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Abstract. Despite its many applications, to program checking, proba-
bilistically checkable proofs, locally testable and locally decodable codes,
and cryptography, “algebraic property testing” is not well-understood.
A significant obstacle to a better understanding, was a lack of a con-
crete definition that abstracted known testable algebraic properties and
reflected their testability. This obstacle was removed by [Kaufman and
Sudan, STOC 2008] who considered (linear) “affine-invariant properties”,
i.e., properties that are closed under summation, and under affine trans-
formations of the domain. Kaufman and Sudan showed that these two
features (linearity of the property and its affine-invariance) play a cen-
tral role in the testability of many known algebraic properties. However
their work does not give a complete characterization of the testability
of affine-invariant properties, and several technical obstacles need to be
overcome to obtain such a characterization. Indeed, their work left open
the tantalizing possibility that locally testable codes of rate dramatically
better than that of the family of Reed-Muller codes (the most popular
form of locally testable codes, which also happen to be affine-invariant)
could be found by systematically exploring the space of affine-invariant
properties.
In this work we rule out this possibility and show that general (linear)
affine-invariant properties are contained in Reed-Muller codes that are
testable with a slightly larger query complexity. A central impediment
to proving such results was the limited understanding of the structural
restrictions on affine-invariant properties imposed by the existence of
local tests. We manage to overcome this limitation and present a clean
restriction satisfied by affine-invariant properties that exhibit local tests.
We do so by relating the problem to that of studying the set of solutions
of a certain nice class of (uniform, homogenous, diagonal) systems of
multivariate polynomial equations. Our main technical result completely
characterizes (combinatorially) the set of zeroes, or algebraic set, of such
systems.
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1 Introduction

In this work we consider an interesting subclass of “locally correctable” and “lo-
cally testable codes”, namely “affine-invariant” codes, and prove upper bounds
(limitations) on their rate. In the process we also introduce techniques of rele-
vance to “algebraic property testing” and present a characterization of the set
of solutions of a certain natural system of multivariate polynomials that lies at
the core of our study.

1.1 Locally correctable and locally testable codes, affine-invariance,
and main result

Locally correctable codes (LCCs) are error-correcting codes with the property
that every entry of a corrupted codeword can be corrected, with high probability,
by examining a small (random) subset of other entries of the corrupted codeword.
Locally correctable codes are a special class of locally decodable codes (LDCs)
studied in the work of [5, 24, 27] and formally defined by [21]. These codes are
tightly connected to the construction of private information retrieval schemes
[13] and we refer the reader to [30] for more information. One of the major open
problems regarding LDCs is that of determining the minimal length n of a binary
LDC by which messages of k bits can be encoded, and the current lower and
upper bounds on n display an exponential gap. Namely, [28] showed n must be

at least (roughly) k1+
2
r whereas the best upper bounds of [29] show n is at most

(roughly) exp(k1/ log log k) (cf. [15]).
Locally testable codes are error-correcting codes for whom membership can

be tested extremely efficiently, probabilistically. Specifically, a linear code C ⊆
ΣN is k-locally testable if there exists an algorithm T that accesses a word
w ∈ ΣN as an oracle, queries the value of w on k coordinates, and accepts
with probability one if w ∈ C and rejects with constant probability if w is “far”
from all codewords of C. (“Far” here refers to the relativized Hamming distance
between words.)

Locally testable codes have implicitly been a subject of active study ever since
the work of [11] that showed that (effectively) the Hadamard code is 3-locally
testable. They play a major role in the construction of PCPs [4, 3] from the
early days of this theorem and continuing through the recent work of [14]. Their
systematic investigation was started in [17] and yet most basic questions about
their limits remain unanswered (e.g., is there an asymptotically good family of
locally testable codes?).

A particularly interesting class of locally testable and locally correctable
codes are the affine-invariant ones. Here the code is a linear code over some
finite field F and the coordinates of the code are themselves vector spaces over
some finite extension field K of F. Thus words in such codes can be viewed as
functions from Km to F and the code is a subfamily of such functions. The code
is said to be affine invariant if it is invariant under affine-transformations of the
domain. Specifically if A : Km → Km is an affine transformation and f : Km → F
is a function in C, then so is f ◦A where f ◦A(x) = f(A(x)).



Affine-invariant codes form a natural class of algebraic codes and have been
studied by the error-correcting-codes community since the late 1960’s (cf. [20]
and references therein). In the context of locally testable and locally correctable
codes, affine-invariance facilitates natural local correctiong/testing procedures
under minimal conditions. Specifically, it is well known that for a linear code
to be testable it must have a low weight codeword in its dual, or equivalently a
local “constraint” (see, for instance, [7]). In the notation used above for affine
invariant codes, a k-local “constraint” is a collection of points α1, . . . , αk ∈ Km

and values λ1, . . . , λk ∈ F such that for every function f ∈ C, it is the case that∑k
i=1 λif(αi) = 0. For affine-invariant codes the presence of one local constraint

immediately implies many local constraints by affine “rotations”: For every affine
map A, the set of points A(α1), . . . , A(αk) also define a constraint on C. This
abundance of constraints leads easily to a local-correction procedure and also
raises the hope that affine-invariant codes may be locally testable, and indeed
[23] show that if the code is characterized by the set of constraints derived from
the affine rotations of a single constraint, then it is also locally testable. (The
more optimistic hope, that all affine-invariant locally-characterized codes are
also locally testable, has been recently refuted in [8] as a result of this work .)

We point out that it is the abundance of local constraints, not their mere
existence, that seems to be essential for obtaining locally testable codes. In
extreme cases where there is no abundance of local constraints, such as for low-
density-parity-check (LDPC) codes based on random expanders, or for codes that
have the very minimal number of local constraints needed to characterize them,
there cannot be any hope for local testability [7, 6]. But, all things considered,
abundance of local constraints should reduce the rate of the code, unless the
constraints are carefully chosen in an algebraically consistent way. The class
of affine invariant codes offered a promising approach to balance the need for
abundance of local constraints with maintaining high rate.

This leads to the question: Which affine invariant codes have local constraints
(and characterizations), and in particular how local can the constraints be, given
other parameters of the code, most notably, its rate? One, somewhat optimistic
hope, was that affine-invariance might lead to simpler constructions of locally
testable codes matching the best known parameters (the current constructions
are immensely complicated [9, 14]), or even improve on them, since the scope is
wider than just the class of Reed-Muller codes. This question however, resisted
attacks till now, since the question of determining when a low-weight constraint
can exist in an affine-invariant code leads to questions about the zeroes of cer-
tain systems of multivariate polynomial equations and these are challenging to
analyze.

Here we take some first steps in this direction, though unfortunately to give a
negative answer to the optimistic hope above. Specifically, we give a full analysis
of a certain class of polynomial equations that arise in this setting to get a rate
upper bound on affine invariant codes. For simplicity of exposition we describe
our result for the case of prime fields F = Fp. The statement for the case fields
of size pr, r > 1 is somewhat more technical but the rate bounds we get for



this case are similar to that of prime fields (cf. Theorem 2 and Corollary 1).
Our main theorem (Theorem 2) shows that if K is an extension field of F and
C is a k-locally testable/correctable code, then C is contained in a pk−1-locally
testable Reed-Muller code. If k and p are constants (which is the desired setting
of parameters) then it says that going to general affine-invariance only buys (at
best) a constant difference in the locality, when compared to the Reed-Muller
codes. Since Reed-Muller codes with constant locality over constant field sizes
are known to have exponentially low-rate, this rules out the hope described in
the previous paragraph, by a long margin.

Notice there is an exponential gap between the query complexity of affine-
invariant codes with a k-local constraint and the query complexity of the Reed-
Muller code which we show contains them, which is pk−1. Getting a full char-
acterization of affine-invariant codes with a k-local constraint, even over specific
fields (like F2n for prime n, a field which contains no subfields other than F2)
seems to us like an interesting question for future research.

1.2 Algebraic property testing

Property testing considers the task of testing if a function f from a large domain
D to a small range R satisfies some given property, where the property itself is
given by the set of functions F ⊆ {g : D → R} that satisfy the property. Again
the interest here is in “quick and dirty” tests, i.e., probabilistic tests that query
the given function f on few inputs, and accept if f ∈ F and reject with constant
probability if f is far from F . (Note that a locally testable code is just property
testing where we view the set of functions F as an error-correcting code.)

Property testing also emerged in the work of [11], was formally defined by
[25], and was systematically explored (in particular in non-algebraic contexts) by
[16]. Subsequently the study of combinatorial property testing, and in particular,
graph property testing has developed into a rich study and by now we have
almost complete understanding (at least in the dense-graph model) of which
graph properties are locally testable [1, 12].

In contrast algebraic properties have not been understood as well, despite
the overwhelming applications in complexity, and indeed till recently even an
understanding of what makes a property algebraic was missing. The concept of
affine-invariance was introduced by [23] to propose such a notion, and when the
domain is a vector space over a small field K (of constant size) they manage
to characterize locally testable properties completely. Such codes are constant-
locally testable if and only if they admit a constant local constraint, and the size
of the constraint can be related loosely to the highest degree of polynomials in
the family.

This naturally leads to the question: What about affine invariant codes over
large fields. (This family of properties includes, for instance, all sets of low-
degree polynomials, i.e., the families of Hadamard, Reed-Solomon and Reed-
Muller codes.) In particular for the extreme, and essentially most general case
when m = 1 and the functions of interest map K to a prime subfield Fp, there
was no interesting relationships known between the degrees of the functions in



the family and the locality of the test. And such understanding is essential to
get a characterization of affine-invariant locally testable codes that would be
analogous to the characterizations of graph properties of [1, 12].

Our work takes a step in this direction by giving non-trivial lower bounds
on the locality of tests for affine-invariant properties in the general case. Below
we describe the main technical question resolved in this paper (which has a
self-contained description).

2 Definitions and Main Results

2.1 Preliminaries — Locally testable, and Reed-Muller codes

Notation We use [n] to denote the set {1, . . . , n}. Throughout we let F,K,L
denote fields. The q element finite field is denoted by Fq. An [N,K,D]F-(linear)
code is a K-dimensional subspace C ⊆ FN of Hamming distance D. Elements of C
are referred to as codewords (of C). Two vectors u,w ∈ FN are said to be δ-close
if they are within Hamming distance ≤ δN of each other, otherwise they are said
to be δ-far. A vector u is said to be δ-close to C if it is δ-close to some codeword
w ∈ C, otherwise we say w is δ-far from C. We define 〈u,w〉 ,

∑N
i=1 uiwi. Let

C⊥ =
{
u ∈ FN

∣∣ 〈u,w〉 = 0 for all w ∈ C
}

denote the space that is dual to C (it
is also known as the dual code of C).

We recall the standard definitions of a tester for a linear code and a linear
locally testable code. All codes considered in this paper are linear so from here
on we drop further reference to this linearity (of testers, codes, etc.).

Definition 1 (Tester). Suppose C is a [N,K,D]F-code. A k-query tester for
C is a probabilistic oracle algorithm T that makes at most k oracle queries to a
word w ∈ FN and outputs an accept/reject verdict. The tester is said to have
completeness c and ε-soundness s if it accepts every codeword of C with probability
at least c and accepts words that are ε-far from C with probability at most s.

Definition 2 (Locally Testable Code (LTC)). An [N,K,D]F-code C is said
to be a (k, ε, ρ)-Locally Testable Code (LTC) if there exists a k-query tester that
has completeness c and ε-soundness c− ρ.

We are typically interested in infinite family of codes. If an infinite family of
codes is a (k, ε, ρ)-LTC for absolute constants k and ε, ρ > 0, then we simply refer
to this (family of) code(s) as an LTC. For linear LTCs the nature of tests can
be simplified significantly, due to a result of [7], to get them to a canonical form,
which has perfect completeness (c = 1), and is non-adaptive (while the soundness
parameter ρ changes by a constant factor). This leads to the following definition.

Definition 3 (Canonical tester). A canonical k-query test for C is given by
an element u ∈ C⊥ that has support size at most k, i.e., |{i | ui 6= 0}| ≤ k, where
the test accepts w ∈ Fn if and only if 〈u,w〉 = 0. A k-query canonical tester T for
C is defined by a distribution µ over canonical k-query tests. Invoking the tester
T on a word w ∈ Fn is done by sampling a test u according to the distribution
µ and outputting accept if the canonical test given by u accepts.



The following proposition of [7] — stated as Theorem 3.3 there — shows that
tests may always be assumed to be canonical (up to a constant factor change in
soundness).

Proposition 1. For every ε, ρ > 0 and positive integer k, there exist ρ′ > 0 such
that every (k, ε, ρ)-LTC has a canonical k-query tester with perfect completeness
and ε-soundness 1− ρ′.

Our main theorem compares the performance of affine-invariant locally testable
codes to that of Reed-Muller codes, which we define next.

Definition 4 (Reed-Muller codes). For F a finite field of size q and m, k in-
tegers, the m-variate Reed-Muller code of degree k over F, denoted RM[q,m, k] is
the [N = qm,K =

(
m+k
k

)
, D = qm−k]F-code whose codewords are all evaluations

of m-variate polynomials over F of degree at most k.

These codes have also been studied for the testability properties (see, e.g.,
[25], [2], [26], [22], [19], and [10]) and the case most relevant to us is that of
constant q and k and arbitrarily large m. For this choice of parameters the
codes are known to be (qO(k), ε, ρ)-locally testable for some constants ε, ρ > 0
that may depend on q and k [2, 22].

2.2 Affine invariant codes

The main concept of interest to us is that of affine-invariance. We borrow some
of the main definitions related to this concept from [23].

From here on we associate a code with a family of functions. Let p be a
prime, F = Fq for q = pr be a finite field and let K = FQ for Q = qn be
an extension of F. For integer m we can consider [N = Qm, k, d]F-codes whose
entries are indexed by elements of Km. In other words, from here on a code will
be identified with an F-linear subspace of {Km → F}, the space of all functions
from Km to F.

Definition 5 (Affine invariant codes). Let K be a finite degree extension of
F. A code C ⊆ {Km → F} is said to be affine invariant if it is invariant under
the action of the affine monoid1 over Km. In other words, for every f ∈ C
and every affine transformation A : Km → Km, the function f ◦ A defined by
(f ◦A)(x) = f(A(x)) belongs to C as well.

The work of [7] shows that in order for a linear property to be testable, it must
have some “local constraints” (low-weight words in its dual). For affine invariant
codes, [23] show that when K is small, then the existence of such constraints is
also a sufficient condition. (Our main result will show that the existence of such
constraints imposes a bound on the rate of a code, over any field K, not just
over fields of constant size.) We recall the following definition from [23].

1 The set of all affine maps from Km to itself forms a monoid under composition. If
one restricted this set to full rank maps, then one gets a group.



Definition 6 (k-local constraint). A k-local constraint is given by k distinct
points in Km α = (α1, . . . , αk) ∈ (Km)k. We say that a code C ⊆ {Km → F}
satisfies (or, has) a k-local constraint α if there exists nonzero Λ = (λ1, . . . , λk) ∈
Fk such that

∑k
i=1 λif(αi) = 0 for every f ∈ C.

The following statement is the main result of [23] regarding the local testa-
bility of affine invariant codes, and is stated as Theorem 2.10 there.

Theorem 1 (Affine invariant codes satisfying a k-local constraint over
a small field are locally testable). For fields F ⊆ K with |F| = q and |K| = Q,
let F ⊆ {Km → F} be an affine-invariant code satisfying a k-local constraint.
Then for any δ > 0, the code F is(

k′ = (Q2k)Q
2

, δ,
δ

2(2k′ + 1)(k′ + 1)

)
-locally testable.

Notice the above theorem implies local testability only when the field K is
relatively small, and is of interest only when m→∞. When m is small (and K
large) no general bounds were known on the locality of the tests. [18] show that
it is possible to have affine invariant families with one 8-local constraint that
cannot be characterized by O(1)-local constraints. And all this previous work
leaves open the possibility that there may exist other affine-invariant families
that are O(1)-locally characterized, perhaps even O(1)-testable (say, over fields
of growing size and m = 1), and do have large rate. Our work rules this out.

We can now state our main theorem which bounds the rate of affine invariant
codes containing a k-local constraint.

Theorem 2 (Affine invariant families with a local constraint are con-
tained in low-degree Reed-Muller codes). Let p be a prime and r, n,m be
positive integers and let q = pr and Q = qn. For F = Fq and K = FQ a degree-n
extension of F, let C ⊆ {Km → F} be an affine-invariant family that satisfies a
k-local constraint for k ≥ 2. Then

1. The dimension of C as a vector space over Fq is at most (mrn)k−1. Since
the blocklength of C is Qm = prmn we get

dim(C) ≤ (m logpQ)k−2.

2. C is isomorphic to a subcode2 of RM[q, nm, (k − 2)q/p]. In particular, for
q = p we get that C is isomorphic to a subcode of RM[p, nm, k − 2].

Note that when q = p, Part (1) of the theorem above follows from Part
(2), since the dimension of RM[p, nm, s] is at most (mn)s. When q = pr for
r > 1, this is not true, and the dimension of the code RM[q, nm, sq/p] is much
larger. In this case Part (2) is a weak description of our understanding of C. A

2 In other words, there exists an isomorphism φ : Fnm → Km such that for every
f ∈ C, the function (f ◦ φ) ∈ {Fnm → F} defined by (f ◦ φ)(x) = f(φ(x)) belongs to
RM[q, nm, (k − 2)q/p].



somewhat better understanding of affine-invariant codes over Fpr , for r > 1 can
be obtained if we use a broader class of codes. In particular, by viewing a code
over Fpr as a code over the vector space Fr

p, or as an r-tuple of codes over Fp,
one gets a more strict inclusion for such codes. Specifically, let RM[p, n, k − 2]r

denote codes obtained by evaluations of f = 〈f1, . . . , fr〉 : Fn
p → Fr

p, where each
fi : Fn

p → Fp is an n-variate polynomial over Fp of degree at most k − 2. We
then have the following Corollary of Theorem 2.

Corollary 1 (Affine invariant families with a local constraint over fields
of prime powers). Let p be a prime and r, n,m be positive integers and let
q = pr and Q = qn. For F = Fq and K = FQ the degree-n extension of F, let
C ⊆ {Km → F} be an affine-invariant family that satisfies a k-local constraint.
Then for every Fp-linear bijection ψ : Fq → Fr

p, the code C′ = {ψ ◦ f |f ∈ C} ⊆
{Km → Fr

p} is isomorphic to a subcode of RM[p, nmr, k − 2]r.

Proof. For i ∈ [r], let Ci be the projection of C′ to the ith coordinate. Then Ci
is a Fp-linear, affine-invariant code (over the domain Fm

Q ). By Theorem 2 we get
that it is isomorphic to a subcode of RM[p, nmr, k − 2]. It follows that C′ is a
subcode of RM[p, nmr, k − 2]r.

3 Proof of Main Theorems

In this section we prove Theorem 2 modulo some technical lemmas. It is not
hard to show that if Theorem 2 holds for the case m = 1 then it holds for all
positive integers m. (Proof omitted due to space limitations.)

From now on we consider only univariate functions, i.e., C ⊆ {K→ F}. Recall
that every function from K → K and hence from K → F is the evaluation of a
polynomial in K[x] of degree at most qn− 1. For a polynomial g ∈ K[x] given by
g(x) =

∑
d cdx

d, let supp(g) denote its support, i.e., supp(g) = {d|cd 6= 0}. The
set of degrees in the support of the functions in C turns out be a central ingredient
in understanding the structure of C, motivating the following definition.

Definition 7 (Degree set of C). For a class of functions C ⊆ {K → F}, its
degree set is the set D(C) = ∪g∈C supp(g).

It turns out that the representations of elements of D(C) in base p play a
central role in the structure of affine-invariant families over fields of characteristic
p. To this end we introduce some terminology.

For integer d, let [d]p = 〈d0, d1, . . .〉 denotes its representation in base p (i.e.,
0 ≤ di < p and d =

∑∞
i=0 dip

i). The p-weight of d, denoted wtp(d), is the quantity∑∞
i=0 di. We say e is in the p-shadow of d, denoted e ≤p d, if [e]p = 〈e0, e1, . . .〉

and ei ≤ di for all i. The set {e|e ≤p d} is called the p-shadow of d. The following
Lemma appears as Theorem 1 in [20].

Lemma 1. For every affine invariant family C ⊆ {K→ F} where F,K are fields
of characteristic p, D(C) is closed under p-shadow, i.e., if d ∈ D(C) and e ≤p d
the e ∈ D(C).



3.1 Uniform Homogenous Diagonal Systems of Polynomial
Equations

The task of finding the set of zeroes of a system of multivariate polynomial
equations is a central theme in mathematics. (Linear algebra considers the spe-
cial case where all equations are linear/affine and understanding the “variety”
of a given system of (higher-degree) equations is a central theme in algebraic
geometry.) In general of course, the set of zeroes may be too complex, even for
degree two polynomials. Nevertheless, our quest to understand the locality of
constraints in an affine-invariant property leads to such a question, where the
set of polynomials has a reasonably clean description. Somewhat surprisingly,
we are even able to describe the set of zeroes in a fairly precise way. We describe
the class of polynomial systems that we consider next.

Definition 8 (Uniform Homogenous Diagonal (UHD) System). Fix a
system of polynomials P1, . . . , Pm ∈ F[X1, . . . , Xk].

– We say the system is homogenous if every polynomial in the system is ho-
mogenous.

– We say that the system is diagonal if every monomial in the support of
every polynomial is a power of a single variable. I.e, a homogenous system is
diagonal if for every j ∈ [m], it is the case that Pj(X1, . . . , Xk) =

∑k
i=1 λji ·

X
dj

i .
– We say a homogenous diagonal system is uniform if the coefficients are the

same for every polynomial, i.e., λji is independent of j.

We conclude that a uniform homogenous diagonal system is given by a sequence
of coefficients Λ = 〈λ1, . . . , λk〉 ∈ Fk and degrees D = {d1, . . . , dm} such that

Pj(X1, . . . , Xk) =
∑k

i=1 λiX
dj

i . We refer to such a system as the (D,Λ)-UHD
system. We say that the (D,Λ)-system has a pairwise-distinct solution over some
field K if there exist distinct values α1, . . . , αk ∈ K such that Pj(α1, . . . , αk) = 0
for every j ∈ [m].

The following lemma motivates the study of UHD systems in our setting.

Lemma 2. If an affine-invariant property C ⊆ {K → F} has a k-local con-
straint, then there exists a non-zero vector Λ ∈ Fk such that the (D(C), Λ)-UHD
system has a pairwise-distinct solution over K.

Proof omitted due to space considerations. The following theorem is the main
technical claim of this paper.

Theorem 3 (Shadow-closed UHD systems containing nontrivial solu-
tions have bounded weight). Let F be any field of characteristic p and let D
be a p-shadow-closed set of integers containing an element d with wtp(d) ≥ k.
Then for every Λ = (λ1, . . . , λk) ∈ Fk where not all λi’s are zero, the (D,Λ)-
UHD system has no pairwise-distinct solutions over K for any field K extending
F.



3.2 Proof of Main Theorem

We are now ready to prove the main theorem assuming the lemmas claimed in
the previous subsections.

Proof (Theorem 2). We know that it suffices to prove the theorem for the uni-
variate case (i.e., m = 1). Let D(C) be the degree set of C. By Lemma 1, we know
that D(C) is p-shadow closed. Furthermore if C has a k-local constraint then, by
Lemma 2 there exists a non-zero vector Λ ∈ Fk′

such that the (D(C), Λ)-UHD
system has a pairwise-distinct solution. But then, by Theorem 3, we have that
the weight of every element d ∈ D(C) must be at most k − 2.

The dimension of C, which is at most |D(C)|, can now be bounded from above
by the number of integers d ∈ {0, . . . , qn − 1} of p-weight less than k − 1 which
is (crudely) at most (rn)k−2 (where q = pr). It follows that C is isomorphic to a
subcode of RM[q, nm, (k − 2)q/p], thus concluding the proof of the theorem.

3.3 Proof of Theorem 3

We now prove our main technical theorem, Theorem 3. The proof below is a
simplification of our original proof, due to Shachar Lovett. We start by intro-
ducing notation that will help us in the proof. The p-weight of a set of integers D,
denoted wtp(D), is the maximal p-weight of an element in D. For the purposes
of this proof, the length of the UHD system defined by (D,Λ = (λ1, . . . , λk) is
k. We assume throughout the proof that Λ 6= 0. We say that α = (α1, . . . , αk)
is a solution of the UHD system if αi 6= αj for all i 6= j and α is a root of the
UHD system. Using this terminology, Theorem 3 says

If the (D, (λ1, . . . , λk))-UHD system has a solution then k > wtp(D) + 1.

Notice that it suffices to prove the theorem for the case whereD = shadowp(d)
for some integer d. (Else we can simply take the element d of largest weight in
D and work with the set D′ = shadowp(d).)

We prove this by induction on wtp(d). The base case of wtp(d) = 0 says that
if the (shadowp(d), Λ)-UHD system is of p-weight 0 and length 1 then it has no
solution. The proof in this case is immediate because shadowp(d) = {0}, so if
Λ = (λ1) is nonzero then there is no solution to the system λX0 = 0 (recall
00 = 1).

For the inductive case we have wtp(d) > 0. Let [d]p = 〈d0, d1, . . .〉 be the
base-p representation of d and suppose dj > 0. Assume by way of contradiction
that α = (α1, . . . , αk) is a solution to the (shadowp(d), Λ)-UHD system of weight
k. The base case of the induction shows k > 1 because α is also a solution to the
({0}, Λ)-UHD system, so we may assume without loss of generality that αk 6= 0
because all αi are distinct. Our proof goes by showing that α′ = (α1, . . . , αk−1)
is a solution of a UHD-system of p-weight w = wtp(d) − 1. By the inductive
hypothesis we have k − 1 > w which implies k > wtp(d) + 1 and completes the
proof.



To construct the said UHD system set e = d−pj , noticing wtp(e) = wtp(d)−1
and let E = shadowp(e). Construct Λ′ = (λ′1, . . . , λ

′
k−1) by setting

λ′i = λi(α
pj

i − α
pj

k ).

Notice λ′i 6= 0 because λi 6= 0 and αi 6= αk and the transformation α 7→ αpj

is
a bijection on K. We shall now show that (α1, . . . , αk−1) is a solution of length
k− 1 to the (E,Λ′)-UHD system of p-weight wtp(d)− 1 thereby completing the
proof of the theorem. To show that (α1, . . . , αk−1) is a solution we argue that

for all r ∈ shadowp(e) we have
∑k−1

i=1 λ
′
iα

r
i = 0. Indeed

k−1∑
i=1

λ′iα
r
i =

k−1∑
i=1

λi(α
pj

i − α
pj

k )αr
i

=

k∑
i=1

λi(α
pj

i − α
pj

k )αr
i

=

k∑
i=1

λiα
r+pj

i − αpj

k

k∑
i=1

λiα
r
i = 0

The last equality follows because r + pj ∈ shadowp(d) for all r ∈ shadowp(e).
This completes the proof of the theorem.
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