section 6 we describe an improved
(nearly linear time) decoding algorithm for small error, and
give an application of the Chinese Remainder Code to secret
sharing.

2 The Chinese Remainder Code

Notation: For positive integers M, N, Let Z s denote the
set {0,..., M —1}, and let [N]ss denote the remainder of N

when divided by M. Note that [N]y € Zins.

Definition 1 (Chinese Remainder Code) Let p1 <
- < pn be relatively prime integers, and k < n an inte-

ger. The Chinese Remainder Code with basis p1,...,pn and

rate k is defined for message space Zi i, where K Hle Pi.

The encoding of a message m € ZK, denoted Eyp, .. p, (m),
is the n-tuple ({m]p,, ..., [m]p,)-

Thus the Chinese Remainder Code does not have a “fixed
alphabet” (the alphabet depends on the coordinate posi-
tion) and it is not linear in the usual sense (as the natural
arithmetic here is done modulo p; for the #’th coordinate).
Distance of a code can however be defined as usual; 1.e., the
distance between two “words” of block length n is the num-
ber of coordinates on which they differ; and the distance of
a code 1s the minimum distance between any pair of dis-
tinct codewords. The distance properties of this code are
very similar to those of Reed-Solomon and BCH codes; and
follow immediately from the Chinese Remainder Theorem:

Theorem 2 (Chinese Remainder Theorem — CRT)
If q1,...,q0 are relatively prime positive integers and
r1,...,7¢ are integers such that r; € qu, then there ex-

ists a unique integer v € ZH[ such that [r]g, = 7.

i=1_"

Furthermore, r = Zle ci - Qi 'Tz‘] o where ) = Hle 45,

Qi = Q/qi, and c; is the multiplicative inverse modulo ¢; of
i

Corollary 3 For any n relatively prime integers p1,...,pn
and any integer k < n, the Chinese Remainder Code with
basis p1,...,pn and rate k has distance n — k + 1. That s,
for any two messages m1, mo, the code words Fy, .. p. (ml)
and Ey,, . p.(m2) disagree on at least n — k41 coordinates.

Thus if p1,...,pn are all (1+0(1))-logn-bit primes, then the
information rate and the distance of the Chinese Remainder
Code are comparable with those of the Reed-Solomon code
or the BCH code. For our purposes, it is more useful to
consider a variant of the notions of block length, rate and
distance as defined below.

Definition 4 (amplitude) For a Chinese Remainder
Code with basis p1,...,pn and rate k, the amplitude of the
encoding is defined to be N = H:‘l=1 pi; the amplitude of
the message space is defined to be K = Hle pi. For vec-
Sny and @ = {(wi,...,w,) € 7" with
v, w; € Zpl, the amplitude of the distance between ¥ and
W 15 defined to be Hm 2w, Di- The amplitude of agreement
between ¥ and W is defined to be Hm —u, Di- Notice that the

product of the amplitudes of agreement and distance equals
the amplitude of the encoding.

tors ¥ = (v, ..

It is easy to see that if the distance between ¥ and @ is d, and
the amplitude of the distance between ¢ and @ is D; then
dlog p1 <log D < dlog py. In case of traditional codes that
are defined over fixed alphabets, 1.e., p1 = p2 = -+ = pn, d
is directly proportional to log D and hence there is no need
to consider the latter separately. In our case, the latter
parameter provides a more refined look at the performance
of the algorithms. From the Chinese Remainder Theorem it
follows immediately that the amplitude of distance between
any two codewords is larger than N/K.

Our goal 1s to solve the following error-correction problems
(for as large an error parameter as possible).

The Error-correction/List decoding Problem

Given: (1) n relatively prime integers p1 < --- < p, and
rate parameter k specifying a Chinese Remainder Code; (2)
n integers ri,...,rn, with r; € Zpl and an error-parameter

e.
Task: Find (all) message(s) ¢ € L, where K = Hle i,

s.t. [x]p, # 75 for at most e values of 1.

It follows from the distance of the Chinese Remainder Code
that the answer is unique if e < "2;k In this case the prob-
lem corresponds to the traditional error-correction problem
for error-correcting codes. If e is larger, then there may be
more than one solution. We will expect the algorithm to

return a list of all codewords x with at most e errors.



3 The Decoding Algorithm for Small Error

The first algorithm we present i1s a simple algorithm to re-
cover from a small number of errors. The algorithm recov-

ers from error of amplitude at most /N/K. Translating to

classical measures this yields an error-correcting algorithm

for e < (n — k)ﬁ_lfolg—h (and in particular, if p, = plo(l),

then the algorithm can handle a constant fraction of errors).

The algorithm is described below formally. The inspiration
for the algorithm comes from a general paradigm for decod-
ing of many algebraic codes (see [31, 22, 10] or the full ver-
sion of this paper [15]). Given a received word {ri,...,ry)
that is close to the encoding of (a unique) message m, the
algorithm Unique-Decode tries to find two integers y and

z such that y - m = z. To this end it first reconstructs
the integer r € ZN that corresponds to the received word
(r1,...,rn) (e, [r]p, = ri, for every ¢). It then searches

for integers y and z such that y -r = z (mod N) (where
N = H:‘l=1 pi), and both y and z are of bounded sizes. In the
analysis of the algorithm we show that the equality (mod-
ulo V) between r -y and z together with the restrictions on
the sizes of y and z implies that y - m is equal to z (over
the integers). Furthermore, (as we show in the full ver-
sion of this paper [15]), y has the following error-detection
property: For every index ¢ such that r; # [m]p,, it holds
that [y]p; = 0, and moreover, the message m can be recon-
structed from the remaining r;’s Though we do not use this
property explicitly in the algorithm described below (as well
as in its analysis), it can be used to obtain a variant of the
algorithm, (described in [15]), which is more clearly related
to the general decoding paradigm.

Unique-Decode(ps, ..., pn, k,71,...,7Tn).

Set K = Hle pi, N = H:‘l=1 pi, and let E be an integer
to be determined later.

Let r € Zix be s.t. r; = [r]p, (as defined by CRT).

1. Find integers y, z s.t.

1 <y < F
0 < z < N/FE (1)
-1 =z (mod N)

2. Output z/y if it is an integer.

The above algorithm can be implemented in polynomial
time in the bit sizes of pi,...,pn. Step 2 is straightfor-
ward. The main realization is that Step 1 can be computed
using an algorithm for integer programming in fixed num-
ber of variables, due to [25]. To see how to formulate our
problem in this way, we let the final equality be expressed as
y-r=z+x-N. Our task thus reduces to computing y and
zst0<y< PFand 0<y-r—z-N < N/E. In Section 6.1
we show how this task can actually be performed in nearly
linear time (using the “continued fractions method”).

We now analyze the performance of this algorithm. We first
describe it in terms of the amplitude of the distance between
the message m and the received word r.

Lemma 5 Ifr is such that for some m € Z g the amplitude
of the distance between (r1,...,ry) and {{m]p,,...,[m]p,)
is at most E, and F < N/(K —1), then Unique-
Decode(p1,...,pn, k,71,...,7n) returns m.

We prove the lemma using the following two claims.

Claim 5.1 Under the premises of Lemma 5 there exist y, z
satisfying Eq. (1).

Claim 5.2 Under the premises of Lemma 5, for any pair
(y, z) satisfying Eq. (1) it holds that y - m = z.

We prove the two claim momentarily, and first show how
Lemma 5 follows from the claims.

Proof of Lemma 5: By Claim 5.1, Step 1 of the algorithm
always returns a pair (y, z) satisfying Eq. (1). By Claim 5.2,
any pair (y, z) that may be the outcome of Step 1 satisfies
y-m = z. Thus z/y = m is an integer and the output of the

algorithm is m. |

We now prove Claims 5.1 and 5.2.

Proof of Claim 5.1: Let y = H{i|r A, 1 P (so that y
I P;

equals the amplitude of the distance between (ri,...,ry)
and ([m]p,,...,[m]p,)), and z = y - m. Then notice that
y # 0, and y < F, and so the first item of Eq. (1) holds.
Since m < K — 1, we have z = m-y < (K —-1)-FE.
Using £ < N/((K — 1)E) (so that (K —1)- E < N/E),
and since z > 0, the second item of Eq. (1) also holds.
Finally, by CRT, the condition y - r = z (mod N) holds
since the condition holds modulo every p;: For any fixed
i € {1,...,n}, either 7; = [m]p, or [y]p; = 0. In either case,

we have z = ym = yr (mod p;).

Proof of Claim 5.2: TFor every i s.t. [m]p, = ri, we have

y-m = y-[mlp, = y-rs =y -r = z (modpy).

Thus, by CRT, y - m = z (mod T) where T' =
H{i | ]y, =y} P > N/FE is the amplitude of the agreement
between (ri,...,rn) and {{m]p,,...,[m]p,). But z < N/E
and m-y < (K—1)E < N/E. Thus z=m - y.

As an immediate consequence of Lemma 5, and the obser-
vation relating amplitudes of distance to classical distance,
we get the following theorem.

Theorem 6 Unique-Decode(ps,...,pn, k,71,...,7rn) solves
the error-correction problem in polynomial time for any
value of the error parameter e < (n — k)% with

! log p1+log prn ’
the setting F = Hi:n—e+1 Pi-



Proof: Using N = [[_,pi, K = [[,pi and E =
n pi, Lemma 5 can be applied if E? < N/K
t=n—e+1

(as N/JK < NJ/(K —1)).

n 2 n
(Hi=n—e+1pi) < i=k+1 Pi>
H?:n—e+1 pi < H:.:ke_l_l pi. In turn this condition holds if
n—k—e

P < p7 . The theorem follows by taking logarithms of
both sides. |

Namely, it suffices that
which is equivalent to

4 Decoding for Large Error

In this section we will describe an algorithm that recov-
ers from possibly many more errors than described in the
previous section. In particular, if we fix £ = en and let
n — oo, the fraction of errors that can be corrected goes to

1— 4 /2611(:)—2%. As € — 0, this quantity approaches 1. This

algorithm 1is inspired by the recent progress in list-decoding
algorithms [3, 38, 35, 18]. Our algorithm and analysis follow
the same paradigm, though each step is different.

The algorithm List-Decode can be viewed as a generalization
of Unique-Decode. In both algorithms, given the received
word {r1,...,ry), the algorithm first finds, using CRT, an
integer r € Zin corresponding to the received word (i.e.,
[r]p; = r for every 7). In Unique-Decode the algorithm then
attempts to find integers y and z (restricted in size), such
that y-r =2z (mod N), and outputs z/y. In other words,
the algorithm searches for integers y, # satisfying y-r—z =0

(mod N), and outputs the (unique) root of the (degree-
1) polynomial y - ¢ — z. In List-Decode, the algorithm in-
stead searches for a sequence of integers co,...,c¢ (of cer-

tain bounded sizes), such that Zl ¢ir' = (mod N) and

outputs all roots of the polynomial Zl c;r'. As we show
subsequently, the increase in the degree of the polynomial
that the algorithm searches for (together with the particu-
lar restrictions on the sizes of its coefficients) allows us to
decode for much larger error.

List-Decode(p1, ..., pn, k, 11, ..., Tn).

Set N = H:‘l=1 pi; K = Hle pi; and F = ZH—T2 AL+ 2
N . KHTI, with ¢ to be determined shortly.

Let r € Zin s.t. [r]p, = ri for every i (as defined by CRT).

1. Find integers co, ..., ¢ satisfying

VO<i<T e < 45
s.t. Zf:o cirt = 0(mod N) (2)

2. Output all roots of the integer polynomial C(z) =

Zf:o cix’.

The running time of Step 2 above is bounded by a poly-
nomial in n,f,log N and log F' (one can use LLL’s algo-
rithm for factoring polynomials over the integers if required,
though faster algorithms exist for this simpler task of “root-
finding”). We need to show how to implement Step 1.

Mainly the idea is to set up a lattice whose short vectors
correspond to small values of the coefficients ¢;’s. We show
first that very small vectors of this form exist; and then use
the basis reduction algorithm of LLL to find short (but not
shortest) vectors in this lattice; and this will suffice for Step
1.

Lemma 7 (Algorithm for Step 1.) ¢;’s as required in
Step 1 of List-Decode exist and can be found in polynomial
time.

Proof: We set up an {4 2-dimensional integer lattice using
basis vectors vg,...,v, and w described next. Let M be a
very large integer (to be determined later as a function of
N and f). For j € {0,...,£+ 1}, the jth coordinate of the

vector v;, denoted (v;); is given by:

K' ifj=i
(vi); = M-r ifj=£4+1
0 otherwise.

The vector w is zero everywhere except in the last coordinate
where (w)i41 =M - N.

A generic vector in this lattice is of the form u = Zf:o civi+
dw, for integers co,...,c¢ and d. Explicitly the jth coordi-
nate of u is given by:

wy, = [ 9K 0<j<t
DEY M (et +dN) =41

We are interested in showing that this lattice contains
“short” vectors whose last coordinate equals 0, and every
other coordinate has absolute value at most F' (thus satisfy-
ing Eq. (2)). Furthermore, we would like to show that such
vectors can be found efficiently. To his end, we first prove
the following technical lemma.

Lemma 8 For integers r, N if Bo,..., B¢ are positive in-
tegers such that Hf:o B: > N, then there exist inte-
gers co,...,ce¢, such that |c¢;| < By, (co,...,ct) # 0 and

Zf:o cir' =0 (mod N).

Proof: Consider the function f : ZBD X oo X ZB[ —
Zin given by f(co,...,ce) = [Zfzo ciri]N. Since the do-
main has larger cardinality than the range, there exist

different {do,...,d;) and {eq,...,es) s.t. f(do,...,de) =

fleo,...,eq). Setting ¢; = d; — e;, we get |¢;| < By,
> crt =0, and (co,...,co) # 0 as required.

. . 1 WES
Using Lemma 8 with B, = N#™T . K72 ="' we observe

that the lattice defined above has a (short) non-zero vec-
tor (Where the ¢;’s are as guaranteed by the lemma and d =

— Zf:o ciri/N) with the last coordinate identically 0, and
each other coordinate has absolute value at most B; - K* =
1 o4 . .
N#+1 . K72, Thus, the Lz-norm of this vector is at most
1 et . .
VE+2- N1 . K72 . By using the “approximate shortest
vector” algorithm of [24], we find, in polynomial time, a vec-

4 S
tor of L>-norm at most F' = 2T2 A4+ 2~NH1-1 K Tl For



sufficiently large M (any M > F will do), all “short” vec-
tors (i.e., with Lo-norm at most F) have a last coordinate
identical to 0, and thus yield a sequence of ¢;’s satisfying

Zi cir' =0 (mod N) and |¢; - K| < F. This sequence is
as required in Step 1. |

Now we move on to Step 2 of List-Decode. We argue next
that any solution to the list-decoding problem is a root of
the polynomial whose coefficients are given by any solution
to Step 1. Instead of performing the analysis in terms of the
amount of error in the received word, we do so in terms of
the amount of agreement with some message.

Lemma 9 Ifr is such that for some m € Z g the amplitude
of the agreement between (r1,..., 1) and {{m]y,,...,[m]p,)
is greater than 2({ 4+ 1)F, and co, ..., cs are integers satis-

fying Eq. (2), then Zf:o c;m? =0 (i.e., m is a root of the
polynomial C(x)).

Proof: We first observe that since the c¢;’s are small,
Z] c¢;m’ is small in absolute value:

4

D em?| < (C+1) - max{|e;m?|}
7=0 !
< (£41) - max{|e,K7[}
J
< ((+1)-F

Now we observe that for ¢ such that [m],, = r; it holds that

z

4 4

‘ ‘
chmj = ch[m];l = chrf = chrj =0 (mod p;).
3=0 3=0

=0 3=0

Define P = H{i|r Il 1 P By CRT, Zf:o c;m? =0

(mod P). Since the sum Zf:o c;m’ has absolute value
at most (¢ + 1)F, the hypothesis P > 2. (£ + 1)F implies

that the sum is identically zero as required. |

As an immediate consequence of the last two lemmas, we
get a proof of the correctness of List-Decode. The following
proposition describes the performance in terms of amplitude
(for any choice of ¢).

Proposition 10 For any choice of the parameter £, List-
Decode(p, ..., pn, k,71,...,7n) produces a list of up to £ in-
tegers which includes all messages m € ZK such that the

amplitude of agreement between {[m]y,,...,[m]p,) and 7 is
3/2 £42 1 ,H_l
at least 2(€ +2)°/°277 NHT K= .

Proof: By Lemma 7, ¢;’s satisfying Eq. (2) exist and are
found in Step 1. By Lemma 9, any m as in the lemma is a
root of the polynomial Z] c;x’?, and thus is included in the

output. I
The following theorem is obtained by optimizing the choice

of the parameter £ in the above proposition. See the full
version of this paper [15] for its proof.

Theorem 11 List-Decode(ps, ..., pn, k,71,...,Tn) with pa-
rameter { = [ %ﬂ — 1| solves the error-correction
og P1

problem in polynomial time, fore < n—

k+6
=.

lo n
\/2(k + 3)nihle —

Remark: If k/n = ¢, then the above theorem indicates that
approximately 1 — /2 (11‘;—‘;%) - € — ¢/2 fraction of errors
can be corrected. In particular this fraction approaches 1 as
e — 0.

5 The Permanent of Random Matrices

In this section we show that computing the permanent of a
random matrix modulo a random prime is very hard. The
distribution of matrices and primes we consider is the fol-
lowing;:

D is an ensemble of distributions {D.} where D. consists
of pairs (T, p) where T' is an s x s matrix whose entries are
chosen uniformly and independently from Z22s, and pis a
prime chosen uniformly from Zos.

The distributional problem we consider is: Given a ran-
domly chosen pair (T, p) from D., compute the permanent
of T'modulo p. We show that no polynomial time algorithm
is likely to have inverse polynomial probability of solving
this distributional problem.

Lemma 12 ([2] following [28]; cf., [8]) Suppose

there exists a probabilistic polynomial time algorithm A" and
a polynomial v : Zi — 7 such that on input M, an s X s
matriz of 2s-bit integer elements, A'(M) outputs a list of
r(s) integers such that the permanent of M is included in
this list (with probability at least, say, + over the internal

3
coin tosses of A’). Then P#T' = BPP.

We complement this lemma with an algorithm that utilizes
a subroutine for computing the permanent on random in-
stances, and uses it to compute a list of values of the per-
manent on worst-case instances.

Lemma 13 Suppose there exists a polynomial time algo-
rithm A and a function e : Zi — [0,1] such that for every

positive integer s,

Pt AT) = perm(T)]) 2 e(s).

Then there exists a randomized poly(s/e(s))-time algorithm
A’ that on input an s X s matriz M with entries from Z2zs,
outputs a list of at most O(1/e(s)*) integers, which includes
the permanent of M with high probability.

Proof: Assume, w.lo.g, that when given a pair (7, p), al-
gorithm A first reduces each entry of T" modulo p. Our
algorithm for reconstructing the permanent of any s-by-s
matrix, M, is given below:



Algorithm Perm(M).

o Parameters n = poly(s/e(s)), »’ = O(s/e(s)?)

e Uniformly select n random primes pi,...,pn in the

interval [2°/2,2°].

e Fori=1tondo /* try to obtain [perm(M)],, */

Subroutine Mod-Perm (M, p;).

— Uniformly select an s x s random matrix R with
entries from Zy,..

— Forj=1ton'do /* try to obtain [perm(M +
JB)]p. */
Let v; = A(M +j - R, pi);
— Reconstruct a list of all degree s univariate poly-
nomials {f1,..., fir} that satisfy fn(y) = v; for
at least an €(s)/16 fraction of the v;’s.

— Uniformly select a random h € {1,...,¢'} and set
r; = fh(O).
/* with probability poly(e(s)) (taken over the
choice of p; and the internal coins of Mod-
Perm), we will have r; = [perm(M )], */

o Reconstruct a list of all integers =z < s12°" such that
[z]p; = 7 for at least t = O(e(s)*) - n of the i’s, and
output this list. Namely, apply List-Decode with pa-
rameters p1,...,pn, kK = 6s (as K = s12°° < 2%7 and
Vi, p; > 25/2), and 71,...,7n.

The polynomial reconstruction step may be performed using
the algorithm of [38], which requires n’ > 2s - (¢(s)/16) 2.
(To recover polynomials of degree s from a list of values at
n' places, the algorithm requires the agreement t' to sat-
isfy ¢ > +/2sn’.) The reconstruction of integers satisfy-
ing the Chinese Remainder Property uses Theorem 11 and
works when n = Q(s/¢(s)®). (Here to recover all sequences
with agreement ¢ out of n places, the algorithm requires

t = Q(Vn) = Q(y/5n).)

Let P, denote the set of primes in the interval [2°/2 2°].
Let D, be the distribution over pairs (T",p') where p' is
chosen uniformly in P. (rather than among the primes in

Ziss, as defined by D.), and then 7" is chosen uniformly
from the set of s x s matrices with entries from Zp/ (rather
than by reducing modulo p’ a matrix with entries chosen
independently and uniformly in Z22s). We notice that the
statistical difference between the two distributions is at most

O (ws_ﬁl) +s%- 2 which is negligible (where the first

25 /s CYER)

term comes from the probability that in D: a prime smaller
than 2°/2 is selected, and the second from uneven wrap-
around in the reduction modulo a prime). In particular this
implies that

~—

P

r
(T7,p")ED;

[A(T/,p/) = [perm(T')]p,] > E(TS )

Say that a prime p’ (from P.) is good if

L A ) = e (1] 2 )

A simple counting argument shows that at least e(s)/4 frac-
tion of the primes in P, are good.

For any fixed good prime p’, and for any j € {1,...,n'}, we
thus have that

Pr [A(M —|—jR,p/) = [perm(M —|—jR)]p/] > ﬂ
ReZ;,XS 4

(recall that we assume that when given a pair (7, p), algo-
rithm A first reduces each entry of 7" modulo p). Say that
a matrix R is compatible with p’ if

Pr||{j: AM +jR,p) = [perm(M + jR)], } | > %n,

€(s)
> 16’
(where the probability here is taken only over the coin flips
of A). It is not hard to verify that the probability that a
random R is compatible with p' is at least €(s)/8. It follows
that for any good p’,

' €(s) e(s)

Pr [I\/Iod Perm(M,p") = [perm(M)]p/] > 5 TR
where the first term (e(s)/8) is the probability that R is
compatible with p’; the second (e(s)/16) is the probability
that A returns the correct output for at least e(s)/16 frac-
tion of the j’s (so that the polynomial reconstruction can
work), conditioned on R being compatible; and the third
term (1/¢') is the probability of selecting the correct index
k. As ' < 2-(e(s)/16)" (cf., [38]), the above probability is
Q(e(s)?).

Recall that the probability that each p; (uniformly selected
in P,)is good is at least €(s)/4. Hence, the probability, taken
over the choice of p; and the random coin flips of Mod-Perm
that Mod-Perm (M, p;) = [perm(M)]p,, is Q(e(s)*). Finally,
since the success events of the various #’s are independent,
by applying a Chernoff bound, we get that with high prob-
ability, the number of p;’s for which r; = [perm(M)],, is at
least Q(e(s)*) - n. In this case List-Decode will succeed in

reconstructing a list that includes perm(M). |

By combining Lemma 12 and Lemma 13 we get

Theorem 14 Suppose there exists a polynomial time algo-

rithm A and a positive polynomial function q : Zi — 7 such
that for every positive s,

Pr (AT, p) = [perm(T)},] > —

T ,p) = [perm > —

(T,p)EDs " qls)

Then P#P = BPP.

Remark 15 A quick examination of the proof shows that
the theorem continues to hold if the distribution D, is altered

so that the primes are chosen uniformly from Zf(s), and
the entries of the matrix are chosen uniformly from Zf2(s),
where f is any super-polynomial function. For f(s) > 2452,

there exists a sempler argument which does not use the CRT
decoding algorithm (see [15]).



6 Improvements and Applications

6.1 Nearly linear time algorithms for the CRT Code

In this section we review some well-known results which
yield fast algorithms for tasks associated with the CRT code.
In particular, there exist nearly linear time algorithms for

encoding and for decoding with (n — k)ﬁ_l_il? €rTOoTS.

The following theorem summarizes these results.

Theorem 16 For relatively prime integers pi1,...,pn, let
b = Z:;l(l + |log, pi|). Then the following tasks can be

performed in time O(blog®b) for some constant c:

1. Encoding: Given k < n and m < Hle pi, compute

([m]pr, - [mpn)-

2. Decoding without errors: Given k < n and (r1,...,rs),
ri € Lap,, compute m < Hle pi such that [m],, = r;
for everyi € {1,...,n}, in case such m exists.

3. Decoding with errors: Given k < n and (r1,...,rs),
ri € Lap,, compute m < Hle pi such that [m],, # r;

1 .
for at most (n—k)ﬁ_lfolg—h values of 1 € {1,...,n},

in case such m exists.

Parts (1) and (2) of Theorem 16 follow immediately from the
fact that the Chinese remainder representation can be com-
puted and inverted in nearly linear time (cf. [7, Theorems
4.5.3 and 4.5.8]). These results in turn follow from nearly
linear time algorithms due to Schonhage and Strassen [33]
for multiplying and dividing two integers. (These algo-
rithms are combined with a binary-tree structure in which
the residues modulo individual p;’s are associated with the
leaves and the residue modulo H:‘l=1 pi 1s associated with the
root.) So we just need to prove Part (3); that is, we show
that the algorithm Unique-Decode can be implemented in
nearly linear time.

A nearly linear time implementation of Step 2 (i.e., com-
puting z/y) follows from the nearly linear time algorithm
for integer division of Schonhage and Strassen [33] and from
the fact that both z and y are at most b-bits long. Thus, we
focus on Step 1. In this step we wish to compute y and z
subject to the Eqn. (1). Equivalently, given N, E and r, we
wish to find integers z,y such that

1<y<FE, z>0,and 0<y-r—x-N<N/E. (3)

In turn the above can be rewritten as:

x r x 1
1<y<F z>0,and — < =< —4+ ——. 4
<y<E 220, < w <yt W

Setting oo = %, the above problem is that of approximating

a rational « from below by another rational number % with

denominator no larger than E. (In particular the approxi-

mation should be within an additive factor of less than LE)

This will be done using the “continued fractions method”,
and specifically algorithms due to Knuth [21].

We briefly introduce some notation and summarize known
results regarding continued fractions. We follow the descrip-
tion in Lovasz [27, pages 9-12]. Given a positive real a,

consider the sequence ao, a1, ..., defined as follows: ag = «
and ag = |ag|. Fori=0,1,..., if a; = a; then the sequence
terminates, else we define a;41 = and ait1 = [@it1].
Let CF(«) denote the sequence (ag, a1, ...). It is well known
that this sequence has finite length if and only if « is ra-
tional. Furthermore, for every finite sequence (ao,...,a;)
of integers a; > 1, there exists a unique rational number «
such that CF(«a) = (a0, a1, ...,a;). We use CF_l(ao, S, a)
to denote this a. Turning to algorithmics, we recall that
the function CF can be computed and inverted in nearly
linear time [21]: That is, if « is given as the ratio of
two n-bit integers, then CF(a) can be computed in time
O(n logo(l)n). Conversely, given a sequence of integers
(@0, ..., a;) with bit lengths summing to n, a pair of integers
p, ¢ such that p/¢ = CF™(ao,...,a;) can also be computed
in time O(nlog®" n).

Qg —ay

The properties of the continued fraction representation that
are of interest to us are the following. For rational «, let
(ao,01,az,...,a1) = CF(a). For 0 < i < [, let &£ =
CF~'(ao,...,a:). Then the following facts hold (see [27,
pages 9-12] for proofs):

(CF1) The h;’s are monotonically increasing.

(CF2) The gi’s and h;’s satisfy git1-hi —gi-hit1 = (—l)i

sgn (a — z—z) In particular it follows that [or — J| <

ﬁ for every 1.
(CF3) For any integer E, let k be the largest index such

that hy < E. Let j = {%J FE e, and

rdef gp 14795
A= msit iy ) Then,
1. the number o lies between 1 = min{g, '} and
B2 = max{3, 3’} (each being a rational with de-
nomenator at most £); and

2. every rational lying strictly between #1 and S
has a denominator strictly larger than E.

It follows that @1 is the largest rational less than o
with denominator at most F.

We show that 81 as in (CF3) necessarily satisfy Eqn. (4), in
case some y', ' satisfying this equation do exist. Further-
more, we show that in case o = r/N and r, N are given, £
can be found in almost linear time. This yields the algo-
rithm we were looking for. We comment that 1 is the best
rational lower bound on o = & with denominator bounded

N
by F. That is, y, z satisfy % < a, y < E and every rational

between % and o has denominator greater than F.

Proposition 17 Let £ be an integer and o be a number so
that

1
1<y<E >0, and > <a<=+4——  (5)
y y y-FE

has a solution. Then the rational 31 as in (CF3) is a solu-
tion. Furthermore, given b-bit integers r, N, E, and setting
a = /N, it is possible to compute the rational /1 in time

O(blog®b).



By the premise of Part 3 of Theorem 16 (concerning the ex-
istence of m as desired), and Claim 5.1, we know that there
exists a solution to Eqn. (5). Part 3 of Theorem 16 follows
using the same arguments as in the proof of Theorem 6.
The proof of Proposition 17 is given in the full version of
this paper [15].

6.2 Secret Sharing based on CRT

We present a new scheme for secret sharing. The scheme
is based on the CRT-code, analogously to the way Shamir’s
secret-sharing scheme [34] is based on Reed-Solomon codes.

Recall that in Shamir’s scheme, for parameters ¢ < n and
g > n, one is given a secret s € GF(q) and shares it among
n parties by uniformly selecting a degree ¢ polynomial, p,
over GF(g) with free term s, and handing p(i) to the ™
party. Clearly, any ¢+ 1 parties can recover the secret (by
interpolation), whereas no set of ¢ parties obtains any infor-
mation about the secret. In abstract terms, Shamir’s scheme
consists of selecting a random codeword among those of a
certain “label”, and giving each party a block of bits in the
codeword. We can do the same in case of the CRT code,
and our secret sharing scheme follows.

Construction 18 (The CRT secret-sharing scheme):

parameters: ¢ < n and primes po < p2 <p1 < -+ < pn.

sharing: To share a secret aodéfs € GF(po) one does the
following

1. uniformly selects a1 € GF(p1),..., ay € GF(p¢);

2. findsx € ZHt so that x = a; (mod p;), for

. i=0 "
1=0,1,...,¢;
3. sets the i*" share to be r mod p;, fori=1,...,n.
reconstructing: Given any t+ 1} shares, siy,...;8i,,,, cor-
responding to parties t1,...,1441, one reconstructs the

secret as follows

1. finds y € ZHt+1
j=1""%

forg =1, t,t+1.

2. recover the secret to be (y mod po).

so that y = s;; (mod pi,),

We first show that the reconstruction indeed works. Con-
sider ¢ and y as computed in Step (2) of the Sharing proce-
dure and Step (1) of the Reconstruction procedure, respec-
tively. Clearly, y = « (mod p;;), for j = 1,...,t,t 4+ 1.
Viewing ¢ and y as non-negative integers, we have z <
HZ.:O pi < H;-I:l pi; and ¢ = y. Thus, y = ¢ (mod p;)
for every ¢ = 0,1,...,¢, and y = s (mod po) follows. On
the other hand, the first ¢ shares yield no information about
the secret. As for other sets of upto ¢ shares, here some
information about the secret is leaked, but we can upper
bound its amount.

Proposition 19 Let s,s' € GF(po), let r1,...,r: be chosen
as in Step (1) of the sharing Sharing, and let X (s) (resp.,
X(s")) denote the value computed in Step (2). Then, for

every set I C [n] of indices, the statistical difference between

(X (s) mod Hiejpi) and (X (s') mod Hiejpi) is at most

Hiejpi
Hzt‘=1 pi

Thus, in general, security is provided only for |I| < ¢t —1
(rather than for |I| < ¢ as in case of Shamir’s shceme). An
advised choice of parameters is to have p;’s be of the same
magnitude and large enough so that 1/p; is negiligible in the
security parameter.

2.

Proof: Let us further generalize the claim and consider,
for two integers K, M each relatively prime to p, the ran-
domized process R : Zi, — Zipx which maps each s € Z,
to a uniformly selected member of {r € ZPK r = 8

(mod p)}. We are interested in the statistical difference

between (R(s) mod M) and (R(s') mod M), for the worst

. . def ~def
possible pair s,s’ € Zp. (In our case, p=po, K= H:‘=1 Pi,

R(s)défX(s), and M = Hie]pi')

Clearly R(s) = s+ - p, where r is uniformly chosen in Zix
(and same for R(s')). So,

[R(s)]mr = [s]ar +[r]ar - [plar - (mod M)

The point is that [r]as is the only randomness in the r.h.s.,
and that multiplying by [plas is a permutation over Z
(since p is relatively prime to M). Thus, if [r]as is uni-
formly distributed over Zias then [R(s)]a and [R(s")]ar are
identically distributed. In general, the statistical difference
between the latter is bounded by twice the statistical differ-
ence of [r]as (where r is uniformly chosen in ZK) from the
uniform distribution on ZM In case M divides K the sta-
tistical difference is zero, and otherwise it is (K mod M)/K

which is bounded above by M/K. The claim follows. |
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