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Guest Column: List Decoding: Algorithms and Applications.

Madhu Sudan1

Abstract

Over the years coding theory and complexity theory have benefited from a number of mutu-
ally enriching connections. This article focuses on a new connection that has emerged between
the two topics in the recent years. This connection is centered around the notion of “list-
decoding” for error-correcting codes. In this survey we describe the list-decoding problem, the
algorithms that have been developed, and a diverse collection of applications within complexity
theory.

1 Introduction

The areas of coding theory and complexity theory have had a long and sustained history of inter-
esting connections. Early work on computation in the presence of noise built on these connections.
Recent successes of complexity theory, showing IP=PSPACE and giving PCP characterizations of
NP have relied on connections with coding theory either implicitly or explicitly. The survey article
of Feigenbaum [10] gives a detailed account of many connections and consequences.

Over the last few years a new strain of connections has emerged between coding theory and
complexity theory. These connections are different from the previous ones in that they rely espe-
cially on the qualitative strength of the decoding algorithms; and in particular on the ability to
recover from large amounts of noise. The first work in this vein seems to be that of Goldreich and
Levin [12], whose work describes (implicitly) an error-correcting code and gives a highly efficient
algorithm to decode the code from even the slightest non-trivial amount of information. They then
use the algorithm to give a generic construction of hard-core predicates from an arbitrary one-
way function. Subsequently, there have been a number of other such results providing even more
powerful decoding algorithms and deriving other applications from these algorithms to complexity
theory.

1 c© Madhu Sudan, 2000. Laboratory for Computer Science, MIT, Cambridge, MA 02139, USA.
E-mail: madhu@mit.edu.
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The main theme common to these works is the application of a new notion for decoding of
error-correcting codes called list decoding. List decoding formalizes the notion of error-correction,
when the number of errors is potentially very large. Borrowing the terminology from the area of in-
formation communication, recall that to transmit information over a noisy channel, the transmitter
transmits a codeword of an error-correcting code. This transmitted word is corrupted by the noisy
channel, and the receiver gets some corrupted word that we will call “the received word.” If the
number of errors that occur during transmission is very large, then the received word may actually
be closer to some codeword other than the transmitted one. Under the mandate of list-decoding,
the receiver is required to compile a list of all codewords within a reasonable sized Hamming ball
around the received word (and not just the nearest one). The list-decoding is declared to be
successful if this list includes the transmitted word.

This notion of list decoding was proposed by Elias [9] in the 1950’s. However till recently no
non-trivial2 list decoding algorithms were known for any error-correcting code. Of late, we have
seen a spurt of efficient list-decoding algorithms; and equally interestingly, a diverse collection of
applications of these list-decoders to complexity theoretic problems. In this survey, we describe
some of these results. First we start with some definitions.

2 Error-correcting codes and list-decoding

A block error-correcting code C is a collection of strings called codewords, all of which have the
same length, over some finite alphabet Σ. The three basic parameters describing the code are the
size of the alphabet, denoted q; the length of the codewords n; and an information parameter k,
where the number of codewords is qk. Such a code is succinctly referred to as an (n, k)q code3. If
Σ has a field structure imposed on it, then Σn may be viewed as a vector space. If additionally C
forms a linear subspace of Σn, then C is termed a linear code and denoted an [n, k]q code4. Almost
all codes dealt with in this article will be linear codes.

In order to ensure that the code helps in the recovery from errors, one designs codes in which
any two codewords differ from each other in large number of locations. Formally, let the Hamming
distance between strings x and y from Σn, denoted ∆(x, y), be the number of coordinates where x
and y differ from each other. The the distance of a code C, typically denoted d(C), is the minimum,
over all pairs of non-identical codewords in C, of the distance between the pair.

One of the first observations that can be made about a code C with distance d is that it can
unambiguously correct d−1

2 errors, i.e., given any word r ∈ Σn, there exists at most one codeword
c ∈ C such that ∆(r, c) ≤ d−1

2 . It is also easy to find a word r such there exist two codewords at
distance d+1

2 from it, so one can not improve the error bound for unambiguous decoding. However
it was realized early on that unambiguous decoding is not the only useful notion of recovery from
error. Elias [9] proposed the notion of list decoding in which a decoding algorithm is expected to
output a list of all codewords within a given distance e from a received word r ∈ Σn. If the list
of words output is relatively small, then one could consider this to be a reasonable recovery from
error. Algorithmically, this problem is stated as follows:

Definition 2.1 (List decoding problem for a code C)
Input: Received word r ∈ Σn, error bound e.

2Here triviality is used to rule out both brute-force search algorithms and the unique decoding algorithms.
3Sometimes in the literature this would be referred to as an (n, qk)q code, where the second parameter counts the

number of messages as opposed to say the “length” of the message.
4Note the subtle change in the notation.
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Output: A list of all codewords c1, . . . , cm ∈ C that differ from r in at most e places.

As usual, the goal is to solve the list decoding problem efficiently: i.e., in time polynomial in n.
However this is only possible if the output size is polynomially bounded in n. This motivates the
following, purely combinatorial, question.

Definition 2.2 (List decoding problem: Combinatorial version)
For every c, determine the function ec(n, k, d, q) such that for every (n, k)q code C of distance
d(C) = d, and for every received word r ∈ Σn, there are at most (qn)c codewords in the Hamming
ball of radius e around r.

We would like to study the asymptotic growth of ec when we say fix the ratio k/n and d/n
and let n → ∞. If it makes sense, we would then like to study e∞, the limit of ec as c → ∞.
It turns out that e∞ is fairly well-understood and this will be described in Section 3. Somewhat
coincidentally, for a variety of codes, the list decoding problem can be solved in polynomial time
provided e < (1− o(1))e∞. These results will be described in Section 4.

Before concluding this section, we present one more version of the algorithmic list-decoding
problem that has been studied in the literature. This version is motivated by the question: Are
there sub-linear time list-decoding algorithms for any error-correcting code? At first glance, linear
time in n appears to be a lower bound on the running time since that is the amount of time it
takes to read the input, or even the time to output one codeword. However, by being specifying
the input implicitly and allowing the output also to be specified implicitly, one is no longer subject
to these trivial lower bounds on computation time. The notion of implicit representation of the
input can be formalized by using an “oracle” to represent the input—when queried with an index
i, the oracle responds with the ith bit of the received word. The notion of implicit representation
of the output is somewhat more involved. Roughly we would each element of the output list to be
described succinctly by a program that computes any one coordinate of the codeword. However
these programs are allowed to be randomized; furthermore, they are allowed to make oracle calls
to the implicit input when attempting to compute any one coordinate of the output. The notion of
implicit representation of an output (codeword) is thus formalized by the concept of “probabilistic
oracle machines,” machines that are allowed to make oracle calls (to the received word). Under
this formalism, the list decoding problem may now be rephrased as:

Definition 2.3 (List decoding problem: Implicit version)
Implicit Input: Oracle access to received word r : {1 . . . , n} → Σ, error bound e.
Output: A list of all codewords c1, . . . , cm ∈ C, represented implicitly by probabilistic oracle ma-
chines M1, . . . ,Mm working with oracle access to r, that differ from r in at most e places.

We remark that these implicit representations have now become common and useful in the
theory of computation (e.g., in works on program testing/self-correcting, PCPs etc.). They allow
for more modular use of algorithmic ideas; and results expressed in these terms deserve attention.
It turns out that for the list decoding problem highly efficient solutions exist in this model for some
codes—essentially in time polynomial in log n. This efficiency translates into some very useful
applications in complexity, and this will be described in the forthcoming sections.

3 Status of the combinatorial problem

We first sketch the status of the combinatorial problem described above. It is easily seen that
e∞(n, k, d, q) ≥ e0(n, k, d, q) = d−1

2 (the unambiguous error-correction radius). Also, if the parame-
ters are such that an (n, k)q code with distance d does exist, then it is also possible to get one along
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with a received word that has exponentially many codewords at distance d from it. Informally, this
suggests e∞(n, k, d, q) ≤ d (though to be formal, we should first let n go to infinity, and then let c
go to infinity!). Thus it seems reasonable to believe that ec may be of the form αd, where α is some
universal constant between 1/2 and 1, and possibly a function of c. Unfortunately, the answer is
not so simple: ec turns out to be a function also of n and q and surprisingly is not very dependent
on c. Roughly, (if q is very large), then ec ≈ n−

√
n(n− d). (Even the task of performing a sanity

check on this expression, i.e., to verify that d/2 ≤ n−
√
n(n− d) ≤ d, takes a few moments!) Some

insight into this expression: If d = o(n), then n−
√
n(n− d) is well approximated by d/2. However,

if d is large, i.e., d = n− o(n), then the bound on e is also n− o(n) and so the list-decoding radius
is not limited by “half the distance” barrier in this case.

The following theorem essentially refines the above expression to take into account small values
of q. Recall that the “Plotkin bound” of coding theory shows that error-correcting codes with
d ≥ (1−1/q)n have only polynomially many codewords and hence are not very interesting. Thus it
makes sense to compare d and e as fractions of n′ rather than n. The theorem statement replaces
all occurrences of n in the expression above by n′ = (1− 1/q)n.

Theorem 1

1. Let n, k, d, q, e satisfy d ≤ n′ and e <

(
1−

√
1− d

n′

)
n′ where n′ =

(
1− 1

q

)
n. Then, for

every (n, k)q code C with d(C) ≥ d and for every received word r, there are at most qn2

codewords within a Hamming distance of e from r.

2. For every n, d, q, e such that d < n′ and e ≥ (1 + ε)
(

1−
√

1− d
n′

)
n′ where n′ =

(
1− 1

q

)
n,

there exists a (non-linear) (n, k)q code C of distance at least d and a received word r, such
that there are exponentially many codewords (with the exponent growing with εn) within a
Hamming distance of e from r.

Note: The theorem above appears explicitly in Goldreich, Rubinfeld, and Sudan [13]. The crucial
direction, Part (1) above, is a q-ary extension of the “Johnson bound” in coding theory. Johnson
proves this bound only for the binary case, but the extension to the q-ary case seems to be implicitly
known to the coding theory community [27, Chapter 4, page 301].

Theorem 1 yields an asymptotically tight result on e∞. To study this asymptotic limit, let us
minimize some of the parameters above. First notice that k does not play any role in Part (1)
of the theorem. So let ec(n, ·, d, q) denote the minimum over k of ec(n, k, d, q). Now further fix
d = n(1− 1

q )δ and let q = q(n) be any function of n. Now let

εc(δ) = lim
n→∞

e(n, ·, (1− 1
q )δn, q)

(1− 1
q )n

.

Let ε∞(δ) = limc→∞ εc. Then Theorem 1 above can be summarized as:

Corollary 1 For δ ∈ [0, 1], ε2 = ε∞(δ) = 1−
√

1− δ.

In the next section, we will describe algorithmic results which come close to matching the
combinatorial results above.
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4 Specific codes and performance of list-decoding algorithms

We start by introducing the reader to a list of commonly used (and some not so commonly used)
error-correcting codes. In the first five codes below, q will be assumed to be a prime power, and Σ
will be a finite field on q elements.

Hadamard codes. For any k, the Hadamard codeHk is a (n = qk, k)q code with distance (1− 1
q )qk,

obtained as follows: The message is a k dimensional vector α. The codeword is indexed by space
of k-dimensional vectors. The β-th symbol in the encoding of α is their inner product

∑k
i=1 αi · βi.

(Generalized) Reed Solomon codes. Here the message is thought of as specifying a degree
k − 1 polynomial by giving it k coefficients. The encoding evaluates the polynomial at n distinct
points in the finite field. (It follows that q has to be at least n.) The fact that two distinct degree
k − 1 polynomials may agree on at most k − 1 points yields that the distance is at least n− k + 1.
The fact that there do exist distinct degree k − 1 polynomials that agree at any given subset of
k − 1 places shows that the distance is exactly n− k + 1.

Reed Muller codes. Reed Muller codes may be viewed as a common generalization of Reed
Solomon codes and Hadamard codes. For parameters m and l, the Reed Muller code has k =

(m+l
m

)
and n = qm. The message is viewed as specifying a degree l polynomial over m variables. The
encoding gives the evaluation of this polynomial at every possible input. For l < q, the codewords
are at a distance of at least (1− l/q)n from each other.

Algebraic geometric codes. These codes are also generalizations of the generalized Reed
Solomon codes. Description of the construction of these codes is out of scope. All we will say
is that they yield (n, k)q codes with distance at least d = n − k − n/(√q − 1) when q is a square.
This beats the parameters achieved by the random code, provided q is large enough!

Concatenated codes. This term refers to any code obtained by a certain process, called con-
catenation of codes, that derives a new code from two given codes. Specifically, given an “outer”
code over a qk-ary and an ”inner” code of dimension k over a q-ary alphabet, the concatenated
codeword corresponding to a given message is obtained by first encoding the message using the
outer code, and then encoding each symbol of the resulting string by the inner code. If the outer
code is an (n1, k1)qk2 code and the inner code is an (n2, k2)q code, then the concatenated code is an
(n1n2, k1k2)q code. If d1 is the distance of the outer code and d2 is the distance of the inner code,
then the concatenated code has minimum distance d1d2. In this section we will consider codes
obtained by concatenating a Reed-Solomon, Reed-Muller or Algebraic-Geometry code as the outer
code with a Hadamard code as the inner code.

Chinese remainder codes. These codes are an aberration in the class of codes we consider in
that they are not defined over any single alphabet. Rather the i-th symbol is from an alphabet
pi, where p1, . . . , pn are n distinct primes arranged in increasing order. The messages of this code
are integers between 0 and K − 1, where K =

∏k
j=1 pj . The encoding of a message is the n-tuple

of its residues modulo p1, . . . , pn. In the coding theory literature, this code is often referred to as
the Redundant Residue Number System code. As an easy consequence of the Chinese Remainder
Theorem, we have that the message can be inferred given any k of the n residues making this a
code of distance n−k+ 1. If p1 ≈ pn ≈ p, then one may view this code as approximately an (n, k)p
code.
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4.1 List decoding results: Explicit version

For some families of codes, it is possible to get algorithms that perform list-decoding in polynomial
time for e, the number of errors, as large as the bound in Theorem 1. The following theorem lists
this family of results.

Theorem 2 Let C be an (n, k)q code with designed distance5 d = δn′, where n′ = (1 − 1/q)n.
Further, if C is either a (1) Hadamard code, (2) Reed-Solomon code, (3) Algebraic-geometric code,
(4) Reed-Solomon or algebraic-geometry code concatenated with a Hadamard code, or (5) Chinese
remainder code, then it has a polynomial time list decoding algorithm that decodes from e < (1 −√

1− δ)n′ errors.

Remarks:

1. Proofs of any of these results is out of scope. We will simply give some pointers here.

2. Note that the result for Hadamard codes is trivial, since this code has only n codewords.
Thus a brute force search algorithm that lists all codewords and then evaluates their distance
against the received word to prune this list, runs in time O(n2).

3. An algorithm for list-decoding the Reed-Solomon codes when e < n−
√

2n(n− d) was given
by Sudan[31] based on earlier work of Ar, Lipton, Rubinfeld, and Sudan [2]. For the case of
explicit list-decoding problem this was the first non-trivial list-decoder that was constructed
for any code. The tight result above is from the work of Guruswami and Sudan [17].

4. The first list-decoder for algebraic-geometry codes was given by Shokrollahi and Wasser-
man [29]. There error bound matched that of [31]. The tight result above is again from [17].

5. It is easy to combine non-trivial list-decoders for the outer code and inner code to get some
non-trivial list decoding of a concatenated code. However, such results will not obtain the
tight result described above. The tight result above is also due to Guruswami and Sudan [18].

6. A list decoder correcting n −
√

2kn log pn

log p1
errors for the Chinese remainder codes was given

by Goldreich, Ron, and Sudan [14]. Boneh [7] recently improved this bound to correct n −√
kn log pn

log p1
errors. Even more recently Guruswami, Sahai, and Sudan [16] improve this to

correct n−
√
nk errors.

4.2 List decoding results: Implicit version

For the implicit list-decoding problem, some fairly strong results are known for the cases of
Hadamard codes, Reed-Muller codes and consequently for concatenated codes. We describe these
results in the next two theorems. For the case of binary Hadamard codes, Goldreich and Levin [12]
gave a list-decoding algorithm when the received word is specified implicitly. They consider the
case when the number of errors is arbitrarily close to the limit of Theorem 1, and in particular takes
the form e = (1

2 − γ)n. They give a randomized algorithm whose running time is poly(log n, 1
γ )

5In at least two cases, that of algebraic-geometry codes and algebraic-geometry codes concatenated with Hadamard
code, the code designed to have distance d, may turn out to have larger minimum distance. Typical decoding
algorithms are unable to exploit this extra bonus, and work only against the designed distance of the code; in fact,
there may be no short proof of the fact that the code has this larger minimum distance. This explains the term
“designed distance” of a code.
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and reconstructs explicitly a list of all messages (note that message lengths are O(log n) for the
Hadamard code) that come within this error of the received word. Subsequently, this algorithm
was generalized to general q-ary Hadamard codes by Goldreich, Rubinfeld, and Sudan [13]. This
yields the following theorem.

Theorem 3 There exists a probabilistic list decoding algorithm in the implicit input model for
Hadamard codes that behaves as follows: For an (n, k)q code C, given oracle access to a received
word r, the algorithm outputs a list that includes all messages that lie within a distance of e from
the received word. The running time of the algorithm is a polynomial in log n, log q and n

n− q
q−1

e
.

For the case of Reed-Muller, equally strong list-decoding results are known, now with the output
representation also being implicit. Arora and Sudan [3] provided such a list-decoder provided the
error bound satisfies e < n(1− (1− d/n)ε), for some positive ε. Sudan, Trevisan, and Vadhan [32]
improved this bound to a tighter bound of e < (1−

√
1− d/n)n, thus yielding the following theorem.

Theorem 4 There exists a probabilistic list decoding algorithm in the implicit input and implicit
output model for Reed-Muller codes that behaves as follows: For a (n = qm, k =

(m+l
l

)
)q Reed-

Muller code C, given oracle access to a received word r, the algorithm outputs a list of randomized
oracle programs that includes one program for each codeword that lies within a distance of e from
the received word, provided e < (1−O(

√
l/q))n. The running time of the algorithm is a polynomial

in m, l and log n.

As pointed out earlier. it is easy combine list-decoding algorithms for outer and inner codes to
get a list-decoding algorithm for a concatenated code. By concatenating a Reed-Muller code with
some appropriately chosen Hadamard code, one also obtains the following result, which turns out
to be a handy result for many applications. In fact, all results of Section 5 use only the following
theorem.

Theorem 5 For every q, ε and k, if n ≥ poly(k, q, 1
ε ) there exists an (n, k)q code with a polynomial

time list-decoding algorithm for errors up to (1 − 1/q − ε)n. Furthermore, the algorithm runs in
time polynomial in log k and 1/ε if the input and output are specified implicitly.

The above result, specialized to q = 2 is described explicitly in [32]. The general codes and
list-decoding algorithm can be inferred from their proof.

5 Applications in complexity theory

Algorithms for list-decoding have played a central role in a variety of results in complexity theory.
Here we enumerate some (all?) of them.

Hardcore predicates from one-way permutations. A classical question lying at the very
foundations of cryptography is the task of extracting one hard Boolean function (predicate), given
any hard one-way function. Specifically given a function f : {0, 1}k → {0, 1}k that is easy to
compute but hard to invert, obtain a predicate P : {0, 1}k → {0, 1} such that P (x) is hard to
predict given f(x). Blum and Micali citeBM showed how it was possible to extract one such hard
predicate from the Discrete Log function and used it to generate cryptographically strong sequences
of pseudo-random bits. A natural question raised is whether this ability to extract hard predicates
is special to the Discrete Log function, and if not, could such a hard predicate be extracted from
every one-way function f .
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At first glance this seems impossible. In fact, given any predicate P , it is possible to construct
one-way functions f such that f(x) immediately gives P (x). However, this limitation is inherited
from the deterministic nature of P . Goldreich and Levin [12] modify the setting to allow the
predicate P to be randomized. Specifically, they allow the predicate P to be a function of x and an
auxiliary random string r. P is considered hardcore for f if P (x, r) is hard to predict with accuracy
better than 1

2 + ε given f(x) and r. (The function P is said to be predictable with accuracy α if
the output of some polynomial sized circuit agrees P on α fraction of the inputs.) They then show
that this minor modification to the problem statement suffices to construct hardcore predicates
from any one-way function.

One parameter of some interest in the construction of hardcore predicates is the length of the
auxiliary random string. Let l denote this parameter. The initial construction of [12] (which was
based on their list-decoding algorithm for the Hadamard code) sets l = k. Impagliazzo [19] gives
an substantial improvement to this parameter, achieving l = O(log k + log 1

δ ), by using the list-
decoders for Reed-Solomon and Hadamard codes. It turns out that both constructions can be
described as a special case of a generic construction using list-decodable codes. The construction
goes as follows: Let C be a (n, k)2 binary code as given by Theorem 5 with ε set to some poly(δ).
Then the predicate P (x, r) = (C(x))r (the rth bit of the encoding of x) is as hard as required. The
proof follows modularly from the list-decodability property of C. Specifically, if for some x, the
prediction of the circuit agrees with P (x, ·) for a 1

2 + ε fraction of the values of i ∈ {1, . . . , n}, then
one can use the list decoder to come up with a small list of candidates that includes x. Further,
the knowledge of f(x) tells us how to find which element of the list is x. The hardness of inverting
f thus yields that there are not too many x’s for which the circuit can predict P (x, ·) with this
high an accuracy. Now to see the effectiveness of Theorem 5, note that the extra input has length
log n, which by the theorem is only O(log k + log 1

δ ).
Aside: Recall that the early results of Blum and Micali [6] and Alexi, Chor, Goldreich, and

Schnorr [1] that gave hardcore predicates for specific one-way functions (namely, Discrete Log and
RSA) actually use l = 0 extra randomness. It would be interesting to see if these specific results
can also be explained in terms of list-decoding.

Predicting witnesses for NP-search problems. Consider an NP-complete relation such as
3-SAT. Kumar and Sivakumar [24], based on earlier work of Gal, Halevi, Lipton, and Petrank [11],
raise the question of whether it is possible to efficiently construct a string x that has non-trivial
proximity to a witness of the given instance. For general relations in NP they show that if some
string with distance 1

2 + ε can be found; then NP=P. They show this result using the list-decoding
algorithms for Reed Solomon and Hadamard codes. Again this result can be explained easily using
Theorem 5 as follows: Construct an NP relation whose instances are, say, instances of satisfiability
but whose witnesses are encodings, using a code obtained from Theorem 5, of satisfying assignments.
Given a string that has close proximity to a valid witness, one can recover a small set of strings
one of which includes the witness.

Amplifying hardness of Boolean functions. One of the recent success stories in complexity
theory is in the area of finding complexity theoretic assumptions that suffice to derandomize BPP.
In a seminal result in this direction, Impagliazzo and Wigderson [22], show that a strong form of
the assumption “E does not have subexponential sized circuits” implies BPP=P. One important
question raised in this line of research is on amplification of the hardness of Boolean functions.
Specifically, given a Boolean function f : {0, 1}l → {0, 1}, transform it into a Boolean function
f ′ : {0, 1}lO(1) → {0, 1} such that if no small circuit computes f , then no small circuit computes f ′

on more than 1
2 + ε fraction of the inputs.
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[22] give such a transformation which goes through a sequence of of transformations: one from
Babai, Fortnow, Nisan and Wigderson [4], one from Impagliazzo [20], and a new one original to
[22]. Again this step can be modularly achieved from error-correcting codes efficiently list-decodable
under the implicit input/output model, as follows (from Sudan, Trevisan, and Vadhan [32]): Think
of f as a 2l bit string and encode this string using an error correcting code. Say the encoded
string is a 2l

′
bit string. Then this function can be thought of as the truth table of a function

f ′ : {0, 1}l′ → {0, 1}. It follows from the list-decodability properties of the error-correcting code
that f ′ is highly unpredictable. Specifically, suppose C is a circuit predicting f ′. Then C is an
implicit representation of a received word that is close to f ′; thus list-decoding, in the implicit output
model, yields a small circuit computing f ′ (and with some work, a small circuit encoding f). The
strength of this transformation is again in its efficiency. For example, Impagliazzo, Shaltiel, and
Wigderson [21], note that this construction is also significantly more efficient in some parameters
and use this aspect in a (more) optimal derandomization of BPP.

Direct product of NP-complete languages. Let SAT be the characteristic function of the
satisfiability language. I.e., SAT(φ) = 1 if φ is a satisfiable formula and 0 otherwise. Let SATl

be the l-wise direct product of the SAT function. I.e., it takes as input l formulae φ1, . . . , φl and
outputs the l-bit vector SAT(φ1), . . . ,SAT(φl). Clearly SATl is at least as hard to compute as
SAT. Presumably it is much harder. In fact if SAT were hard to compute on more than 1 − δ
fraction of the instances chosen from some distribution, then SATl would be hard to compute with
probability more than (1−δ)l on the product distribution. Unfortunately, no NP-complete problem
is known to be hard when the inputs are chosen at random. In the face of this lack of knowledge,
what can one say about SATl? This topic is studied in the complexity theory literature under
the label of membership comparability. Sivakumar [30] gives a nice hardness for this problem. He
shows that if it is even possible to efficiently compute the least amount of information about SATl,
for l(n) = O(log n) then NP=RP. Specifically, if some polynomial time algorithm, on input an
instance ~φ of SATl, rules out even one string out 2l as the value of SATl(~φ), then it can be used
to decide satisfiability. [30] uses the list-decodability properties of the Reed Solomon codes and a
version of Sauer’s lemma. Simplifying the proof slightly it is possible to get it as a consequence of
Theorem 5 applied to q = 2l and ε = 2−2l.

Permanent of random matrices. In a striking result, Lipton [25], showed how it is possible to
use the fact that the permanent is a low-degree polynomial to conclude the following. If it is easy
to compute the permanent of an n× n matrix modulo a prime p > n, with high probability when
the matrix is chosen at random, then it is also easy to compute the permanent of any n×n matrix
modulo p. One of the first results to establish the average-case hardness of a computationally
hard problem, this result laid down the seed for a series of interesting results in complexity theory
including IP=PSPACE and the PCP characterizations of NP.

Subsequent results strengthened the average case hardness of the permanent to the point where
it suffices to have an algorithm that computes the permanent modulo p on an inverse polynomially
small fraction of the matrices, as shown by Cai, Pavan and Sivakumar [8]. Their result uses the
list-decoding algorithm for Reed Solomon codes. Independently Goldreich, Ron and Sudan [13]
strengthened this result in different direction. They show it suffices to have an algorithm that
computes the permanent correctly with inverse polynomial probability when both the matrix and
the prime are chosen at random. Their result uses the list decoding algorithm for the Reed Solomon
codes as well as that for the Chinese Remainder code. It turns out that the techniques of [8] extend
to this problem also, thus giving an alternate proof that does not use the list-decoder for the Chinese
remainder code (but still uses the list-decoder for the Reed-Solomon code).
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6 Concluding thoughts

By now we have seen many applications of algorithms for list-decoding. The notion of list-decoding
itself, never mind the algorithmic results, is a very important one for complexity theory. The
recent beautiful result of Trevisan [34], gives strong evidence of the role that this theme can play in
central questions in complexity/extremal combinatorics. (For those few of you who may have missed
this development, Trevisan showed how to construct a strong family of extractors by combining
binary codes that have very good combinatorial list-decoding properties, with a pseudo-random
generator of Nisan and Wigderson [26]. This construction and its successors, see Raz, Reingold
and Vadhan [28], and Impagliazzo, Shaltiel, and Wigderson [21], reach optimal characteristics for
various choices of parameters.) We hope other applications of list-decoding will continue to emerge
as the notion becomes more popular.

We conclude with some open questions relating to combinatorial list-decoding performance of
error-correcting codes. The combinatorial question relating to list-decoding posed in this survey
was chosen carefully to allow for a tight presentation of results (in Theorem 1 and its corollary).
However, it is much more interesting to study list-decoding characteristics of specific codes and here
we know very little (Part (1) of Theorem 1 applies, of course, but Part (2) is irrelevant to specific
codes). For example, Ta-Shma and Zuckerman [33], have shown that the random (non-linear) code
has polynomially many codes in any ball of radius e, for e very close to the minimum distance
of the code. The existence of such codes with good list-decoding properties raises the question
of whether such codes exist with small description size; and if so can they be constructed and/or
decoded efficiently. One could ask such questions about the classes of codes described in this paper.
For example, what is the largest error e for an (n, k)q Reed-Solomon code for which the Hamming
ball of radius e around any received word has only poly(n) codewords. The best known bound is
still given by Part (1) of Theorem 1. This remains the case for every linear code we know of! In
fact the following question remains very interesting: Let εLin

∞ (δ) be defined analogously to ε∞(δ),
however restricted to linear codes. As earlier we know 1−

√
1− δ ≤ εLin

∞ (δ) ≤ δ. However we know
very little beyond this point. (In some recent work in progress, Guruswami, H̊astad, Sudan, and
Zuckerman [15], have shown that the analogous quantity εLin

c (δ) is strictly smaller than δ for every
choice of δ and c, however the difference in their proof vanishes as c → ∞. Thus a number of
questions relating to the combinatorics of the list-decoding problem remain open. Depending on
the answers to these, a number of algorithmic challenges could also open up. Thus the area seems
rife for further exploration.

Acknowledgments

I’d like to thank Oded Goldreich, Venkatesan Guruswami, Johan H̊astad, Luca Trevisan, Salil
Vadhan, and David Zuckerman for sharing with me many of their thoughts and ideas on the topic
of list-decoding.

References

[1] Werner Alexi, Benny Chor, Oded Goldreich, and Claus P. Schnorr. RSA and Rabin functions:
Certain parts are as hard as the whole. SIAM Journal on Computing, 17(2):194-209, April
1988.

10



[2] Sigal Ar, Richard J. Lipton, Ronitt Rubinfeld, and Madhu Sudan. Reconstructing algebraic
functions from erroneous data. SIAM Journal on Computing, 28(2): 487–510, April 1999.

[3] Sanjeev Arora and Madhu Sudan. Improved low degree testing and its applications. In Proceed-
ings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages 485–495,
El Paso, Texas, 4–6 May 1997.
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