
Robust Locally Testable Codes and Products of Codes

Eli Ben-Sasson∗ Madhu Sudan†

July 2005

Abstract

We continue the investigation of locally testable codes, i.e., error-correcting codes for whom
membership of a given word in the code can be tested probabilistically by examining it in very
few locations. We give two general results on local testability: First, motivated by the recently
proposed notion of robust probabilistically checkable proofs, we introduce the notion of robust
local testability of codes. We relate this notion to a product of codes introduced by Tanner,
and show a very simple composition lemma for this notion. Next, we show that codes built by
tensor products can be tested robustly and somewhat locally, by applying a variant of a test and
proof technique introduced by Raz and Safra in the context of testing low-degree multivariate
polynomials (which are a special case of tensor codes).

Combining these two results gives us a generic construction of codes of inverse polynomial
rate, that are testable with poly-logarithmically many queries. We note these locally testable
tensor codes can be obtained from any linear error correcting code with good distance. Pre-
vious results on local testability, albeit much stronger quantitatively, rely heavily on algebraic
properties of the underlying codes.

1 Introduction

Locally testable codes (LTCs) are error-correcting codes that admit highly efficient probabilistic
tests of membership. Specifically, an LTC has a tester that makes a small number of oracle accesses
into an oracle representing a given word w, accepts if w is a codeword, and rejects with constant
probability if w is far from every codeword. LTCs are combinatorial counterparts of probabilistically
checkable proofs (PCPs), and were defined in [18, 25, 2], and their study was revived in [20].

Constructions of locally testable codes typically come in two stages. The first stage is algebraic
and gives local tests for algebraic codes, usually based on multivariate polynomials. This is based
on a rich collection of results on “linearity testing” or “low-degree testing” [1, 3, 4, 5, 6, 7, 8, 9, 13,
∗Toyota Technological Institute at Chicago, 1427 East 60th Street, Chicago, IL 60637, USA.

eli@eecs.harvard.edu. Research supported in part by a Radcliffe Fellowship.
†MIT Computer Science and Artificial Intelligence Laboratory, The Stata Center Rm. G640, 32 Vassar Street,

Cambridge, MA 02139, USA. madhu@mit.edu. Research supported in part by a Radcliffe Fellowship, and NSF Award
CCR-0219218.

0Work done when the first, second, fourth and fifth authors were visiting Radcliffe Institute for Advanced Study
and the third author was at MIT.

1



14, 16, 17, 18, 20, 23, 25]. This first stage either yielded codes of poor rate (mapping k information
symbols to codewords of length exp(k)) as in [14], or yielded codes over large alphabets as in [25].
To reduce the alphabet size, a second stage of “composition” is then applied. In particular, this is
done in [20, 13, 11] to get a code mapping k information bits to codewords of length k1+o(1), over
the binary alphabet. This composition follows the lines of PCP composition introduced in [4], but
turns out to be fairly complicated, and in most cases, even more intricate than PCP composition.
The one exception is in [20, Section 3], where the composition is simple, but based on very specific
properties of the codes used. Thus while the resulting constructions are surprisingly strong, the
proof techniques are somewhat complex.

In this paper, we search for simple and general results related to local testing. A generic (non-
algebraic) analysis of low-degree tests appears in [19], and a similar approach to PCPs appears in
[15]. Specifically, we search for generic (non-algebraic) ways of getting codes, possibly over large
alphabets, that can be tested by relatively local tests, as a substitute for algebraic ways. And we
look for simpler composition lemmas. We make some progress in both directions. We show that
the “tensor product” operation, a classical operation that takes two codes and produces a new one,
when applied to linear codes gives codes that are somewhat locally testable (See Theorem 2.6).
To simplify the second stage, we strengthen the notion of local testability to a “robust” one. This
step is motivated by an analogous step taken for PCPs in [11], but is naturally formulated in our
case using the “Tanner Product” for codes [27]. Roughly speaking, a “big” Tanner Product code
of block-length n is defined by a “small” code of block-length n′ = o(n) and a collection of subsets
S1, . . . , Sm ⊂ [n], each of size n′. A word is in the big code if and only if its projection to every
subset Si is a word of the small code. Tanner Product codes have a natural local test associated with
them: to test if a word w is a codeword of the big code, pick a random subset Sj and verify that w
restricted to Sj is a codeword of the small code. The normal soundness condition would expect that
if w is far from every codeword, then for a constant fraction of such restrictions, w restricted to Sj
is not a codeword of the small code. Now the notion of robust soundness strengthens this condition
further by expecting that if w is far from every codeword, then many (or most) projections actually
lead to words that are far from codewords of the small code. In other words, a code is robust if
global distance (from the large code) translates into (average) local distance (from the small code).
A simple, yet crucial observation is that robust codes compose naturally. Namely, if the small code
is itself locally testable by a robust test (with respect to a tiny code, of block-length o(n′)), then
distance from the large code (of block-length n) translates to distance from the tiny code, thus
reducing query complexity while maintaining soundness. By viewing a tensor product as a robust
Tanner product code, we show that a (logN/ log logN)-wise tensor product of any linear code of
length n = poly logN and relative distance 1 − 1

logN = 1 − 1
nε , which yields a code of length N

and inverse polynomial rate (i.e. the rate is 1/N c for c independent of N), that is testable with
poly(logN) queries (Theorem 2.7). Once again, while stronger theorems than the above have been
known since [6], the generic nature of the result above might shed further light on the notion of
local testability.

Organization. We give formal definitions and mention our main theorems in Section 2. In
Section 3 we analyze the basic tester for tensor product codes. Finally in Section 4 we describe our
composition and analyze some tests based on our composition lemma.

2



2 Definitions and Main Results

Throughout this paper Σ will denote a finite alphabet, and in fact a finite field. For positive integer
n, let [n] denote the set {1, . . . , n}. For a sequence x ∈ Σn and i ∈ [n], we will let xi denote the ith
element of the sequence. The Hamming distance between strings x, y ∈ Σn, denoted ∆(x, y), is the
number of i ∈ [n] such that xi 6= yi. The relative distance between x, y ∈ Σn, denoted δ(x, y), is the
ratio ∆(x, y)/n.

A code C of length n over Σ is a subset of Σn. Elements of C are referred to as codewords. When Σ
is a field, one may think of Σn as a vector space. If C is a linear subspace of the vector space Σn, then
C is called a linear code. The crucial parameters of a code, in addition to its length and the alphabet,
are its dimension (or information length) and its distance, given by ∆(C) = minx 6=y∈C{∆(x, y)}.
A linear code of dimension k, length n, distance ≥ d over the alphabet Σ is denoted an [n, k, d]Σ
code. The rate of such a code is the ratio of information to codeword length, i.e. k/n. For a word
r ∈ Σn and a code C, we let δC(r) = minx∈C{δ(r, x)}. We say r is δ′-proximate to C (δ′-far from
C, respectively) if δC(r) ≤ δ′ (δC(r) ≥ δ′, respectively).

Throughout this paper, we will be working with infinite families of codes, where their performance
will be measured as a function of their length.

Definition 2.1 (Tester) A tester T with query complexity q(·) is a probabilistic oracle machine
that when given oracle access to a string r ∈ Σn, makes q(n) queries to the oracle for r and returns
an accept/reject verdict. We say that T tests a code C if whenever r ∈ C, T accepts with probability
one; and when r 6∈ C, the tester rejects with probability at least δC(r)/2. A code C is said to be
locally testable with q(n) queries if there is a tester for C with query complexity q(n).

When referring to oracles representing vectors in Σn, we emphasize the queries by denoting the
response of the ith query by r[i], as opposed to ri. Through this paper we consider only non-adaptive
testers, i.e., testers that use their internal randomness s to generate q queries i1, . . . , iq ∈ [n] and a
predicate P : Σq → {0, 1} and accept iff P (r[i1], . . . , r[iq]) = 1.

Our next definition is based on the notion of Robust PCP verifiers introduced by [11]. We need
some terminology first.

Note that a tester T has two inputs: an oracle for a received vector r, and a random string s. On
input the string s the tester generates queries i1, . . . , iq ∈ [n] and fixes circuit C = Cs and accepts
if C(r[i1], . . . , r[iq]) = 1.

Definition 2.2 (Robust Tester) For oracle r and random string s, define the robustness of the
tester T on r, s, denoted ρT (r, s), to be the minimum, over strings x satisfying C(x) = 1, of relative
distance of 〈r[i1], . . . , r[iq]〉 from x. The expected robustness of T on r is the following quantity,

ρT (r) def= E
s

[ρT (r, s)]

When T is clear from context, we skip the superscript.

A tester T is said to be α-robust for a code C if for every r ∈ C, the tester accepts with probability
one, and for every r ∈ Σn, ρT (r) ≥ α · δC(r).

3



Having a robust tester for a code C implies the existence of a tester for C, as illustrated by the
following proposition.

Proposition 2.3 If a code C has a α-robust tester T for C making q queries, then it is locally
testable with O(q/α) queries.

Proof: Let c = dα−1e. The local tester T ′ for C is obtained by invoking T c times and accepting
if all invocations accept. Consider a word r with δC(r) = δ. For at least δ/c ≤ α · δ fraction of the
choices of random strings s of T , it must be that ρT (r, s) > 0 and T rejects. Thus the probability
that T ′ does not reject in any of the c repetitions is at most

(1− δ/c)c ≤ 1− c(δ/c) +
(
c

2

)
(δ/c)2 (By Inclusion-Exclusion)

≤ 1− δ + c2/2(δ/c)2

= 1− δ + δ2/2
≤ 1− δ + δ/2
= 1− δ/2

Thus words at distance δ from codewords are rejected with probability at least δ/2.

The previous proposition shows that large robustness leads to small query complexity. However,
there is a limit to the size of the robustness parameter as shown in the next claim.

Proposition 2.4 If T is a α-robust tester for a linear code C ⊂ Σn with minimal Hamming
distance at least two, then α ≤ 1.

Proof: As shown in [12], a tester T for a linear code can be assumed (w.l.o.g.) non-adaptive, i.e.
the set of queries performed by T does not depend on the received word r (only on the randomness
s). Assuming non-adaptivity, let T1, . . . , TS be the set of possible tests performed by T , let pj be
the probability Tj is performed, and let qj be the query complexity of Tj . Let Si be the set of tests
that query i ∈ [n] and let wt(i) =

∑
j∈Si pj/qj be the weight of i ∈ [n]. There must be some i with

weight ≤ 1/n because the sum of weights is one. Look at the word r that is zero everywhere but
on the ith coordinate, where it is one. On the one hand δC(r) = 1/n, because C is a linear code
of minimal distance > 1. On the other hand, the robustness of ρT (r) = wt(i) ≤ 1/n. Thus, the
robustness parameter is at most one.

The main results of this paper focus on robust local testability of certain codes. For the first result,
we need to describe the tensor product of codes.

Tensor Products and Local Tests Recall that an [n, k, d]Σ linear code C may be represented
by a k×n matrix M over Σ (so that C = {xM |x ∈ Σk}). Such a matrix M is called a generator of
C. Given an [n1, k1, d1]Σ code C1 with generator M1 and an [n2, k2, d2]Σ code C2 with generator
M2, their tensor product (cf. [22], [26, Lecture 6, Section 2.4]), denoted C1 ⊗ C2 ⊆ Σn2×n1 , is the

4



code whose codewords may be viewed as n2×n1 matrices given explicitly by the set {MT
2 XM1|X ∈

Σk2×k1}. It is well-known that C1 ⊗ C2 is an [n1n2, k1k2, d1d2]Σ code.

Tensor product codes are interesting to us in that they are a generic construction of codes with “non-
trivially” local redundancy. To elaborate, every linear code of dimension k does have redundancies
of size O(k), i.e., there exist subsets of t = O(k) coordinates where the code does not take all
possible Σt possible values. But such redundancies are not useful for constructing local tests; and
unfortunately generic codes of length n and dimension k may not have any redundancies of length
o(k). However, tensor product codes are different in that the tensor product of an [n, k, d]Σ code
C with itself leads to a code of dimension k2 which is much larger than the size of redundancies
which are O(k)-long, as asserted by the following proposition.

Proposition 2.5 A matrix r ∈ Σn2×n1 is a codeword of C1 ⊗ C2 if and only if every row is a
codeword of C1 and every column is a codeword of C2.

In addition to being non-trivially local, the constraints enumerated above are also redundant, in
that it suffices to insist that all columns are codewords of C2 and only k2 (prespecified) rows are
codewords of C1. Thus the insistence that other rows ought to be codewords of C1 is redundant,
and leads to the hope that the tests may be somewhat robust. Indeed we may hope that the
following might be a robust test for C1 ⊗ C2.

Product Tester: Pick b ∈ {1, 2} at random and i ∈ [nb] at random. Verify that r with
bth coordinate restricted to i is a codeword of C3−b.

While it is possible to show that the above is a reasonable tester for C1 ⊗C2 for any pair of codes
C1, C2, the query complexity of the test is max{n1, n2}, which is quite high. If the test were robust,
there would be ways of reducing this query complexity (as we will see later). Unfortunately, this
is not the case. Indeed, Valiant [28] recently showed that for every ε > 0 there exist (arbitrarily
large) codes C1, C2 such that the product tester for C1 ⊗ C2 is not ε-robust.

Instead, we consider higher products of codes, and give a tester based on an idea from the work of
Raz and Safra [24]. Specifically, we let Cm denote the code C ⊗ · · · ⊗ C︸ ︷︷ ︸

m

. We consider the following

test for this code:

m-Product Tester: Pick b ∈ [m] and i ∈ [n] independently and uniformly at random.
Verify that r with bth coordinate restricted to i is a codeword of Cm−1.

Note that this tester makes N1− 1
m queries to test a code of length N = nm. So its query complexity

gets worse as m increases. However, we are only interested in the performance of the test for small
m (specifically m = 3, 4). We show that the test is a robust tester for Cm for every m ≥ 3.
Specifically, we show

Theorem 2.6 For a positive integer m and [n, k, d]Σ-code C, such that
(
d−1
n

)m ≥ 7
8 , m-Product

Tester is 2−16-robust for Cm.

5



This theorem is proven in Section 3. Note that the robustness is a constant, and the theorem
only needs the fractional distance of C to be sufficiently large as a function of m. In particular
a fractional distance of 1 − 1

O(m) suffices. Note that such a restriction is needed even to get the
fractional distance of Cm to be constant.

The tester however makes a lot of queries, and this might seem to make this result uninteresting (and
indeed one doesn’t have to work so hard to get a non-robust tester with such query complexity).
However, as we note next, the query complexity of robust testers can be reduced significantly
under some circumstances. To describe this we need to revisit a construction of codes introduced
by Tanner [27].

Tanner Products and Robust Testing The robustness of the m-Product Tester above seems
to be naturally related to the fact that the tester’s predicates are testing if the queried points
themselves belong to a smaller code. (In the case of the m-Product Tester, it verifies that the
symbols it reads give a codeword of the code Cm−1.) The notion that a bigger code (such as Cm)
may be specified by requiring that certain projections of a word fall in a smaller code (such as
Cm−1) is not a novel one. Indeed this idea goes back to the work of Tanner [27], who defined this
notion in its full generality and considered big codes obtained by a “product” of a bipartite graph
with a small code. This notion is commonly referred to in the literature as the Tanner Product,
and we define it next.

For integers (n,m, t) an (n,m, t)-ordered bipartite graph is given by n left vertices [n], and m right
vertices, where each right vertex has degree t and the neighborhood of a right vertex j ∈ [m] is
ordered and given by a sequence `j = 〈`j,1, . . . , `j,t〉 with `j,i ∈ [n].

A Tanner Product Code (TPC), is specified by an [n,m, t] ordered bipartite graph G and a code
Csmall ⊆ Σt. The product code, denoted TPC(G = {`1, . . . , `m}, Csmall) ⊆ Σn, is the set

{r ∈ Σn | r|`j
def= 〈r`j,1 , . . . , r`j,t〉 ∈ Csmall, ∀j ∈ [m]}.

Notice that the Tanner Product naturally suggests a test for a code. “Pick a random right vertex
j ∈ [m] and verify that r|`j ∈ Csmall.” Associating this test with such a pair (G,Csmall), we say
that the pair is α-robust if the associated test is a α-robust tester for TPC(G,Csmall).

The importance of this representation of tests comes from the composability of robust tests coming
from Tanner Product Codes. Suppose (G,Csmall) is α-robust and Csmall is itself a Tanner Product
Code, TPC(G′, Csmall

′) where G′ is an (d,m′, t′)-ordered bipartite graph and (G′, Csmall
′) is α′-

robust. Then TPC(G,Csmall) has an α · α′-robust tester that makes only t′ queries. (This fact is
completely straightforward and proven in Lemma 4.1.)

This composition is especially useful in the context of tensor product codes. For instance, the
tester for C4 is of the form (G,C3), while C3 has a robust tester of the form (G′, C2). Putting
them together gives a tester for C4, where the tests verify appropriate projections are codewords of
C2. The test itself is not surprising, however the ease with which the analysis follows is nice. (See
Lemma 4.2.) Now the generality of the tensor product tester comes in handy as we let C itself be
C ′2 to see that we are now testing C ′8 where tests verify some projections are codewords of C ′4.
Again composition allows us to reduce this to a C ′2-test. Carrying on this way we see that we can
test any code of the form C2t by verifying certain projections are codewords of C2. This leads to a

6



simple proof of the following theorem about the testability of tensor product codes. (Throughout
this paper we do not attempt to optimize constants).

Theorem 2.7 Let {Ci}i be any infinite family of codes with Ci a [ni, ki, di]Σi code. Further, let
ti be a sequence of integers such that mi = 2ti satisfies di/ni ≥ 1 − 1

7mi
. Then the sequence of

codes {C ′i = Cmii }i is a sequence of [nmii , kmii , nmii /2]Σi-codes, where C ′i is locally testable with query
complexity qi = n2

i ·m
O(1)
i .

In particular, if ni ≤ min{p(ki), p̂(mi)} for some polynomials p(·), p̂(·), then {C ′i}i is a sequence of
codes with inverse polynomial rate (and relative distance half) that is locally testable with polyloga-
rithmic query complexity.

This theorem is proven in Section 4. We remark that it is possible to get code families Ci such as
above using Reed-Solomon codes, as well as algebraic-geometric codes.

3 Testing Tensor Product Codes

In this section we prove Theorem 2.6. We first reformulate this theorem in the language of Tanner
products.

Let Gnm denote the graph that corresponds to the tests of Cm by the m-Product Tester, where
C ⊆ Σn. Namely Gnm has nm left vertices labeled by elements of [n]m. It has m · n right vertices
labeled (b, i) with b ∈ [m] and i ∈ [n]. Vertex (b, i) is adjacent to all vertices (i1, . . . , im) such
that ib = i. The statement of Theorem 2.6 is equivalent to the statement that (Gnm, C

m−1) is
2−16-robust, provided

(
d−1
n

)m ≥ 7
8 . The completeness of the theorem follows from Proposition 2.5,

which implies Cm = TPC(Gnm, C
m−1). For the soundness, we first introduce some notation.

Consider the code C1 ⊗ · · · ⊗ Cm, where Ci = [ni, ki, di]Σ code. Notice that codewords of this
code lie in Σn1×···×nm . The coordinates of strings in Σn1×···×nm are themselves m-dimensional
vectors over the integers (from [n1] × · · · × [nm]). For r ∈ Σn1×···×nm and i1, . . . , im with ij ∈
[nj ], let r[i1, . . . , im] denote the 〈i1, . . . , im〉-th coordinate of r. For b ∈ [m], and i ∈ [nb], let
rb,i ∈ Σn1×···×nb−1×nb+1×···×nm be the vector obtained by projecting r to coordinates whose bth
coordinate is i, i.e., rb,i[i1, . . . , im−1] = r[i1, . . . , ib−1, i, ib, . . . , im−1].

The following simple property about tensor product codes will be needed in our proof.

Proposition 3.1 For b ∈ {1, . . . ,m} let Cb be an [nb, kb, db]Σ code, and let Ib be a set of cardinality
at least nb− db + 1. Let C ′b be the code obtained by the projection of Cb to Ib. Then every codeword
c′ of C′ = C ′1 ⊗ · · · ⊗ C ′m can be extended to a unique codeword c of C = C1 ⊗ · · · ⊗ Cm.

Proof: The projection of Cb to C ′b is bijective. It is surjective because it is a projection, and it is
injective because |Ib| > nb − db. So, the projection of C to C′ is a bijection, because both codes are
of dimension

∏m
b=1 db. Thus, every word in C′ has a unique preimage in C.

Recall that the m-Product tester picks a random b ∈ [m] and i ∈ [n] and verifies that rb,i ∈ Cm−1.
Let ρ(r, (b, i)) denote the distance of the view of this tester when accessing oracle r on random

7



string (b, i). Note that ρ(r, (b, i)) = δCm−1(rb,i). Let ρ(r) = Eb,i[δCm−1(rb,i)]. We wish to show for
every r that ρ(r) ≥ 2−16 · δCm(r) or equivalently δCm(r) ≤ 216 · ρ(r).

We start by first getting a crude upper bound on the proximity of r to Cm and then we use the
crude bound to get a tighter relationship. To get the crude bound, we first partition the random
strings into two classes: those strings (b, i) for which ρ(r, (b, i)) is large, and those for which it is
small. To obtain our partition we need the following definition.

Definition 3.2 (Soundness Error) For r ∈ Σnm and threshold τ ∈ [0, 1], define the τ -soundness-
error of r to be the probability that δCm−1(rb,i) > τ , when b ∈ [m] and i ∈ [n] are chosen uniformly
and independently.

We start by showing r is somewhat close to some codeword of Cm.

Lemma 3.3 If the τ -soundness-error of r is ε for τ+2ε ≤ 1
12 ·
(
d−1
n

)m
, then δCm(r) ≤ 16 ·

(
n
d

)m−1 ·
(τ + ε).

Note that for ρ = ρ(r), the
√
ρ-soundness error of r is at most

√
ρ. Thus, setting τ = ε =

√
ρ in

Lemma 3.3 shows r is O(
√
ρ)-close to some codeword of Cm.

Proof: For every i ∈ [n] and b ∈ [m], fix cb,i to be a closest codeword from Cm−1 to rb,i. We follow
the proof outline of Raz & Safra [24] which when adapted to our context goes as follows: (1) Given a
vector r and a set of codewords {cb,i ∈ Cm−1 : b ∈ [m], i ∈ [n]}, we define an “inconsistency” graph
G. (Note that this graph is not the same as the graph Gnm that defines the test being analyzed.
In particular G is related to the word r being tested.) (2) We show that the existence of a large
independent set in this graph G implies the proximity of r to a codeword of Cm (i.e., δCm(r) is
small). (3) We show that this inconsistency graph is sparse if the τ -soundness-error is small. (4)
We show that the distance of C forces the graph to be special in that every edge is incident to at
least one vertex whose degree is large.

Definition of G. The vertices of G are indexed by pairs (b, i) with b ∈ [m] and i ∈ [n]. Vertex
(b1, i1) is adjacent to (b2, i2) if at least one of the following conditions hold:

1. δCm−1(rb1,i1) > τ .

2. δCm−1(rb2,i2) > τ .

3. b1 6= b2 and cb1,i1 and cb2,i2 are inconsistent, i.e., there exists some element j = 〈j1, . . . , jm〉 ∈
[n]m, with jb1 = i1 and jb2 = i2 such that cb1,i1 [j(1)] 6= cb2,i2 [j(2)], where j(c) ∈ [n]m−1 is the
vector j with its bcth coordinate deleted.

8



Independent sets of G and proximity of r. It is clear that G has mn vertices. We claim next
that if G has an independent set I of size at least m(n − d) + d + 1 then r has distance at most
1− (|I|/(mn))(1− τ) to Cm.

Consider an independent set I = I1 ∪ · · · ∪ Im in G with Ib of size nb being the set of vertices of
the form (b, i), i ∈ [n]. W.l.o.g. assume n1 ≥ · · · ≥ nm. Then, we have n1, n2 > n− d (or else even
if n1 = n and n2 = n − d we’d only have

∑
b nb ≤ n + (m − 1)(n − d)). We consider the partial

vector r′ ∈ ΣI1×n×···×n defined as r′[i, j2, . . . , jm] = c1,i[j2, . . . , jm] for i ∈ I1, and j2, . . . , jm ∈ [n].
We show that r′ can be extended into a codeword of Cm and that the extended word is close to r
and this will give the claim.

First, we show that any extension of r′ is close to r: This is straightforward since on each coordinate
i ∈ I1, we have r agrees with r′ on 1−τ fraction of the points. Furthermore I1/n is at least |I|/(mn)
(since n1 is the largest). So we have that r′ is at most 1− (|I|/(mn))(1− τ) far from r.

Now we prove that r′ can be extended into a codeword of Cm. Let Cb = C|Ib be the projection
(puncturing) of C to the coordinates in Ib. Let r′′ be the projection of r′ to the coordinates in
I1×I2×[n]×· · ·×[n]. We will argue below that r′′ is a codeword of C1⊗C2⊗Cm−2, by considering its
projection to axis-parallel lines and claiming all such projections yield codewords of the appropriate
code. Note first that the restriction of r′ to any line parallel to the b-th axis is a codeword of C, for
every b ∈ {2, . . . ,m}, since r′1,i is a codeword of Cm−1 for every i ∈ I1. Thus this continues to hold
for r′′ (except that now the projection to a line parallel to the 2nd coordinate axis is a codeword
of C2). Finally, consider a line parallel to the first axis, given by restricting the other coordinates
to 〈i2, . . . , im〉, with i2 ∈ I2. We claim that for every i1 ∈ I1, r′′[i1, . . . , im] = c2,i2 [i1, . . . , im]. This
follows from the fact that the vertices (1, i1) and (2, i2) are not adjacent to each other and thus
implying that c1,i1 and c2,i2 are consistent with each other. We conclude that the restriction of r′′

to every axis parallel line is a codeword of the appropriate code, and thus (by Proposition 2.5), r′′

is a codeword of C1 ⊗ C2 ⊗ Cm−2. Now applying Proposition 3.1 to the code C1 ⊗ Cm−1 and its
projection C1 ⊗C2 ⊗Cm−2 we get that there exists a unique extension of r′′ into a codeword c′ of
the former. We claim this extension is exactly r′ since for every i ∈ I1, c′1,i[j, k] = r′[i, j, k]. Finally
applying Proposition 3.1 one more time, this time to the code Cm and its projection C1 ⊗ Cm−1,
we find that r′ = c′ can be extended into a codeword of the former. This concludes the proof of
this claim.

Density of G. We now see that the small τ -soundness-error of the test translates into a small
density γ of edges in G. Below, we refer to pairs (b, i) with b ∈ [m] and i ∈ [n] as “planes” (since
they refer to (m − 1)-dimensional planes in [n]m) and refer to elements of [n]m as “points”. We
say a point p = 〈p1, . . . , pm〉 lies on a plane (b, i) if pb = i. Now consider the following test: Pick
a random plane (b1, i1) and a random point p on it and verify cb1,i1 is consistent with r[p]. Let κ
denote the rejection probability of this test. We bound κ from both sides.

For the sake of analysis, we consider the following test: Pick two random planes (b1, i1) and (b2, i2)
subject to the constraint b1 6= b2 and pick a random point p in the intersection of the two planes
and verify that cb1,i1 is consistent with r[p]. It is easy to see this test is identical to the previous
one, and we analyze this latter test.

On the one hand we have that the rejection probability is at least the probability that we pick two
planes that are τ -proximate to codewords of Cm−1 and incident to each other in G (which is at

9



least mγ
m−1 − 2ε) and the probability that we pick a point on the intersection at which the two plane

codewords disagree (at least (d/n)m−2), times the probability that the codeword that disagrees with
the point function is the first one (which is at least 1/2). Thus we get κ ≥ dm−2

2(n)m−2

(
mγ
m−1 − 2ε

)
.

On the other hand we have that in order to reject it must be the case that either δCm−1(rb1,i1) > τ
(which happens with probability at most ε) or δCm−1(rb1,i1) ≤ τ and p is such that rb1,i1 and cb1,i1
disagree at p (which happens with probability at most τ). Thus we have κ ≤ τ + ε. Putting the
two together we have γ ≤ m−1

m

(
2ε+ 2nm−2

dm−2 (τ + ε)
)

.

Structure of G. Next we note that every edge of G is incident to at least one high-degree vertex.
Consider a pair of planes that are adjacent to each other in G. If either of the vertices is not
τ -robust, then it is adjacent to every vertex of G. So assume both are τ -robust.

W.l.o.g., let these be the vertices (1, i) and (2, j). Thus the codewords c1,i and c2,j disagree on the
(m− 2)-dimensional surface with the first two coordinates restricted to i and j respectively. Now
let S = {〈i, j, k3, . . . , km〉 | c1,i[j, k3, . . . , km] 6= c2,j [i, k3, . . . , km]} be the set of disagreeing tuples
on this surface. By the distance of Cm−2 we know |S| ≥ dm−2. Furthermore, by construction of
Cm−2, for every b ∈ {3, . . . ,m} there exist at least d points k(1), . . . , k(d) ∈ S that differ on their bth

coordinate (i.e. the bth coordinate of k(`) differs from the bth coordinate of k(t) for 1 ≤ ` < t ≤ d).
For each such k(`), with bth coordinate equal k(`)

b , the vertex (b, k(`)
b ) must be adjacent to at least

one of (1, i) or (2, j). This is because k(`) is a point on the plane (b, k(`)
b ) and (b1, i), (b2, i) disagree

on k(`). We conclude the sum of the degrees of (1, i) and (2, j) is at least (m− 2)d, and so at least
one of them has degree at least (m− 2)d/2.

Putting it together. From the last paragraph above, we have that the set of vertices of degree
less than (m− 2)d/2 form an independent set in the graph G. The fraction of vertices of degree at
least (m−2)d/2 is at most 2(γmn)/((m−2)d). Thus we get that if mn·(1− 2(γmn)/((m− 2)d)) ≥
m(n−d)+d+1, then r is δ-proximate to Cm for δ ≤ τ+(1−τ)·2(γmn)/((m−2)d). The lemma now
follows by simplifying the expressions above, using the upper bound on γ derived earlier. Details
below.

10



We first focus on the condition |I| ≥ m(n− d) + d+ 1. It suffices to prove that

mn · (1− 2(γmn)/((m− 2)d)) ≥ m(n− d) + d+ 1

⇔ (m− 1)d− 1 ≥ 2
γm2n2

(m− 2)d

⇐ (m− 1)(d− 1) ≥ 2
γm2n2

(m− 2)d

⇐ (m− 1)(d− 1) ≥ 2
m2n2

(m− 2)d
· m− 1

m
·
(

2ε+ 2
(n
d

)m−2
· (τ + ε)

)
⇐ (d− 1) ≥ 2

mn2

(m− 2)d
·
(

2ε+ 2
(n
d

)m−2
· (τ + ε)

)
⇐ (d− 1) ≥ 2

mn2

(m− 2)(d− 1)
·

(
2ε+ 2

(
n

d− 1

)m−2

· (τ + ε)

)

⇔

(
2ε+ 2

(
n

d− 1

)m−2

· (τ + ε)

)
≤ (m− 2)(d− 1)2

2mn2

⇐

(
2
(

n

d− 1

)m−2

· (τ + 2ε)

)
≤ (m− 2)(d− 1)2

2mn2

⇔ (τ + 2ε) ≤ m− 2
4m

·
(
d− 1
n

)m
⇐ (τ + 2ε) ≤ 1

12
·
(
d− 1
n

)m

The above shows that the condition assumed in the lemma statement indeed is sufficient to establish
a large independent set. Next we simplify the proximity bound obtained. We have

δ ≤ τ + (1− τ) · 2γmn
(m− 2)d

≤ τ +
2γmn

(m− 2)d

≤ τ +
2mn

(m− 2)d
· m− 1

m
·
(

2ε+ 2
(n
d

)m−2
· (τ + ε)

)
≤ τ +

2mn
(m− 2)d

· m− 1
m

· 2
(n
d

)m−2
· (τ + 2ε)

= τ +
4(m− 1)
m− 2

·
(n
d

)m−1
· (τ + 2ε)

≤ 4(m− 1)
m− 2

·
(n
d

)m−1
· (2τ + 2ε)

=
8(m− 1)
m− 2

·
(n
d

)m−1
· (τ + ε)

≤ 16 ·
(n
d

)m−1
· (τ + ε).

11



Next we improve the bound achieved on the proximity of r by looking at the structure of the graph
Gnm (the graph underlying the m-Product tester) and its “expansion”. Such improvements are a
part of the standard toolkit in the analysis of low-degree tests based on axis parallel lines (see e.g.,
[7, 6, 16, 17] etc.) We follow the proof outline of [17] which in turn uses a proof technique of [10].

First, some notation: Fix n and m and the graph Gnm. Let L and R denote the left and right
vertices of Gnm. Let dL and dR denote its left and right degrees. And let E denote the edges of
Gnm. Note |L| = nm, |R| = mn, dL = m and dR = nm−1. In particular, dL · |L| = dR · |R|. For a set
A ⊆ L ∪R, let Γ(A) = {(u, v) ∈ E | u ∈ A, v 6∈ A}. Using this notation, we have the following:

Lemma 3.4 Fix n,m ≥ 3 and let L, R denote the two sides of the partition of the vertices of Gnm
and let dL, dR denote the left and right degrees. Let S ⊆ L and T ⊆ R be such that |S||L| ≤

1
4 . Then

|Γ(S ∪ T )| ≥ dL
8 · |S|+

dR
8 · |T |.

Proof: We start with a simple observation that also allows us to bound the size of T . Suppose,
|T | ≥ |R|/2. Then the number of edges leaving T is at least dR · |T | ≥ dR · (|R|/2). On the other
hand the number of edges entering S is at most dL · |S| ≤ dL · (|L|/4). Thus in this case, we have

Γ(S ∪ T ) ≥ dR · (|R|/2)− dL · (|L|/4)
= dR · (|R|/4)
= dR · (|R|/8) + dL · (|L|/8)
≥ dR · (|S|/8) + dL · (|T |/8).

We are thus reduced to the case where |S|/|L|, |T |/|R| ≤ 1
2 . Here, we follow the proof of Babai and

Szegedy [10]. (See also [21]). The crucial fact needed to apply their proof is that the graph Gnm
is edge-transitive, i.e., for every pair of edges e1, e2 in Gnm, there is an automorphism of Gnm that
maps e1 to e2. This fact is used as follows: Let A denote the set of all automorphisms of Gnm. Then
if we consider any fixed edge e ∈ Gnm and all its images under automorphisms A as a multiset, then
every edge of Gnm appears exactly the same number of times.

Armed with this fact, the proof proceeds as follows: For every pair u ∈ L and v ∈ R define
a canonical shortest path Pu,v. Note that this path has length at most three. Note that an
automorphism from A maps a path in Gnm to a path in Gnm. Now consider the multiset P of
all paths obtained by taking the paths Pu,v for every u, v, and their automorphisms for every
automorphism in A. The cardinality of P is thus |A| · |L| · |R|. The symmetry over the edges
implies that every edge in E has exactly the same number, say N , of paths from P passing through
them. Since each path has at most three edges, we have N ≤ 3·|A|·|R|

dL
= 3·|A|·|L|

dR
, or equivalently

|A|
N ≥

dL
3·|R| = dR

3·|L| .

Now consider the set of paths P ′ ⊆ P whose endpoints involve exactly one element of S ∪ T . We
have the cardinality of P ′ equals |A| · (|S| · |T |+ |S| · |T |) (where S = L− S and T = R − T ). On
the other hand, we have |P ′| ≤ N · |Γ(S ∪ T )|

12



Combining the two we have

|Γ(S ∪ T )| ≥ 1
N
· |P ′|

≥ |A|
N
· (|S| · |T |+ |S| · |T |)

≥ dL
3 · |R|

· |S| · |T |+ dR
3 · |L|

· |S| · |T |

≥ dL
6
· |S|+ dR

6
· |T |.

This proves the lemma.

Lemma 3.5 Let m be a positive integer and C be an [n, k, d]Σ code with the property dm−1/nm−1 ≥
7
8 . If r ∈ Σnm and c ∈ Cm satisfy δ(r, c) ≤ 1

4 then δ(r, c) ≤ 8ρ(r).

Proof: Let L,R denote the two sides of the partition of the vertices of Gnm. Note that the right
vertices of Gnm are of the form (b, i), with b ∈ [m] and i ∈ [n]. Let rb,i denote the projection of r
to the neighborhood of the right vertex (b, i), and let cb,i denote the projection of c to the same.
Let c′b,i denote the codeword of Cm−1 closest to rb,i. Call an edge (u, (b, i)) of Gnm bad if r and c′b,i
disagree at u. Note that the fraction of bad edges equals ρ(r).

We now lower bound ρ(r) in terms of δ(r, c). For this part we use Lemma 3.4. Let S ⊆ L be
the set of vertices (i1, . . . , im) for which r[i1, . . . , im] 6= c[i1, . . . , im]. Note that by assumption
|S|/|L| = δ(r, c) ≤ 1

4 . Let T ⊆ R be the set of vertices (b, i) for whom cb,i 6= c′b,i. By Lemma 3.4 we
have |Γ(S ∪ T )| ≥ dL

8 · |S|+
dR
8 · |T |. We now claim that most of these edges are bad.

Consider first an edge (u, (b, i)) in Gnm from S to T . On the one hand c′b,i = cb,i and on the other
r[u] 6= c[u]. This leads to a disagreement between r and c′ at u and so such an edge is bad. Next,
consider an edge (u, (b, i)) from u ∈ S to T . We do have r[u] = c[u] and c′b,i 6= cb,i, but this
doesn’t imply that (u, (b, i)) is bad, since cb,i and c′b,i need not disagree at u. Indeed for every
(b, i) ∈ T , there may be up to nm−1 − dm−1 edges (u, (b, i)) for which c′b,i and r agree at u, but
remaining edges out of (b, i) are bad. Discounting for these edges, we see that all but at most
(nm−1 − dm−1) · |T | edges from T to S are bad. Thus we get that the number of bad edges is
at least dL

8 · |S| +
dR
8 · |T | − (nm−1 − dm−1) · |T |. Using dR = nm−1 and dm−1/nm−1 ≥ 7

8 , we
get dR

8 · |T | − (nm−1 − dm−1) · |T | ≥ 0. Thus we get that the fraction of bad edges β is at least
1
8 · (|S|/|L|) = δ(r,c)

8 . We conclude δ(r, c) ≤ 8 · ρ(r).

We are now ready to put the pieces together to prove Theorem 2.6.

Proof of Theorem 2.6: Let α = 2−14 ·
(
d−1
n

)2m
. We will prove that the m-Product Tester is

α-robust for Cm. Note that α ≥ 2−16 as required for the theorem, and
√
α ≤ min{ 1

36 ·
(
d−1
n

)m
, 1

128 ·(
d
n

)m−1} (as will be required below).

The completeness (that codewords of Cm have expected robustness zero) follows from Proposi-
tion 2.5. For the soundness, consider any vector r ∈ Σnm and let ρ = ρ(r). If ρ > α, then there is
nothing to prove since ρ/α > 1 ≥ δCm(r). So assume ρ ≤ α.

13



Note that r has
√
ρ-soundness-error at most

√
ρ. Furthermore, by the assumption on ρ, we have

3
√
ρ ≤ 3

√
α ≤ 1

12 ·
(
d−1
n

)m
and so, by Lemma 3.3, we have δCm(r) ≤ 16 ·

(
n
d

)m−1 · 2 · √ρ. Now

using
√
ρ ≤
√
α ≤ 1

128 ·
(
d
n

)m−1
, we get δCm(r) ≤ 1

4 . Let v be a codeword of Cm closest to r. We

now have δ(r, v) ≤ 1
4 and

(
d
n

)m−1 ≥ 7
8 , and so, by Lemma 3.5, we get δCm(r) = δ(r, v) ≤ 8ρ. This

concludes the proof.

4 Tanner Product Codes and Composition

In this section we define the composition of two Tanner Product Codes, and show how they preserve
robustness. We then use this composition to show how to test Cm using projections to C2.

4.1 Composition

Recall that a Tanner Product Code is given by a pair (G,Csmall). We start by defining a composition
of graphs that corresponds to the composition of codes.

Given an (N,M,D)-ordered graph G = {`1, . . . , `M} and an additional (D,m, d)-ordered graph
G′ = {`′1, . . . , `′m}, their Tanner Composition, denoted G c©G′, is an (N,M · m, d)-ordered graph
with adjacency lists {`′′j,j′ |j ∈ [M ], j′ ∈ [m]}, where `′′(j,j′),i = `j,`′

j′,i
.

Lemma 4.1 (Composition) Let G1 be an (N,M,D)-ordered graph, and C1 ⊆ ΣD be a linear
code with C = TPC(G1, C1). Further, let G2 be an (D,m, d)-ordered graph and C2 ⊆ Σd be a linear
code such that C1 = TPC(G2, C2). Then C = TPC(G1 c©G2, C2) (giving a d-query local test for C).
Furthermore if (G1, C1) is c1-robust and (G2, C2) is c2-robust, then (G1 c©G2, C2) is c1 · c2-robust.

Proof: We focus on the robustness of the C, as all other claims follow immediately from defini-
tions. Assume w ∈ ΣN has distance δ from C. Then, since C = TPC(G1, C1) is c1-robust, the
expected distance of a random ”medium”-size test (of query size D) is at least δc1, so by the c2-
robustness of C1 = TPC(G2, C2) the expected distance of the ”small”-size test (of query complexity
d) is at least δc1 · c2 as claimed.

4.2 Testing a 4-Wise Tensor Product Code

We continue by recasting the results of Section 3 in terms of robustness of associated Tanner
Products. Recall that Gnm denotes the graph that corresponds to the tests of Cm by the m-Product
Tester, where C ⊆ Σn.

Note that Gnm can be composed with Gnm−1 and so on. For m′ < m, define Gnm,m′ = Gnm if m′ = m−1
and define Gnm,m′ = Gnm c©Gnm−1,m′ otherwise. Thus we have that Cm = TPC(Gnm,m′ , C

m′). The
following lemma (which follows easily from Theorem 2.6 and Lemma 4.1 gives the robustness of
(Gn4,2, C

2).

14



Lemma 4.2 Let C be an [n, k, d]Σ code with ((d− 1)/n)4 ≥ 7
8 . Then (Gn4,2, C

2) is 2−32-robust.

Proof: Since we have ((d − 1)/n)4 ≥ 7
8 we may apply Theorem 2.6 with m = 3, 4 to get that

(Gn4 , C
3) and (Gn3 , C

2) are both 2−16-robust. Since C3 = TPC(Gn3 , C
2), we may apply Lemma 4.1

to conclude that (Gn4,2 = Gn4 c©Gn3 , C2) is 2−32-robust.

4.3 Testing Tensor Products with C2 tests

Finally we define graphs Hn
t so that C2t = TPC(Hn

t , C
2). This is done recursively by letting

Hn
2 = Gn4,2 and letting Hn

t = Gn
2t−2

4,2 c©Hn
t−1 for t > 2. We now analyze the robustness of (Hn

t , C
2).

Lemma 4.3 There exists a constant α > 0 such that the following holds: Let t be an integer and
C be an [n, k, d]Σ code such that d− 1 ≥ (1− 1

5m) · n, for m = 2t. Then (Hn
t , C

2) is αt-robust.

Proof: Note that the condition in the lemma implies ((d − 1)/n)m ≥ (1 − 1
5m)m ≥ e−0.1 ≥ 7

8 .
This is the form in which we use the condition.

We prove the lemma, for α = 2−32, by induction. For the base case, we have (Hn
2 = Gn4,2, C

2) is
2−32-robust, by Lemma 4.2. (Here we use the fact that (d− 1/n)4 ≥ 7

8 as needed.)

For the induction, let m = 2t. and let C ′ = Cm/4. Let G1 = Gn
m/4

, C1 = (C ′)2, G2 = Hn
t−1 and

C2 = C2 Note that Hn
t = G1 c©G2 and C1 = TPC(G2, C2). Thus we can bound the robustness of

(Hn
t , C2) by bounding the robustness of (G1, C1) and (G2, C2) and then using Lemma 4.1. Note

that C1 = (C ′)2 and C ′ is a [nm/4, km/4, dm/4]Σ code, where(
dm/4 − 1
nm/4

)4

≥
(
d− 1
n

)m
≥ 7

8
.

Thus we can apply Lemma 4.2 to conclude (G1, C1) = (Gn4,2, (C
′)2) is α-robust for α = 2−32. By

induction, we also have (G2, C2) = (Hn
t−1, C

2) is αt−1-robust. By Lemma 4.1, (G1 c©G2, C2) is
αt-robust.

We are ready to prove Theorem 2.7.

Proof of Theorem 2.7: Let α be the constant given by Lemma 4.3. Fix i and let C = Ci, n = ni
etc. (i.e., we suppress the subscript i below). Then Cm is an [N,K,D]q code, for N = nm, K = km

and D = dm. Since d/n ≥ 1− 1
2m , we have Cm has relative distance dm/nm ≥ 1

2 . Regarding query
complexity, we have Cm = TPC(Hn

log2m
, C2), where (Hn

log2m
, C2) is an αlog2m-robust tester for Cm

and this tester has query complexity O(n2). From Proposition 2.3 we get that there is a tester for
C that makes O(n2/αO(log2m)) = O(n2mO(1)) queries.

In particular, if n ≤ p(k) then the rate of the code is inverse polynomial, i.e., N = nm = (p(k))m ≤
poly(km) = poly(K). Similarly, if n ≤ p̂(m) then the query complexity is poly(n,m) which is
poly(logN).

15



Acknowledgments

We thank Irit Dinur, Oded Goldreich and Prahladh Harsha for valuable discussions. We thank the
anonymous referees for helpful comments.

References

[1] Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, and Dana Ron. Testing Reed-
Muller codes. In Proceedings of the 7th International Workshop on Randomization and Ap-
proximation Techniques in Computer Science (RANDOM 2003), Lecture Notes in Computer
Science, vol. 2764, pages 188–199, 2003.

[2] Sanjeev Arora. Probabilistic checking of proofs and the hardness of approximation problems.
PhD thesis, University of California at Berkeley, 1994.

[3] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. Journal of the ACM, 45(3):501–555,
May 1998.

[4] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of
NP. Journal of the ACM, 45(1):70–122, January 1998.

[5] Sanjeev Arora and Madhu Sudan. Improved low-degree testing and its applications. In Proceed-
ings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages 485–495,
El Paso, Texas, 4-6 May 1997.

[6] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations in
polylogarithmic time. In Proceedings of the 23rd ACM Symposium on the Theory of Computing,
pages 21–32. ACM, New York, 1991.

[7] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time has
two-prover interactive protocols. Computational Complexity, 1(1):3–40, 1991.

[8] Mihir Bellare, Don Coppersmith, Johan H̊astad, Marcos Kiwi, and Madhu Sudan. Linearity
testing over characteristic two. IEEE Transactions on Information Theory, 42(6):1781–1795,
November 1996.

[9] Mihir Bellare, Shafi Goldwasser, Carsten Lund, and Alex Russell. Efficient probabilistically
checkable proofs and applications to approximation. In Proceedings of the 25th ACM Sympo-
sium on the Theory of Computing, pages 294–304. ACM, New York, 1993.

[10] László Babai and Mario Szegedy. Local expansion in symmetrical graphs. In Combinatorics,
Probability, and Computing 1 (1992), 1-11.

[11] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Robust
PCPs of proximity, shorter PCPs and applications to coding. In Proceedings of the 36th Annual
ACM Symposium on Theory of Computing, page (to appear), 2004.

16



[12] Eli Ben-Sasson, Prahladh Harsha, Sofya Raskhodnikova. Some 3-CNF Properties are Hard
to Test. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pages
345–354, 2003.

[13] Eli Ben-Sasson, Madhu Sudan, Salil Vadhan, and Avi Wigderson. Randomness efficient low-
degree tests and short PCPs via ε-biased sets. In Proceedings of the 35th Annual ACM Sym-
posium on Theory of Computing, pages 612–621, 2003.

[14] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications
to numerical problems. Journal of Computer and System Sciences, 47(3):549–595, 1993.

[15] Irit Dinur and Omer Reingold. Assignment-Testers: Towards a Combinatorial Proof of the
PCP-Theorem. Manuscript, 2004.

[16] Uriel Feige, Shafi Goldwasser, Laszlo Lovasz, Shmuel Safra, and Mario Szegedy. Interactive
proofs and the hardness of approximating cliques. Journal of the ACM, 43(2):268–292, 1996.

[17] Katalin Friedl, Zsolt Hatsagi, and Alexander Shen. Low-degree tests. In Proceedings of the
Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 57–64, 1994.

[18] Katalin Friedl and Madhu Sudan. Some improvements to total degree tests. In Pro-
ceedings of the 3rd Annual Israel Symposium on Theory of Computing and Systems,
pages 190–198, Tel Aviv, Israel, 4-6 January 1995. Corrected version available online at
http://theory.csail.mit.edu/̃ madhu/papers/friedl.ps.

[19] Oded Goldreich and Muli Safra. A Combinatorial Consistency Lemma with application to the
PCP Theorem. In SIAM Jour. on Comp., Volume 29, Number 4, pages 1132-1154, 1999.

[20] Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of almost-linear length.
In Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science,
Vancouver, Canada, 16-19 November 2002.

[21] Lászlo Lovász. Random walks on graphs: A survey. Combinatorics, Paul Erdos is Eighty (ed.
D. Miklos, V. T. Sos, T. Szonyi), Janos Bolyai Mathematical Society, Budapest, 2:353–398,
1996.

[22] F. J. MacWilliams and Neil J. A. Sloane. The Theory of Error-Correcting Codes.
Elsevier/North-Holland, Amsterdam, 1981.

[23] Alexander Polishchuk and Daniel A. Spielman. Nearly linear-size holographic proofs. In
Proceedings of the Twenty-Sixth Annual ACM Symposium on the Theory of Computing, pages
194–203, Montreal, Quebec, Canada, 23-25 May 1994.

[24] Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In Proceedings of the Twenty-Ninth
Annual ACM Symposium on Theory of Computing, pages 475–484. ACM Press, 1997.

[25] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications
to program testing. SIAM Journal on Computing, 25(2):252–271, April 1996.

17



[26] Madhu Sudan. Algorithmic introduction to coding theory. Lecture notes, Available from
http://theory.csail.mit.edu/̃ madhu/FT01/, 2001.

[27] R. Michael Tanner. A recursive approach to low complexity codes. IEEE Transactions of
Information Theory, 27(5):533–547, September 1981.

[28] P. Valiant. The Tensor Product of Two Codes is not Necessarily Robustly Testable. Proceedings
of 9th International Workshop on Randomization and Computation, UC Berkeley, August
2005.

18


