
Symmetric LDPC codes are not necessarily locally
testable

Eli Ben-Sasson∗, Ghid Maatouk†, Amir Shpilka∗‡, and Madhu Sudan‡
∗Faculty of Computer Science, Technion, Haifa, Israel, eli,shpilka@cs.technion.ac.il

†School of Computer and Communications Sciences, EPFL, Switzerland, ghid.maatouk@epfl.ch
‡Microsoft Research New England, Cambridge, Massachusetts, USA, madhu@mit.edu

Abstract—Locally testable codes, i.e., codes where membership
in the code is testable with a constant number of queries, have
played a central role in complexity theory. It is well known that
a code must be a “low-density parity check” (LDPC) code for
it to be locally testable, but few LDPC codes are known to be
locally testable, and even fewer classes of LDPC codes are known
not to be locally testable. Indeed, most previous examples of
codes that are not locally testable were also not LDPC. The
only exception was in the work of Ben-Sasson et al. [SIAM J.
Computing, 2005] who showed that random LDPC codes are not
locally testable. Random codes lack “structure” and in particular
“symmetries” motivating the possibility that “symmetric LDPC”
codes are locally testable, a question raised in the work of Alon
et al. [IEEE Trans. Inf. Th., 2005]. If true such a result would
capture many of the basic ingredients of known locally testable
codes.

In this work we rule out such a possibility by giving a highly
symmetric (“2-transitive”) family of LDPC codes that are not
testable with a constant number of queries. We do so by
continuing the exploration of “affine-invariant codes” — codes
where the coordinates of the words are associated with a finite
field, and the code is invariant under affine transformations
of the field. New to our study is the use of fields that have
many subfields, and showing that such a setting allows sufficient
richness to provide new obstacles to local testability, even in the
presence of structure and symmetry.

Index Terms—Property testing, Invariance, Error-correcting
codes

I. INTRODUCTION

An error-correcting code C ⊆ FN2 is said to be locally testable
if membership in the code is verifiable with a constant number
of queries (independent of N ). (Many of the terms introduced
in this section will be defined more formally in later sections.)
The existence of locally testable codes (LTCs), especially with
good rate and distance, is a surprising phenomenon. Their
discovery (and utility so far) is closely tied to the discovery of
probabilistically checkable proofs, and the performance of the
two have also been closely related. (The first systematic study
of such codes occurred in [8], though such codes were defined
informally as far back as in [2], and significantly investigated
in recent years.)

While many, simple and complex, constructions of locally
testable codes are known, less seems to be known about
what makes codes locally testable. There are few general
“necessary” or “sufficient” conditions known. It is known

that very sparse linear codes [11, 13] and a certain subfamily
of “symmetric” codes [12, 14] are locally testable. At the same
time, there are few “counterexamples” to several tempting
conjectures about what makes a code testable. Our result
in this work considers two very natural “conditions” for
sufficiency, and rules out their conjunction as being a sufficient
condition for local testability. To describe these two conditions
we need to explain the basic context.

Linear Codes and Duals: Throughout this work, we are
interested in binary linear codes. Specifically, letting F2 denote
the field of two elements, a code C ⊆ FN2 is said to be
linear if it is a subspace of FN2 . A natural method to test
linear codes is via their “duals”. For x, y ∈ FN2 , let xi, yi
denote the ith coordinates of x and y respectively, and let
〈x, y〉 =

∑n
i=1 xiyi denote the standard inner product of x

and y. Then, the dual of C, denoted C⊥, is the collection of
vectors {y ∈ FN2 |〈x, y〉 = 0}. (Note that C⊥ is also a linear
code, with (C⊥)⊥ = C.)

Every y ∈ C⊥ denotes a potential “test” for membership in
C and a vector w passes the y-test if 〈w, y〉 = 0. Since such
a test only needs to query w on the support of y (the set
{i ∈ {1, . . . , N}|yi 6= 0}), this can be a “local” test if y
has small support. Furthermore, as shown by [4], a tester for
membership in C can be converted into one that picks y ∈ C⊥
according to some distribution and applies the y-test (without
qualitative change in parameters, and in particular, without any
increase in the query complexity).

Low-Density Parity Check (LDPC) Codes: The connection
between tests for membership in C and the dual of C, leads
to a natural necessary condition for a code C to have a k
local tester (a tester making at most k queries). Specifically,
C⊥ must have low “weight” codewords, i.e., codewords of
support size at most k. Furthermore, if the test rejects every
non-codeword with positive probability, then it must be the
case that C⊥ is spanned linearly by codewords of weight
at most k. Codes that have the property that their duals are
spanned by their low-weight codewords are the very popular
and well-studied family of LDPC codes.1

1The usual description of LDPC codes is via a low density “parity check”
matrix H such that xH = 0 for every x ∈ C. To relate this to our description
one should take the columns of H to be a maximal-size set of linearly
independent elements of C⊥ of weight at most k.



A natural question about LDPC codes is whether every LDPC
code is also locally testable. This question was answered
negatively by [4] who showed that random LDPC codes (with
appropriate parameters) are not locally testable.

Codes with Symmetries: One informal interpretation of the
negative result of [4] is that random codes offer very little
“structure” and testability ought to be hard in the absence of
“structure”.

One way to formalize such a statement could be via the
symmetries of the code. Given a code C ⊆ FN2 and a
permutation π : {1, . . . , N} → {1, . . . , N}, let C ◦ π denote
the set {x ◦ π = 〈xπ(1), . . . , xπ(N)〉|x ∈ C}. Given a code
C ⊆ FN2 , let G(C) be its automorphism group, i.e., G(C)
is the set of permutations π : {1, . . . , n} → {1, . . . , n} such
that C is invariant under π, i.e., C = C ◦ π. For a random
code C ⊆ Fn2 (of appropriately large size) the automorphism
group is likely to be trivial, i.e., contain only the identity
permutation. Perhaps codes with non-trivial automorphism
groups are testable?

This question was raised explicitly by [1] who asked if every
code C with a “2-transitive” automorphism group, and a low-
weight codeword in the dual (the above-mentioned necessary
condition), is locally-testable. (G(C) acting on {1, . . . , N} is
t-transitive if for every two sequences i1, . . . , it and j1, . . . , jt
of distinct elements of {1, . . . , N}, there is a permutation
π ∈ G(C) with π(i`) = j` for every ` ∈ {1, . . . , t}.) 2-
transitivity implies a high level of redundancy in the low-
weight codewords of C⊥. Indeed the presence of even a single
word of weight at most k in C⊥ implies the presence of
Ω(N2) such words (by the transitivity, since every permutation
preserves the weight of words) and gives a code that is locally
decodable and locally correctable. Such a highly redundant set
of low-weight words in the dual seems to suggest that they
should span the dual, and furthermore suffice for testing C
(under some appropriately chosen distribution). Unfortunately,
even the first of these hopes turn out to be not true, as shown
by [9]. They give an example of a family of 2-transitive codes
which have a low-weight codeword in the dual, but are not
spanned by low-weight codewords (and so are not LDPC
codes).

Our Results: This work is motivated by a less ambitious
interpretation of the question raised by Alon et al.: Specifically
we consider the question as to whether symmetries in an
LDPC code lead to local testability. Boosting the hope for
such a question is the fact that any 2-transitive LDPC code
is a locally decodable (even self-correctible) code. Thus to
conjecture testability is tempting. However, we give a negative
answer to this question. Specifically we show the following
theorem:

Theorem I.1. There exists an infinite family of 2-transitive
LDPC codes which is not testable with a constant number of
queries. Specifically, there exists a constant c and an infinite
family of LDPC codes {CN ⊆ FN2 } where each C⊥N is spanned

by its codewords of weight at most c, such that for every k,
for sufficiently large N , CN is not k-locally testable.

Prior to our work, the only result showing some LDPC codes
are not locally testable, were those of [4], who show random
(and thus far from symmetric) codes are not locally testable.
Thus, our results give the first “structured” family of LDPC
codes that are not locally testable.

We also note that in the broader context of symmetries in
property testing (beyond linear codes), our example gives a
more symmetric property than previously known ones that is
not testable. The only previous work, due to [7], gives a 1-
transitive (non-linear) property that is not locally testable.

Affine-Invariance: We derive our counterexample codes by
looking into the class of “affine-invariant” codes. This is a
well-studied family of codes in the literature on coding theory.
Its study in the context of local testability was initiated by [14]
and the codes considered in the above mentioned work of [9]
come from this family of codes.

The coordinates of a binary affine-invariant code C ⊆ FN2
are associated with a finite field F2n (so N = 2n), and the
code is invariant under every permutation πα,β : F2n → F2n ,
πα,β(x) = αx+ β, where α ∈ F2n \ {0} and β ∈ F2n . (Note
that in the work of [14] they also consider seemingly broader
classes, where the coordinates form a vector space over some
field, but every such code will also be affine-invariant in our
sense.)

Affine-invariant codes give explicit families of highly symmet-
ric codes, and provide enough variety to both give “broad”
positive results, and counterexamples to even “broader” con-
jectures. For example, Kaufman and Sudan consider codes
with the “single-orbit” property, namely that the dual is
spanned by the “orbit” of a single low-weight codeword. (The
“orbit” of a word w ∈ FN2 is simply all words w ◦π, where π
is an affine permutation.) They show that every code with the
single orbit property is locally testable, by the natural test.

Indeed their work motivated the following hope: that every
affine-invariant LDPC code may have the single-orbit property
and thus be testable. (Of course, the family from Theorem II.6,
does not have such a single-orbit property.) Previous works
attempting to rule out testability for affine-invariant codes have
only been able to set forth some conditions under which the
codes do not have low-weight codewords in the dual at all [3],
or these do not span the dual [9]. Thus to analyze codes whose
duals are spanned by their low-weight words, but do not have
the single-orbit property, leads to new technical challenges,
and, we hope, to new insights about the class of affine-invariant
codes.

High-level view of our codes: The main idea behind our
construction itself uses some of the rich theory already devel-
oped for affine-invariant codes. Our basic idea is to construct
several affine-invariant LDPC codes C1, . . . , C` ⊆ FN2 , where
N = 2n and consider C = ∩i∈{1,...,`}Ci. Since the intersec-
tion preserves both affine-invariance and the LDPC property,



C ends up also being an affine-invariant LDPC code. The
key is to select Ci’s so that the intersection is not locally
testable, or at least does not have the single-orbit feature,
even though Ci’s individually do. (Note that all previously
known affine-invariant LDPC codes did satisfy the single-orbit
feature.) Below we attempt to describe how we select the Ci’s.

Our first task is to ensure that the Ci’s are LDPC codes.
Unfortunately the “explicit” ones we know (based on low-
degree multivariate polynomials) turn out not easy to analyze.
So we turn to a less explicit, but more general result due to
[10] (see also [12]) which claims that any “sparse” affine-
invariant code is a single-orbit code (hence an LDPC code).
“Sparseness” simply fixes the number of codewords to be some
polynomial in N . Unfortunately taking Ci to be a sparse code
is futile since C, being a subset of Ci will be even more
sparse and the above mentioned results would imply that C
also has the single-orbit feature. This is where we turn to a
special class of integers n. We only consider n that are a
product of small primes. We pick p1, . . . , p` to be distinct
primes with pi = Θ(log n) and ` = O(log n/ log log n) so
that n = p1 · p2 · · · p`. We take C̃i to be some sparse code
contained in F2pi

2 where we view the coordinates of this code
to be F2pi ⊆ F2n . Since C̃i is sparse, it is a single-orbit code
over the smaller domain. We then propose a certain “lifting” of
this code to the code Ci over the domain F2n which preserves
the single-orbit property while making the code non-sparse.
The resulting code C = ∩iCi now at least has some hope of
being non-sparse and even of not being testable.

Proving that a code is not testable is non-trivial. We do so
by considering the “canonical tester” proposed by [4] which
tests a vector w by picking a low-weight codeword y ∈ C⊥
and accepts w if and only if 〈y, w〉 = 0. Our main technical
result involves showing that for a careful choice of C̃i’s a
codeword of weight k tends to accept some words far from C
with probability at least 1−k/` (and so the testing complexity
is Ω(`) = Ω(log logN/ log log logN). To explain the actual
choice of the C̃i’s we need to explain a fair bit of the (known)
structural results about affine-invariant codes, so we won’t do
it now. But it suffices to say that the choice, understanding
the “lifts” of these codes, and finally proving the limitation of
local tests on C are the main contributions of this work.

Organization: In Section II we present some basic definitions
and a formal statement of our main result (Theorem II.6 which
is a more formal version of Theorem I.1). In Section III we
present some standard background related to affine-invariant
codes. In Section IV we present our new class of codes and
prove our main theorem modulo some technical results. In
Section V we show that our codes do not possess a sufficient
condition for local testability. This allows us to prove in
Section VI that our codes are not locally testable.

II. FORMAL DEFINITIONS AND STATEMENT OF RESULTS

Notation and basic coding theory definitions: Let [n] denote
the set {1, . . . , n}. The letters F,K,L will invariably denote

finite fields and Fq is the field of size q. For functions
f : X → Y and g : Y → Z (for arbitrary sets X,Y, Z),
we let g ◦ f : X → Z denote their composition, i.e.,
(g ◦ f)(x) = g(f(x)). We use the standard notation for error
correcting codes as defined in, e.g., [15]. For finite alphabet
Σ and integers n, k, d, a (n, k, d)Σ code C is a subset of Σn

of size |C| ≥ |Σ|k such that the minimal Hamming distance
between distinct codewords w, u ∈ C is at least d. For the
special case that Σ is a finite field F (as will hold throughout
this paper), an [n, k, d]F-code C is a k-dimensional subspace
of Fn such that every nonzero codeword f ∈ C \ {0} has
weight at least d. We shall view a codeword f ∈ C as a
function f : [n] → Σ and define its support to be the set
supp(f) = {i ∈ [n] | f(i) 6= 0} and its weight to be the size
of its support. The dual code of C is C⊥ = {u ∈ Fn | u ⊥ C}
where u ⊥ V if and only if 〈u, v〉 = 0 for all v ∈ V . Let
C⊥≤q denote the set of dual words that have weight at most q.
If (C⊥≤q)⊥ = C we say that C is a q-low-density-parity-check
code (q-LDPC code, for brevity) because it is characterized
by a parity check matrix in which each row has small weight
(or low density).

Definition II.1 (Locally testable code (LTC)). For integer q
and constants δ, s, c ∈ [0, 1], a (q, δ, s, c)-tester for a (n, k, d)Σ

code C is a randomized Turing machine T with oracle access
to a purported codeword f : [n]→ Σ that satisfies:

• Operation T makes at most q queries to f and outputs
either accept or reject. Let T f denote the output of T on
oracle f and notice T f is a random variable because T
is a random machine.

• Completeness If f ∈ C then Pr[T f = accept] ≥ c.
• Soundness If the Hamming distance of f from C is at

least δn (in which case we say f is δ-far from C) then
Pr[T f = reject] ≥ s.

The probability stated above is with respect to the randomness
used by T . The code C is said to be (q, δ, s, c)-locally testable if
there exists a (q, δ, s, c)-tester for it. q is the query complexity,
δ the distance (or proximity) parameter, s is the soundness
and c is the completeness of the tester and its associated code.
When c = 1 (as will be the case in this paper) we say the tester
and associated code have perfect completeness and omit the
completeness parameter altogether.

Remark II.2 (On soundness and completeness). Taking
soundness and completeness parameters s + c ≤ 1 leads to
trivial results — all codes are testable with such parameters by
a tester that accepts all words with probability c hence rejects
all words with probability 1 − c ≥ s. So we shall always
assume s+ c > 1.

The following class of canonical testers is particularly useful
for proving lower bounds on linear LTCs, because the analysis
of a canonical tester can be carried out using tools from linear
algebra. In what follows, for f ∈ Fn and I ⊂ [n] let f |I be
the projection of f to the set of coordinates I and for C ⊂ Fn
let C|I = {f |I | f ∈ C}.



Definition II.3 (Linear and canonical testers for a linear code).
A linear q-tester for a [n, k, d]F-linear code C is specified by a
distribution µ over subsets {I ⊂ [n] | |I| ≤ q}. Such a tester
operates by sampling I according to µ and accepting if and
only if f |I ∈ C|I .

A canonical q-tester for C is specified by a distribution µ over
C⊥≤q . It operates by sampling u according to µ and accepting
f if and only if 〈u, f〉 = 0, where 〈u, f〉 =

∑n
i=1 u(i)f(i).

[4] showed that a tester for a linear code can be assumed to
be a linear tester without any loss in parameters. And going
from a linear tester to a canonical one results in a loss in
soundness by a factor that depends only on the field size. (See,
e.g., [5, Section 2] for a discussion of the linear-to-canonical
transition.) We summarize this by the following claim.

Claim II.4. If C is an [n, k, d]F-code that has a (q, δ, s, c)-
tester then C has a (q, δ, (s + c − 1))(1 − 1

|F| ), 1)-canonical
tester.

A. Affine invariant low density parity check (LDPC) codes

We now turn to define affine-invariant codes, focusing on
LDPC affine-invariant codes. Before getting to the definitions
we make a shift in our coding-related notation to be in line
with the notation used for describing such codes. In particular,
we shall associate the set of coordinates [n] with the elements
of a finite field K (with |K| = n) and view words in Fn as
functions mapping K to F. Letting {K→ F} denote the set
of functions from K to F, a code C is now viewed as a linear
subspace of {K→ F}. We define AffineK to denote the set of
affine transformations T : K→ K.

Definition II.5 (Affine-invariant codes). A linear code C ⊆
{K→ F} is said to be affine-invariant if K extends F (so n =
|K| = |F|t for some integer t) and C is “invariant” under the
action of the affine semi-group. Specifically, for every f ∈ C
and every affine-transformation T ∈ AffineK we have (f ◦
T ) ∈ C where (f ◦ T )(α) = f(T (α)) for all α ∈ K.

We are ready to state our main result whose proof appears in
Section IV.

Theorem II.6 (Affine-invariant LDPC codes are not necessar-
ily locally testable). For every prime p there exist constants
δ, γ > 0, a positive integer k and an infinite family of positive
integers N such that for every n ∈ N the following holds:

• Code There is an affine-invariant code C(n) ⊆
{Fpn → Fp}. I.e., C(n) is a code of block length N = pn

over Fp.
• LDPC C(n) is a k-LDPC code.
• Non-testable C(n) is not o(log n/ log log n)-locally

testable. Specifically, for every s, c ∈ (0, 1] satisfying
s + c > 1, every (q(n), δ, s, c)-tester for C(n) satisfies
q(n) ≥ γ(s+ c− 1)) log n/ log log n.

Remark II.7. Note that as a function of the block length N =
pn, the locality lower bound is Ω(log logN/ log log logN).

III. BASIC BACKGROUND

To describe our codes, we need to reintroduce some basic
notions used in previous works on testing affine-invariant
properties, specifically, the notion of a “single-orbit charac-
terization”, the “degree-set” of an affine-invariant family, and
the “sparsity” of a family. Readers familiar with the works
of [3, 9, 10, 12, 13, 14] can skip most of this section after
familiarizing themselves with our notation. We restrict our
attention to functions mapping K = Fpn to F = Fp.

A. Single-orbit Characterization

A basic concept in testing is the notion of a constraint, namely
a sequence of points α1, . . . , αk ∈ K and a subset S ⊂ Fk. A
function f satisfies the constraint if 〈f(α1), . . . , f(αk)〉 ∈ S.
We refer to k as the locality of the constraint. In this work
we need to work only with basic constraints where the set S
is given by a single linear constraint on the values (i.e., S is
a co-dimension one subspace of Fk). Thus a basic constraint
is given by a pair (α, λ) ∈ Kk × Fk, where f satisfies the
constraint if

∑k
i=1 λif(αi) = 0. We suppress the term basic

(all constraints considered in this work are basic) and simply
refer to (α, λ) as a k-constraint. Note that such a constraint is
equivalent to a dual codeword of weight k.

A code C ⊆ {K→ F} satisfies a constraint if every f ∈
C satisfies it. A collection of constraints

{
(α(j), λ(j))

}
j∈[m]

characterizes a code C if C is exactly the set of functions
that satisfy every constraint (α(j), λ(j)), j ∈ [m]. Note that
being a k-LDPC code is equivalent to being characterized by
a collection of k-constraints.

The notion of interest to us is a single-orbit characterization,
which arises when the characterization is simply the permuta-
tions of a single constraint under affine transformations of the
domain, as formalized below.

Definition III.1 (Single-orbit characterization). A k-constraint
(α, λ) is said to be a k-single orbit characterization, or
simply a k-s-o-c, of an affine-invariant code C ⊆ {K→ F}
if the following holds: f ∈ C if and only if f satisfies
the constraints (T ◦ α, λ) for every T ∈ AffineK, where
T ◦ α = 〈T (α1), . . . , T (αk)〉. If C has a k-s-o-c we say C
is k-single-orbit.

The following result of [14] shows that all affine-invariant
codes that have a k-s-o-c are necessarily k-locally testable.

Theorem III.2 (k-single-orbit codes are locally testable, [14,
Theorem 2.10]). There exists s > 0 such that for every positive
integer k, prime p, field K extending Fp, and every δ > 0 the
following holds: If C ⊆ {K→ Fp} is a k-single-orbit affine-
invariant code then C is a (k, δ, sδ/k2, 1)-locally testable code.

All previously known affine-invariant LDPC codes were ac-
tually k-single-orbit. And since all of these codes were also



locally testable, it follows that all previously studied affine-
invariant LTCs were actually single-orbit codes. Not surpris-
ingly, single-orbit codes also form the starting points of our
construction. Our goal is to come up with codes and trans-
formations which preserve affine-invariance and the LDPC
feature, while losing the single-orbit and local testability
properties.

B. Degree sets of affine-invariant codes

To pick our basic (single-orbit) affine-invariant codes, we
use a certain representation in terms of the “degrees” of the
polynomials that represent codewords — a property studied
previously in [14] and subsequent works. We review the main
notions below.

For a function f : K → Fp we let f(X) ∈ K[X] denote the
unique univariate polynomial over K of degree at most |K|−1

that computes f . In what follows let suppdeg

(∑
i≥0 fiX

i
)

=

{d | fd 6= 0} denote the set of powers of f(X) with nonzero
coefficients. We use the Trace map from K to Fp defined by
TraceK→Fp

(X) =
∑[K:Fp]−1
i=0 Xpi . (In the future we shall omit

K and Fp when they are unambiguously defined.)

Definition III.3 (Degree sets). Given a code C ⊆ {K→ F} we
let Deg(C) = ∪f∈C suppdeg(f) be its degree set. Conversely,
given a set D ⊆ {0, . . . , |K| − 1}, let Code(D) = {Trace ◦
f |f ∈ K[X], suppdeg(f) ⊆ D}, denote the code of D.

For general codes, the notions above do not carry much
relevance, however for affine-invariant codes they do. To
summarize the effect we need to study the members of degree
sets in their base-p representation. The following definitions
become important to us.

Definition III.4 (Shadow- and orbit- closed degree sets). For
prime p and integer d let [d]p denote the base-p representation
of d, i.e., [d]p = 〈d0, d1, . . .〉 such that d =

∑
i≥0 dip

i. The
p-weight of d is wtp(d) =

∑
i≥0 di. Let the p-shadow of d be

the set of integers whose base-p representation is, coordinate-
wise, not greater than the base-p representation of d,

shadowp(d) =

∑
i≥0

eip
i

∣∣∣∣∣∣ ∀i, ei ≤ di
.

We write e ≤p d to denote e ∈ shadowp(d) and e <p d
denotes e ∈ shadowp(d) \ {d}.

A set of integers D is said to be p-shadow closed if
for all d ∈ D we have shadowp(d) ⊆ D. When
K is a degree-n extension of Fp we let orbitK(D) ={
d · pi mod pn − 1

∣∣ d ∈ D, i ∈ {0, . . . , n− 1}
}

denote the
orbit of D in K. A set D is said to be K-orbit closed if
orbitK(D) = D.

The connection between shadow- and orbit-closed degree sets
and affine-invariant codes is given by the following result

which is implicit in many different works. For completeness
we give its proof in Section VII.

Lemma III.5 (Closed degree sets specify affine-invariant
codes). Let C ⊆ {K→ F} be affine-invariant. Then Deg(C)
is shadow-closed and orbit-closed and C = Code(Deg(C)).
Conversely, for every shadow-closed and orbit-closed family
D, the code Code(D) is affine-invariant and satisfies D =
Deg(Code(D)).

Our codes will be constructed by choosing the degree set
carefully, and then analyzing algebraic conditions that explain
when they have single-orbit characterizations. The following
lemma, proved in Section VIII, expresses the notions of being
a constraint and a single-orbit characterization, in terms of
degree sets.

Lemma III.6 (Degrees vs. Constraints and Characterizations).
Let C ⊆ {K→ F} be an affine-invariant code with degree set
D = Deg(C). Let (α, λ) ∈ Kk × Fk be a k-constraint. We
have the following.

1) C satisfies (α, λ) if and only if
∑k
i=1 λiα

d
i = 0 for every

d ∈ D.
2) (α, λ) is a k-s-o-c of C if and only if we have: d ∈

D(C) ⇔ ∀e ≤p d,
∑k
i=1 λiα

e
i = 0.

C. Sparsity

Finally, we introduce the notion of the “sparsity” of an affine-
invariant code. For our purposes, it is best to define it in terms
of its degree set.

For a field L extending F, we say that an affine-invariant code
C ⊆ {L→ F} has sparsity s if there exists a set2 S with
|S| ≤ s such that C = Code(S). It is easy to show that
an s-sparse code has at most |L|s codewords. Such codes are
interesting in that they are single-orbit characterized, as shown
in [10, Theorem 4] for the case when F = F2 and L is a
prime-degree extension of F, and by [12, Theorem 1.7] for
the general case.

Theorem III.7 (Sparse affine-invariant codes have good dis-
tance and are single-orbit). For every prime p and constant
s there exists a constant δ > 0 and integer k such that the
following holds. Let L be the degree m extension of Fp. Let
C ⊆ {L→ Fp} be an affine-invariant code of sparsity at most
s. Then

1) C is a code of relative distance at least δ.
2) C is characterized by a single constraint of size at most

k.

IV. THE CONSTRUCTION

In this section we describe the construction of our affine-
invariant LDPC codes which are not locally testable. At the

2Note that one does not have to use sets that are orbit-closed for this
definition. Indeed Code(S) equals Code(orbitL(S)) due to the nature of
the Trace function but using S directly may lead to much smaller sparsity.



end of the section we state the main technical result regarding
these codes (Theorem IV.7) and conclude Theorem II.6 which
is the main result of this paper. The proof of Theorem IV.7 is
deferred to later sections.

Recall from Section I that we consider n = p1 · p2 · · · p`
where the pi’s are distinct primes with each pi ≈ log n and
` = Θ(log n/ log log n). This yields a field K with many
subfields in it. The plan is to construct several codes C̃i, one
corresponding to each i ∈ [`] and then “lift” them into codes
Ci and letting C = ∩iCi. We now go into the details of C̃i and
the “lifting”.

Let Li = Fppi . We pick C̃i to be an s-sparse, affine-invariant
code mapping Li to F. By Theorem III.7 such a code is k-
single-orbit, so we cannot hope it is not testable. We then
define a lifting operation which lifts this code to a code
Ci ⊆ {K→ F}. The lifting loses sparsity (as it must for
our final result) but does not lose the k-single-orbit property
(which it also needs to lose). (We only wish to preserve the
LDPC property; the preservation of the single-orbit property
is collateral damage.) But the single-orbit property is not
necessarily preserved when we take the intersections of the
Ci, and indeed forms the basis of our hope that ∩iCi is not
single-orbit or locally-testable. In later sections we prove that
these features are not preserved confirming our hope, but for
now we define the “lifting” operation and then describe our
codes.

Formally, we define lifting in terms of what it does to the
degree sets of affine-invariant codes. But to get some intuition,
the idea, given a sequence of nested fields F ⊂ L ⊂ K, is to
take a constraint (α, λ) and then to just view it as a constraint
on codes mapping K to F. If (α, λ) is a k-s-o-c of some code
C̃ ⊆ {L→ F} when viewed as a constraint on codes mapping
L to F, and a k-s-o-c of C when viewed as a constraint on
codes mapping K to F, then we define C to be the “lift” of C̃.

Definition IV.1 (Lifted code). Let K ) L ) Fp be
finite fields. For D ⊆ {0, . . . , |L| − 1} we define the lift
of D from L to K to be the set of integers liftL↗K(D) =
{d′ ∈ {0, . . . , |K| − 1} | (shadowp(d

′) mod (|L| − 1)) ⊆ D}.
For an affine-invariant code C ⊆ {L→ Fp}
with degree set D, let liftL↗K(C) be the affine-
invariant code specified by degree set liftL↗K(D),
liftL↗K(C) = {f : K→ Fp | suppdeg(f) ⊆ liftL↗K(D)} =
Code(liftL↗K(D).

Remark IV.2 (Lifted affine-invariant code is affine-invariant).
If C is an affine-invariant code, characterized by degree set
D, notice that lifting C to a larger field results in an affine-
invariant code. This is because the set liftL↗K(D) is, by
definition, p-shadow-closed (assuming D is p-shadow-closed)
and inspection reveals it is orbit closed because |L| divides
|K|.

Next we define our family of non-LTCs.

Definition IV.3 (Main Construction). Fix a prime field Fp.

Given distinct primes p1, . . . , p` let Li be the degree pi
extension of Fp and let K be the degree n =

∏`
i=1 pi

extension of Fp. Let Di = orbitLi
({1, 2, 1 + p}) and

let C̃i be the affine-invariant code with degree set Di,
i.e., C̃i = {TraceLi→F(f) | f ∈ Li[X], suppdeg(f) ⊆ Di} =
Code(Di). Let Ci = liftLi↗K(C̃i). Finally we let
C = C(Fp; p1, . . . , p`) ⊆ {K→ Fp} be the affine-
invariant code defined as C =

⋂`
i=1 Ci. In other

words, C(Fp; p1, . . . , p`) = Code(D) where D =

D(Fp; p1, . . . , p`) =
⋂`
i=1 liftLi↗K(Di).

Remark IV.4 (Basic Properties). Every affine-invariant code
of dimension greater than one contains every degree of p-
weight one in its degree set, and so does D(Fp; p1, . . . , p`)
(since it must contain some degree of weight one, and then
the Trace operator adds every degree of weight one into the
degree set). This obvious fact will be used often later.

Remark IV.5 (Sparsity of lifted code). Notice each “base-
code” C̃i ⊆ {Li → Fp} has sparsity at most 3. (It can be
verified to be isomorphic to a subcode of Reed-Muller code of
degree 2 over Fp, cf. [3, Lemma 3.7].) However, the lifted code
liftLi↗K(Ci) has super-constant sparsity. To see this notice
that

{
p+ pjpi

∣∣∣ j = 0, . . . , npi − 1
}
⊆ liftLi↗K(Di) and each

element of this set has a distinct orbit in K, which implies that
the sparsity of liftLi↗K(Di) is at least [K : Li] = n/pi.

The following two statements immediately prove our main
Theorem II.6. The first statement follows directly from what
is already known about affine-invariant codes. Due to space
limitations its proof is omitted from the conference proceed-
ings and can be found in the full version of the paper [6]. The
second one, proved in Section VI, requires some new ideas
which are exposed in Sections V and VI.

Lemma IV.6 (C(Fp; p1, . . . , p`) is an LDPC code). For every
prime p there exists a positive constant k such that the
following holds. C(Fp; p1, . . . , p`) is an affine-invariant k-
LDPC code.

Theorem IV.7 (C(Fp; p1, . . . , p`) is not locally testable). For
every prime p there exist positive constant δ such that the
following holds for all s, c ∈ (0, 1] such that s + c > 1 (cf.
Remark II.2). Given a (q, δ, s, c)-tester for C(Fp; p1, . . . , p`)
(as in Definition IV.3) and assuming p1, . . . , p` ≥ 5, we have
q > (s+ c− 1)(1− 1/p)`.

Let us see how these statements imply our main result.

Proof of Theorem II.6: Let pi denote the (i + 2)nd
smallest prime (such that p1 = 5). Let n` =

∏`
i=1 pi and

recall that
` ≥ Ω(log n`/ log log n`). (1)

This inequality can be derived from the prime num-
ber theorem. Consider the family of affine-invariant codes
{Cn`

= C(Fp; p1, . . . , p`) | ` = 1, 2, . . .}. Lemma IV.6 proves
the first part of Theorem II.6. For the second part let δ be as



in Theorem IV.7. Given a (q`, s, c)-tester for Cn`
Theorem IV.7

shows that q` ≥ (s+ c−1)(1−1/p)` ≥ Ω(log n`/ log log n`)
where the last inequality uses (1). Letting γ′ be the constant
hidden inside the asymptotic notation of (1) and setting
γ = γ′(1− 1/p) completes the proof of Theorem II.6.

V. C(Fp; p1, . . . , p`) IS NOT (`− 1)-SINGLE ORBIT
CHARACTERIZABLE

This section sets up machinery needed for the proof of
Theorem IV.7 which shows that our code C is not locally
testable. In the process we prove the strictly weaker statement
(Lemma V.1) that C is not single-orbit characterized. Along
the way we introduce the concepts and tools needed to prove
Theorem IV.7 in the next section.

Lemma V.1. Let p be an arbitrary prime and let p1, . . . , p` ≥
5. Then, if C(Fp; p1, . . . , p`) from Definition IV.3 has a k-s-o-c,
then k > `.

We prove the lemma at the end of this section, after developing
the ingredients. The proof consists of two main steps. First,
we analyze the degree set D(Fp; p1, . . . , p`) of our codes and
show some explicit integers that are contained in this set and
some integers that are not. Proving the containments (or lack
thereof) is easy — but the choice of these integers is done
carefully so as to support the second step. In particular, we
show that the elements of focus in D(Fp; p1, . . . , p`) have a
certain recursive description which turns out to be useful in
the second step.

The second step is to use the analysis of D(Fp; p1, . . . , p`) to
prove that C(Fp; p1, . . . , p`) does not have a local characteriza-
tion. For this part, we consider any k-local constraint (α, λ) ∈
Kk × Fkp satisfied by all codewords in C(Fp; p1, . . . , p`). We
use Lemma III.6 to convert this into an implication that a
certain matrix M with k columns has a non-empty kernel. We
then define a sequence of ` matrices M1, . . . ,M` = M with
nested kernels, i.e.,

ker(M1) ⊇ ker(M2) ⊇ . . . ⊇ ker(M`). (2)

The crux of our proof is to show that if ker(Mi) = ker(Mi+1)
then the constraint somehow “misses” testing membership in
Ci, and so it is not a characterization. This step relies on
the recursive description of the members of D(Fp; p1, . . . , p`)
spotlighted in the first. We turn this recursive description into
a simple relationship between Mi and Mi−1 and then, in turn,
into a relationship between their kernels.

A. Analysis of D(Fp; p1, . . . , p`)

Definition V.2. For j ∈ [`] let qj be the integer satisfying

∀i ∈ [`], qj mod pi =

{
1 if i = j

0 otherwise.

(The Chinese Remainder Theorem guarantees the existence of
qj .)

For t ∈ [`] let Yt be the set of integers

Yt =
{
p
∑t

j=1 zjqj
∣∣∣ zj ∈ {0, 1}}

=

{
{1, pq1} t = 1

Yt−1 ∪ {pqt · d | d ∈ Yt−1} t = 2, . . . , `
(3)

Notice that the Yt’s have a nice recursive structure, which will
become important in later sections. Our next lemma explains
the relationship between the Yt’s and D(Fp; p1, . . . , p`).

Lemma V.3. 1) For every e ∈ Y` and e′ ≤p 1+e we have
e′ ∈ D(Fp; p1, . . . , p`).

2) For all t ∈ [`], we have 1 + p2qt 6∈ D(Fp; p1, . . . , p`),
assuming p1, . . . , p` ≥ 5.

Proof: For Part (1), fix e ∈ Y`. Let z1, . . . , z` ∈ {0, 1}
be such that e = p

∑
j zjqj . Let d = 1 + e.

Notice d is of p-weight 2. Hence all integers d′ <p d are
of p-weight 1. Since D(Fp; p1, . . . , p`) is nonempty and p-
shadow-closed it follows that d′ ∈ D(Fp; p1, . . . , p`). So to
prove the claim it is enough to show d ∈ D(Fp; p1, . . . , p`).
Recalling D(Fp; p1, . . . , p`) =

⋂`
i=1 liftLi↗K(Di) it is enough

to show that d ∈ liftLi↗K(Di) for all i ∈ [`]. Since
Di = orbitLi

({1, 2, 1 + p}) this amounts to showing that
d mod (ppi − 1) ∈ Di ∀i ∈ [`].

By construction of qj we have

pqj mod (ppi − 1) =

{
p if i = j

1 otherwise,

so that

d mod (ppi − 1) = 1 +
∏
j

pzjqj mod (ppi − 1)

= 1 + pziqi mod (ppi − 1)

=

{
2 if zi = 0

1 + p if zi = 1

In both cases we have d mod (ppi−1) ∈ Di. Since this holds
for all i ∈ [`] this yields Part (1) of the lemma.

For Part (2), it is enough to prove that 1 + p2qt mod
(ppt − 1) 6∈ Dt. (Recall Dt = orbitLt

({1, 2, 1 + p}).) Noting
that pqt mod (ppt − 1) = p, we get that

1 + p2qt mod (ppt − 1) = p2 + 1 mod (ppt − 1) = p2 + 1.

The only way 1 + p2 ∈ Dt is if 1 + p2 = pa(1 + p) mod
(ppt − 1) for some a, but inspection reveals this can not
happen if pt ≥ 5. (It may happen if pt = 3.) We conclude
that 1 + p2qt 6∈ D(Fp; p1, . . . , p`) as claimed.

B. Analyzing constraints on C(Fp; p1, . . . , p`)

We now fix a k-local constraint (α, λ) ∈ Kk×Fk and consider
a collection of matrices whose kernels turn out to hold the key
to proving Lemma V.1.



The natural matrix to consider at this stage might be the matrix
M̃ whose rows are indexed by d ∈ D(Fp; p1, . . . , p`) and
columns by i ∈ [k] and where M̃d,i = λi · αdi . The columns
of this matrix sum to zero, implying the all ones vector is
in its (right) kernel. Unfortunately this matrix does not have
a nice enough structure to exploit, so we focus instead on a
matrix whose entries are roughly αd−1

i (we consider only d’s
of the form suggested by Lemma V.3). In fact we define an
entire sequence of matrices that are used to show the recursive
structure of the final matrix that we care about.

We start with some generic notation. For any set S of non-
negative integers, we let M [S] be the |S| × k matrix with
M [S]i,j = λj ·αij for i ∈ S and j ∈ [k]. For an m×k matrix,
M , we let ker(M) denote the set of vectors {x ∈ Kk|Mx =
0}. We let M↑t denote the matrix with (M↑t)ij = (Mij)

t.

Definition V.4. For t ∈ [`], let Yt be as in Definition V.2. Then
Mt = M [Yt].

Our interest in Mt’s stems from the fact that if (α, λ) is a
constraint satisfied by C(Fp; p1, . . . , p`), then M` must have a
non-empty kernel as pointed in the following lemma.

Lemma V.5. α ∈ ker(Mt) for all t ∈ [`].

Proof: Fix e ∈ Yt and note that (Mtα)e =
∑k
i=1 λiα

1+e
i .

By Part (1) of Lemma V.3, we have 1+e ∈ D(Fp; p1, . . . , p`),
and by Part (1) of Lemma III.6 we have that

∑k
i=1 λiα

d
i =

0 for every d ∈ D(Fp; p1, . . . , p`). We conclude that every
coordinate of the vector Mtα is zero, and thus α ∈ ker(Mt).

We now turn to upper bounding the dimension of the kernel
of Mt. For this we need the following recursive description
of Mt and its kernel.

Proposition V.6 (Basic properties of M1, . . . ,M`). For t =
2, . . . , ` we have

Mt =

(
Mt−1

M↑p
qt

t−1

)
. (4)

Consequently,

ker(Mt) = ker(Mt−1) ∩ ker
(
M↑p

qt

t−1

)
. (5)

Proof: Follows directly from inspecting the rightmost side
of (3) and noticing λp

qt
= λ because λ ∈ Fkp .

We are now ready to use the structure described above to study
the kernels of the matrices Mt.

Lemma V.7 (Kernel decay). For every t ∈ {2, . . . , `},
ker(Mt−1) ⊇ ker(Mt). Furthermore, if ker(Mt−1) =

ker(Mt) then ker(Mt−1) = ker
(
M↑p

mqt

t−1

)
for all positive

integers m.

Proof: The containment ker(Mt−1) ⊇ ker(Mt) is imme-
diate from Proposition V.6.

We prove the second part by induction on m ≥ 1. The
base case (m = 1) follows from (5) because the assumption
ker(Mt) = ker(Mt−1) implies

ker(Mt−1) = ker
(
M↑p

qt

t−1

)
. (6)

For the induction step use the inductive hypothesis to as-
sume M↑p

mqt

t−1 v = 0 ⇔ Mt−1v = 0. The operation
of raising elements of K to power pqt is a (Frobenius)
automorphism of K since K is an extension of Fp. Raising

both sides to this power we get 0 =
(
M↑p

mqt

t−1 v
)↑pqt

=

M↑p
(m+1)qt

t−1 v↑p
qt ⇔ 0 = (Mt−1v)↑p

qt
= M↑p

qt

t−1 v
↑pqt .

Letting u = v↑p
qt and noticing the mapping v 7→ u is

one-to-one (because raising to power pqt is invertible) we
conclude u ∈ ker(M↑p

(m+1)qt

t−1 ) ⇔ u ∈ ker(M↑p
qt

t−1 ) ⇔
u ∈ ker(Mt−1). The rightmost implication follows from the
assumption (6). This completes the proof of the lemma.

C. Proof of Lemma V.1

We are now ready to prove the main lemma of this section.

Proof of Lemma V.1: First we claim that for every
t ∈ {2, . . . , `}, it is the case that ker(Mt) ) ker(Mt−1).
Assume for the sake of contradiction that this does not hold
and ker(Mt−1) = ker(Mt) for some t. Then by Lemma V.5
we have α ∈ ker(Mt−1). Combining with Lemma V.7 we
further get α ∈ ker

(
M↑p

mqt

t−1

)
for all m ≥ 1. Setting m = 2

we get α ∈ ker
(

(Mt−1)↑p
2qt
)

. Now, since 1 = p0 ∈
Yt−1 (cf. Definition V.2), we get that (λ1α1, . . . , λkαk) is
a row of Mt−1 and so (λ1α1, . . . , λkαk)↑p

2qt is a row of
(Mt−1)↑p

2qt . The condition α ∈ ker
(

(Mt−1)↑p
2qt
)

yields

0 =
∑k
i=1 λ

p2qt

i · αp
2qt

i · αi =
∑k
i=1

∑k
i=1 λiα

1+p2qt

i .

We claim that this shows that d = 1 + p2qt belongs to
D(Fp; p1, . . . , p`) and this contradicts Part (2) of Lemma V.3.
Indeed, the p-weight of d is 2 hence all e <p d have p-weight
1 so they belong to D(Fp; p1, . . . , p`) (see Remark IV.4).
So we have

∑k
i=1 λiα

1+p2qt

i = 0,∀e ≤p d which, by Part
(2) of Lemma III.6, implies that d ∈ D(Fp; p1, . . . , p`),
contradiction. We conclude that ker(Mt−1) ) ker(Mt) as
claimed.

To complete the proof we bound k. By Lemma V.5 we
have dim(ker(M`)) ≥ 1 because α is nonzero. Since
dim(ker(Mt−1)) ≥ dim(ker(Mt)) + 1 for every t, we get
that dim(M1) ≥ `. But on the other hand, we trivially have
dim(ker(M1)) < k because M1 is nonzero. Thus we get ` < k
as desired.

VI. NON-TESTABILITY

In this section we prove our main theorem, Theorem IV.7.
We follow the strategy for proving lower bounds on query
complexity of linear codes suggested by [4], this strategy is



summarized by the following proposition (which we describe
in our notation). The strategy is defined with respect to
canonical testers (cf. Definition II.3) but given Claim II.4
it also implies lower bounds for general testers. For µ a
distribution over a set S let s ∼ µ denote that s is sampled
according to µ.

Proposition VI.1 (Strategy for proving lower bounds on query
complexity, [4]). Let C ⊆ {K→ F} be a linear code and let
ε, δ > 0. If there exists a distribution µ supported on {K→ F}
satisfying:

• Distance: The support of µ is on words that are δ-far
from C.

• Undetectability: For every k-local constraint (α, λ) sat-
isfied by C,

Pr
w∼µ

[
k∑
i=1

λiw(αi) 6= 0

]
< ε. (7)

Then any (q, δ, ε)-canonical tester for C satisfies q > k.

To follow the strategy we first define the distribution µ of
“bad” words for a q-tester, then focus on an arbitrary k-local
constraint satisfied by C and bound the probability of (7) using
the machinery from the previous section.

Definition VI.2 (Bad distribution). Given C(Fp; p1, . . . , p`)
and i ∈ [`] let Bi ⊆ {K→ Fp} be the affine-
invariant code Bi = Code(Di) where Di =
orbitK

(
shadowp

({
1 + p2qi

}))
. Let µ be the distribution

obtained by (i) sampling i ∈ [`] uniformly and then (ii)
sampling f ∈ Bi \ C(Fp; p1, . . . , p`) uniformly at random.

Claim VI.3 (µ has the distance property). µ is well-defined,
i.e., its support is over a nonempty set. Furthermore, for every
prime p there exists a constant δ > 0 such that µ is supported
on words that are δ-far from C(Fp; p1, . . . , p`).

Proof: To see the first part of the claim notice Part (2)
of Lemma V.3 says that 1 + p2qi 6∈ D(Fp; p1, . . . , p`) and this
implies Bi 6⊆ C(Fp; p1, . . . , p`). So Bi \ C(Fp; p1, . . . , p`) 6= ∅
and we see that µ is well-defined.

Moving on to the second part, by construction Bi is affine-
invariant and has sparsity at most |shadowp(

{
1 + p2qi

}
)| =

|{0, 1, p2qi , 1 + p2qi}| = 4. The distance of Bi is thus implied
by the first part of Theorem III.7. In particular, each w ∈
Bi \ C(Fp; p1, . . . , p`) is δ-far from C(Fp; p1, . . . , p`) where δ
is the constant guaranteed by Theorem III.7.

Lemma VI.4 (µ is undetectable). For any k-local constraint
(α = (α1, . . . , αk) ∈ Kk, λ = (λ1, . . . , λk) ∈ Fkp) satisfied by
C(Fp; p1, . . . , p`) we have

Pr
f∼µ

[f does not satisfy (α, λ)] <
k − 1

`
. (8)

Proof: Let Mt = M [Yt] be as given in Definition V.4
and recall that ker(Mt−1) ⊇ ker(Mt) for t = 2, . . . , `. Let

T ⊂ {2, . . . , `} be the set of indices t satisfying ker(Mt−1) )
ker(Mt) and notice |T | < k − 1 because dim(ker(M1)) < k
and dim(ker(M`)) ≥ 1 (the last inequality follows from Part
(1) of Lemma V.3). We claim that for each t 6∈ T we have∑k
j=1 λjα

dt
j = 0, where dt = 1+p2qt . Indeed, by Lemma V.7,

for t 6∈ T we have ker(Mt−1) = ker
(

(Mt−1)
↑p2qt

)
. As in the

proof of Lemma V.1 this implies that α ∈ ker
(

(Mt−1)
↑p2qt

)
,

or, equivalently
∑k
i=1 λiα

1+p2qt

i = 0 as claimed.

Next we claim that for i 6∈ T , the code Bi satisfies (α, λ). To
show this it suffices to show, by Part (1) of Lemma III.6,
that every d ∈ Di = Deg(Bi) satisfies

∑k
j=1 λjα

d
j = 0.

If d is of p-weight one, then d ∈ D(Fp; p1, . . . , p`) (by
Remark IV.4) and since C(Fp; p1, . . . , p`) satisfies (α, λ) we
have

∑k
j=1 λjα

d
j = 0. Else, d = pa · di for some integer a

(since these are the only elements in Di of weight 2) and in

this case also we have
∑k
j=1 λjα

d
j =

(∑k
j=1 λjα

di
j

)pa
= 0.

We conclude that every Bi satisfies the k-constraint (α, λ).

We are almost done. Recall that f ∼ µ is chosen by picking
i ∈ [`] uniformly and then picking f ∈ Bi \ C(Fp; p1, . . . , p`).
If i 6∈ T , then the constraint (α, λ) is satisfied, and this
happens with probability at least 1 − (k − 1)/`. The lemma
follows.

We can now complete the proof of Theorem IV.7. Below we
use q to denote the locality of tests (as opposed to k).

Proof of Theorem IV.7: Use the strategy given by
Proposition VI.1. Given a prime p let δ > 0 be the constant
guaranteed by Lemma VI.3. This lemma shows that µ is
supported on words that are δ-far from C(Fp; p1, . . . , p`).
Fix a q-test for C(Fp; p1, . . . , p`), specified by the constraint
(α, λ). Lemma VI.4 shows that the probability that this
constraint rejects words sampled from µ is less than q/`. So by
Proposition VI.1 any canonical q-tester for C(Fp; p1, . . . , p`)
rejects words sampled from µ with probability less than
q/`. By Claim II.4 the existence of a (q, δ, s, c)-tester for
C(Fp; p1, . . . , p`) implies the existence of a canonical q-tester
with soundness at least (s + c − 1))(1 − 1/p). We conclude
q/` > (s+ c− 1)(1− 1/p) and this completes the proof.

VII. CLOSED DEGREE SETS SPECIFY AFFINE-INVARIANT
CODES

In this section we prove Lemma III.5. The claim of the lemma
is implicit in several different works and we basically give the
relevant pointers as well as some one line proofs.

Proof: The fact that Deg(C) is shadow closed is proved
in [3, Lemma 3.3] and the fact that C = Code(Deg(C)) is
Lemma 4.2 there.

To see that Deg(C) is orbit-closed we note that for a function
f(x) =

∑
d fdx

d mapping K → Fp it holds that f(x)p =
f(x) (modx|K| − x) and so fpd = (fd)

p. In particular, fd 6=
0 iff fdp 6= 0. Thus, d ∈ Deg(C) iff dp ∈ Deg(C) and so
Deg(C) is orbit-closed.



In the other direction, recall that

Code(D) = {Trace ◦ f |f ∈ K[X], suppdeg(f) ⊆ D} .

It follows that Deg(Code(D)) is contained in orbit(D) = D.
Indeed, if f =

∑
d∈D fdx

d ∈ Code(D) then

Trace(f) =

[K:Fp]−1∑
i=0

fp
i

=

[K:Fp]−1∑
i=0

∑
d∈D

(fd)
pixdp

i

and since D is orbit-closed all the degrees in the RHS are in
D and so suppdeg(Trace(f)) ⊆ D. Containment in the other
direction is clear.

Finally, to see that Code(D) is affine-invariant when D is
shadow-closed and orbit-closed, we observe that for every f =∑
d∈D fdx

d such that Trace(f) ∈ Code(D), and for every
a ∈ K∗ and b ∈ K it holds that

Trace(f(ax+ b)) =

[K:Fp]−1∑
i=0

∑
d∈D

(fd)
pi(ax+ b)dp

i

=

[K:Fp]−1∑
i=0

∑
d∈D

(fd)
pi
∑
e≤pd

xep
i

aep
i

b(d−e)p
i

=
∑
d∈D

∑
e≤pd

[K:Fp]−1∑
i=0

aep
i

b(d−e)p
i

(fd)
pixep

i

.

Since D is shadow-closed and orbit-closed, each degree epi in
the sum above is also in D. It follows that Trace(f(ax+ b))
is supported on D and therefore is in Code(D). This proves
that Code(D) is affine-invariant.

VIII. RELATING DEGREE SETS TO CONSTRAINTS AND
CHARACTERIZATIONS

In this section we prove Lemma III.6. The lemma is two-fold,
and we start by expressing the fact that an affine-invariant code
satisfies a constraint in terms of a condition on the degree set
of the code.

Lemma VIII.1. Let C ⊆ {K→ F} be an affine-invariant code
with degree set D = Deg(C). Let (α, λ) ∈ Kk × Fk be a k-
constraint. Then C satisfies (α, λ) if and only if

∑k
i=1 λiα

d
i =

0 for every d ∈ D.

The proof of the lemma relies on the following “monomial
extraction” result, given by [14, Lemma 4.2].

Lemma VIII.2 (Monomial extraction [14]). Let C ⊆
{K→ F} be an affine-invariant code with degree set D =
Deg(C). Then for every d in D, the monomial f(x) = xd

belongs to the code.

Proof of VIII.1: Suppose that C satisfies (α, λ), so that
f is in C if and only if

∑k
i=1 λif(αi) = 0. In particular,

for any d ∈ D, the monomial f(x) = xd belongs to C by
Lemma VIII.2 and satisfies

∑k
i=1 λiα

d
i = 0

Conversely, suppose that (α, λ) is such that
∑k
i=1 λiα

d
i =

0 for every d ∈ D. Let f(x) =
∑
d∈D fdx

d be
in C. Then

∑k
i=1 λif(αi) =

∑k
i=1 λi

∑
d∈D fdα

d
i =∑

d∈D fd
∑k
i=1 λiα

d
i = 0.

We now relate the existence of a k-s-o-c of C to a necessary
condition on the degree set of C.

Lemma VIII.3. Let C ⊆ {K→ F} be an affine-invariant code
with degree set D = Deg(C). Let (α, λ) ∈ Kk × Fk be a k-
constraint. Then the following holds.
If (α, λ) is a k-s-o-c of C then we have: d ∈ D ⇔ ∀e ≤p
d,
∑k
i=1 λiα

e
i = 0.

Proof: Let (α, λ) be a k-s-o-c of C, i.e., f is in C if
and only if for all a ∈ K∗, b ∈ K,

∑k
i=1 λif(aαi + b) = 0.

Let d be in D. Then every e ≤p d is also in D (recall that,
by Lemma III.5, D is p-shadow closed) and is such that
Trace(βxe) ∈ C for all β ∈ K∗ (since C = Code(D)). Thus
for all a, b and all β, 0 =

∑k
i=1 λiTrace (β(αia+ b)e) =

Trace
(
β
∑k
i=1 λi(αia+ b)e

)
. In particular,

Trace
(
β
∑k
i=1 λiα

e
i

)
= 0 for every β. But this is true

if and only if
∑k
i=1 λiα

e
i = 0.

Conversely, assume that d is such that ∀e ≤p
d,
∑k
i=1 λiα

e
i = 0. Noting that

∑k
i=1 λiTrace

(
(αia+ b)d

)
=

Trace
(∑

e≤pd
(
∑
i λiα

e
i ) a

ebd−e
)
, we see that∑k

i=1 λiTrace
(
(αia+ b)d

)
= 0 for every a ∈ K∗ and

b ∈ K. Hence, Trace(xd) ∈ C and d ∈ Deg(C) = D.

Finally, we show that the necessary condition in Lemma VIII.3
is in fact a sufficient condition for a code to be single-orbit.

Lemma VIII.4. Let C ⊆ {K→ F} be an affine-invariant code
with degree set D = Deg(C). Let (α, λ) ∈ Kk × Fk be a k-
constraint. Then the following holds.
If (α, λ) is such that d ∈ D ⇔ ∀e ≤p d,

∑k
i=1 λiα

e
i = 0,

then (α, λ) is a k-s-o-c of C.

To prove this lemma, we will need to look at this condition
on degree sets of single-orbit codes in yet another way. The
following claim will provide us with the tools to view the
condition differently.

Claim VIII.5. Let (α, λ) ∈ Kk × Fk and consider an integer
d (mod|K| − 1). Then the following are equivalent.

(i) ∀e ≤p d,
∑k
i=1 λiα

e
i = 0.

(ii)
∑k
i=1 λi(αix+ y)d ≡ 0 as a polynomial in x and y.

Proof: Notice that
∑k
i=1 λi(αix + y)d =∑k

i=1 λi
∑
e≤pd

αeix
eyd−e =

∑
e≤pd

(∑k
i=1 λiα

e
i

)
xeyd−e.

Since the degree is smaller than the field size, this is a formal
equality of polynomials (in the variables x and y). Hence,∑k
i=1 λi(αix+ y)d ≡ 0 ⇔

∑
e≤pd

(∑k
i=1 λiα

e
i

)
xeyd−e ≡

0 ⇔ ∀e ≤p d,
∑k
i=1 λiα

e
i = 0.



Proof of Lemma VIII.4: Assume that for all d, d ∈ D ⇔
∀e ≤p d,

∑k
i=1 λiα

e
i = 0. Equivalently, by Claim VIII.5,

we have that d ∈ D ⇔
∑k
i=1 λi(αix + y)d ≡ 0. Let

f =
∑
d∈D fdx

d be in C and notice that any d ∈ suppdeg(f)

satisfies
∑k
i=1 λi(αia + b)d = 0 for any a ∈ K∗ and

b ∈ K. Thus for all such a, b,
∑k
i=1 λif(αia + b) =∑

d fd
∑k
i=1 λi(αia+ b)d = 0.

Conversely, suppose f ∈ {K→ F} is such that∑k
i=1 λif(αia + b) = 0 for every a ∈ K∗

and b ∈ K. Define the code C′ as the smallest
linear affine-invariant family containing f , that is,
C′ = {

∑
a,b γabf(xa+ b) | a ∈ K∗, b ∈ K, γab ∈ F}.

For every degree d ∈ suppdeg(f), d is in Deg(C′). As C′
is affine-invariant, every e ≤p d also belongs to Deg(C′).
Hence, for all e ≤p d and all β ∈ K, Trace(βxe) ∈ C′.
But notice that any g ∈ C′ satisfies

∑
i λig(αia + b) = 0 for

any a ∈ K∗ and b ∈ K. Thus,
∑
i λiTrace(β(αia + b)e) =

Trace (β
∑
i λi(αia+ b)e) = 0 ∀a, b, and in particular

Trace(β
∑
i λiα

e
i ) = 0. But this holds for all β if and only if∑

i λiα
e
i = 0.

Thus for every degree d ∈ suppdeg(f), it holds that ∀e ≤q
d,
∑
i λiα

e
i = 0. Therefore, d ∈ D and hence f ∈ C.

We now conclude the proof of Lemma III.6.

Proof of Lemma III.6: The first claim in the lemma is ex-
actly Lemma VIII.1. One direction of the second claim is given
by Lemma VIII.3 and the other direction by Lemma VIII.4.

ACKNOWLEDGMENT

Part of this research was done while the first three authors were
visiting Microsoft Research New England. The first author’s
research has received funding from the European Community’s
Seventh Framework Programme (FP7/2007-2013) under grant
agreement number 240258 and from the US-Israel Binational
Science Foundation under grant number 2006104. The second
author’s research was supported in part by Grant 228021-
ECCSciEng of the European Research Council. The third
author’s research was partially supported by the Israel Science
Foundation (grant number 339/10).

REFERENCES

[1] N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn, and
D. Ron. Testing Reed-Muller codes. IEEE Transactions
on Information Theory, 51(11):4032–4039, 2005.

[2] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy.
Checking computations in polylogarithmic time. In
Proceedings of the 23rd Annual ACM Symposium on
Theory of Computing (STOC), pages 21–32, 1991.

[3] E. Ben-Sasson and M. Sudan. Limits on the rate
of locally testable affine-invariant codes. Electronic
Colloquium on Computational Complexity (ECCC),

(108), 2010. URL http://eccc.hpi-web.de/eccc-reports/
2010/TR10-108/index.html.

[4] E. Ben-Sasson, P. Harsha, and S. Raskhodnikova. Some
3CNF properties are hard to test. SIAM J. on Computing,
35(1):1–21, 2005. URL http://epubs.siam.org/SICOMP/
volume-35/art 44544.html.

[5] E. Ben-Sasson, V. Guruswami, T. Kaufman, M. Sudan,
and M. Viderman. Locally testable codes require redun-
dant testers. In Proceedings of the 24th Annual IEEE
Conference on Computational Complexity (CCC), pages
52–61, 2009.

[6] E. Ben-Sasson, G. Maatouk, A. Shpilka, and M. Su-
dan. Symmetric LDPC codes are not necessarily locally
testable. Electronic Colloquium on Computational Com-
plexity (ECCC), (199), 2010.

[7] O. Goldreich and T. Kaufman. Proximity oblivious
testing and the role of invariances. Electronic Col-
loquium on Computational Complexity (ECCC), (058),
2010. URL http://eccc.hpi-web.de/eccc-reports/2010/
TR10-058/index.html.

[8] O. Goldreich and M. Sudan. Locally testable codes and
PCPs of almost-linear length. J. ACM, 53(4):558–655,
2006.

[9] E. Grigorescu, T. Kaufman, and M. Sudan. 2-transitivity
is insufficient for local testability. In Proceedings of
the 23rd Annual IEEE Conference on Computational
Complexity (CCC), pages 259–267, 2008.

[10] E. Grigorescu, T. Kaufman, and M. Sudan. Succinct
representation of codes with applications to testing. In
APPROX-RANDOM, volume 5687 of Lecture Notes in
Computer Science, pages 534–547, 2009.

[11] T. Kaufman and S. Litsyn. Almost orthogonal linear
codes are locally testable. In FOCS, pages 317–326.
IEEE Computer Society, 2005. ISBN 0-7695-2468-0.

[12] T. Kaufman and S. Lovett. New extension of the
weil bound for character sums with applications to cod-
ing. Electronic Colloquium on Computational Complex-
ity (ECCC), (065), 2010. URL http://eccc.hpi-web.de/
eccc-reports/2010/TR10-065/index.html.

[13] T. Kaufman and M. Sudan. Sparse random linear codes
are locally decodable and testable. In 48th Symposium on
Foundations of Computer Science (FOCS), pages 590–
600, 2007.

[14] T. Kaufman and M. Sudan. Algebraic property testing:
the role of invariance. In Proceedings of the 40th Annual
ACM Symposium on Theory of Computing (STOC), pages
403–412, 2008.

[15] F. J. MacWilliams and N. J. A. Sloane. The theory
of error-correcting codes. North-Holland Amsterdam,
1978.

http://eccc.hpi-web.de/eccc-reports/2010/TR10-108/index.html
http://eccc.hpi-web.de/eccc-reports/2010/TR10-108/index.html
http://epubs.siam.org/SICOMP/volume-35/art_44544.html
http://epubs.siam.org/SICOMP/volume-35/art_44544.html
http://eccc.hpi-web.de/eccc-reports/2010/TR10-058/index.html
http://eccc.hpi-web.de/eccc-reports/2010/TR10-058/index.html
http://eccc.hpi-web.de/eccc-reports/2010/TR10-065/index.html
http://eccc.hpi-web.de/eccc-reports/2010/TR10-065/index.html

	Introduction
	Formal definitions and statement of results
	Affine invariant low density parity check (LDPC) codes

	Basic Background
	Single-orbit Characterization
	Degree sets of affine-invariant codes
	Sparsity

	The Construction
	C(Fp;p1,…,p) is not (-1)-single orbit characterizable
	Analysis of D(Fp;p1,…,p)
	Analyzing constraints on C(Fp;p1,…,p)
	Proof of Lemma V.1

	Non-testability
	Closed degree sets specify affine-invariant codes
	Relating degree sets to constraints and characterizations

