Local Error-Detection and Error-correction

Madhu Sudan
MIT
Algorithmic Problems in Coding Theory

- **Code**: $E : \Sigma^k \to \Sigma^n$; Image$(E) = C \subseteq \Sigma^n$; $R(C) = k/n$, $\delta(C)$ = normalized distance.

- **Encoding**: Fix Code C and associated $E : \Sigma^k \to \Sigma^n$. Given $m \in \Sigma^k$, compute $E(m)$.

- **Error-detection (ϵ-Testing)**:

 Given $x \in \Sigma^n$, decide if $\exists m \in \Sigma^k$ s.t. $x = E(m)$.

 Given $x \in \Sigma^n$, decide if $\exists m \in \Sigma^k$ s.t. $\delta(E(m), x) \leq \epsilon$.

- **Error-correction (Decoding)**:

 Given $x \in \Sigma^n$, compute $m \in \Sigma^k$ that minimizes $\delta(E(m), x)$ (provided $\delta(E(m), x) \leq \epsilon$).
Sublinear time algorithmics

- Given \(f : \{0, 1\}^k \rightarrow \{0, 1\}^n \) can it be “computed” in \(o(k, n) \) time?

 Answer 1: Clearly NO, since that is the time it takes to even read the input/write the output

 \[f(x) = \{0, 1\}^n \]

 where \(x' \approx x \)

 \[f(x) f(x') \]

 \[i \quad j \]

 \[x_j \]

 \[x \- oracle \]

 \[f \]

 \[f(x f(x'))_i \]

- Answer 2: YES, if we are willing to the time it takes to even read the input/write the output

 1. Present input implicitly (by an oracle).
 2. Represent output implicitly
 3. Compute function on approximation to input.

Extends to computing relations as well.
Sub-linear time algorithms

- Initiated in late eighties in context of
 - Program checking
 - Interactive Proofs/PCPs
- Now successful in many more contexts
 - Property testing/Graph-theoretic algorithms
 - Sorting/Searching
 - Statistics/Entropy computations
 - (High-dim.) Computational geometry
- Many initial results are coding-theoretic!
Sub-linear time algorithms & Coding

- **Encoding**: Not reasonable to expect in sub-linear time.

- **Testing? Decoding?** – Can be done in sublinear time.
 - In fact many initial results do so!

- Codes that admit efficient ...
 - ... testing: Locally Testable Codes (LTCs)
 - ... decoding: Locally Decodable Codes (LDCs).
Rest of this talk

- Definitions of LDCs and LTCs
- Quick description of known results
- Some basic constructions
- (Time permitting) Yekhanin’s construction of LDCs.
Definitions
Locally Decodable Code

Code: $C : \Sigma^k \rightarrow \Sigma^n$ is (q, ϵ)-Locally Decodable if \exists Decoder D s.t. given $i \in [k]$ and oracle w s.t. $\exists m$ $\delta(w, C(m)) \leq \epsilon \leq \delta(C)/2$,

$D(i)$ reads $q(n)$ random positions of w and outputs m_i w.p. at least $2/3$.

What if $\epsilon > \delta(C)/2$? Might need to report a list of upto ℓ codewords.
Locally List-Decodable Code

Code: C is (ϵ, ℓ)-list-decodable if $\forall w \in \Sigma^n, \# \text{ codewords } c \in C \text{ s.t. } \delta(w, c) \leq \epsilon$ is at most ℓ.

C is (q, ϵ, ℓ)-locally list-decodable if \exists Decoder D s.t. given $i \in [k]$ and $j \in [\ell]$ and oracle w s.t. m_1, \ldots, m_ℓ are all messages satisfying $\delta(w, C(m_j)) \leq \epsilon$

\mathbf{W}

$D(i, j)$ reads $q(n)$ random positions of w and outputs $(m_j)_i$ w.p. at least $2/3$.

December 17, 2007 Coding & Sublinear time
History of definitions

- Constructions predate formal definitions
 - [Goldreich-Levin ’89].
 - [Beaver-Feigenbaum ’90, Lipton ’91].
 - [Blum-Luby-Rubinfeld ’90].
- Hints at definition (in particular, interpretation in the context of error-correcting codes): [Babai-Fortnow-Levin-Szegedy ’91].
- Formal definitions
 - [S.-Trevisan-Vadhan ’99] (local list-decoding).
 - [Katz-Trevisan ’00]
Locally Testable Codes

Code: $C \subseteq \Sigma^n$ is (q, ϵ)-Locally Testable if \exists Tester T s.t.

T reads $q(n)$ random positions:
- If $w \in C$ accepts w.p. 1.
- If w is ϵ-far from C, then rejects w.p. $\geq 1/2$.

"Weak" definition: hinted at in [BFLS], explicit in [RS’96, Arora’94, Spielman’94, FS’95].
Strong Locally Testable Codes

Code: $C \subseteq \Sigma^n$ is (q, ϵ)-Locally Testable if \exists Tester T s.t.

1. If $w \in C$ accepts w.p. 1.
2. For every $w \in \Sigma^n$,
 \[T \text{ rejects w.p. } \geq \Omega(\delta(w, C)). \]

“Strong” Definition: [Goldreich-S. ’02]
Motivations
Motivations for Local decoding

- Suppose $C \subseteq \Sigma^N$ is locally-decodable code for $N = 2^n$. (Further assume can locally decode bits of the codeword, and not just bits of the message.)
- $c \in C$ can be viewed as function $c : \{0, 1\}^n \rightarrow \Sigma$.
- Local decoding \Rightarrow can compute $c(x)$ for every x, if one can compute $c(x')$ for most x'. Relates average-case complexity to worst-case. [Lipton, STV]

- Alternate interpretation: Compute $c(x)$ without revealing x. Leads to Instance Hiding [BF], Private Information Retrieval [CGKS].
Motivation for Local-testing

- No generic applications known.
- However,
 - Interesting phenomenon on its own.
 - Intangible connection to Probabilistically Checkable Proofs (PCPs).
 - Potentially good approach to understanding limitations of PCPs (though all resulting work has led to improvements).
Contrast between decoding and testing

- **Decoding:** Property of words near codewords.
- **Testing:** Property of words far from code.

- **Decoding:**
 - Motivations happy with $n = \text{quasi-poly}(k)$, and $q = \text{poly log } n$.
 - Lower bounds show $q = O(1)$ and $n = \text{nearly-linear}(k)$ impossible.

- **Testing:** Better tradeoffs possible! Likely more useful in practice.
 - Even conceivable: $n = O(k)$ with $q = O(1)$?
Some LDCs and LTCs
Codes via Multivariate Polynomials

Message: coefficients of deg t, m-variate polynomial P over finite field \mathbb{F}

(Reed Muller code)

Encoding: evaluations of P on all of \mathbb{F}^m.

Parameters:
- $k \approx (t/m)^m$
- $n = |\mathbb{F}|^m$
- $\delta \geq t/|\mathbb{F}|$.
Basic insight to locality

- m-variate polynomial of degree t restricted to $m' < m$-dim. (affine) subspace is polynomial of degree t.

- **Local Decoding:**

 Pick subspace through point x of interest, and decode on subspace.

 Query complexity $q = |\mathbb{F}|^{m'}$; Time $= \text{poly}(q)$.

 $m' \ll m \Rightarrow$ sublinear!

- **Local Testing:**

 Verify f restricted to space is of degree t.

 Same complexity.
Summary of Constructions

- **Polynomial Codes:** (Locally decodable and testable)
 \[\text{Locality } q \text{ with } n = \exp\left(k^{1/(q-1)}\right) \]

- **Polynomial Codes + Composition/Concatenation:**
 \[q = O(1) \text{ and } n = \tilde{O}(k) = k \cdot (\log k)^c. \]
 \[\text{Local Decodability with } n = \exp\left(k^{1/\text{poly}(q)}\right) \]

- **Codes based on “Algebraic Designs” [Yekhanin]**
 \[\text{Local Decodability with } q = 3 \text{ and } n = \exp(k^\epsilon) \]
[Yekhanin ‘07]’s LDCs
Recall: Combinatorial Designs

- **Families of Sets:** $S_1, \ldots, S_k, T_1, \ldots, T_k$.
 $S_i, T_i \subseteq \{1, \ldots, m\}$.

- **Restrictions on Intersections:**
 - E.g.,

 i vs. i: $|S_i \cap T_i|$ even. (Large) (Small)

 i vs. j: $|S_i \cap T_j|$ odd. (Small) (Large)

- **Basic Question:**
 How large can k be?
 (As a function of m?)
 Typical answer $k = \Theta(m)$
[Yekhanin]’s Algebraic Designs

- **Families of Vectors:** $u_1, \ldots, u_k, v_1, \ldots, v_k$

 $u_i, v_i \in \mathbb{F}_p^m$.

 p small prime

- **Restrictions on Inner Products:**

 $\langle u_i, v_i \rangle = 0$
 $\langle u_i, v_j \rangle \neq 0$

 Basic p-design
 (p, S')-design

- **Basic Question:** How large can k be?

 $\binom{m}{p-1} \sim m^{p-1}$

 At most $m^{|S|}$!
 Can we achieve it?
[Yekhanin]’s Algebraic Designs

- Families of Vectors: u_1, \ldots, u_k, v_1, \ldots, v_k.
 $u_i, v_i \in \mathbb{F}_p^m$.
 p small prime

- Restrictions on Inner Products:
 $\langle u_i, v_i \rangle = 0$ \quad $\langle u_i, v_i \rangle = 0$
 $\langle u_i, v_j \rangle \neq 0$ \quad $\langle u_i, v_j \rangle \in S \not= 0$

 Basic p-design \quad (p, S)-design

- Basic Question: How large can k be?
 \[\binom{m}{p-1} \sim m^{p-1} \]
 At most $m^{|S|}$!
 Can we achieve it?
[Y’07] Algebraic designs and LDCs

Lemma 1: Basic p-design with k vectors in \mathbb{F}_p^m
$\Rightarrow p$-query (binary) LDCs mapping k-bits to p^m bits

$$k = m^{p-1} \Rightarrow n = \exp(k^{1/p-1})$$

(Matches some of the early constructions)

Lemma 2: $\exists q = q(p, S) \leq p$ s.t.
(p, S)-design with k vectors in \mathbb{F}_p^m
$\Rightarrow q$-query LDCs mapping k bits to p^m bits.

$q(p, S)$ - Algebraic niceness of $S \subseteq \mathbb{F}_p^*$.

December 17, 2007 Coding & Sublinear time 25
[Y’07] Algebraic designs and LDCs

Lemma 2: \(\exists q = q(p, S) \leq p \) s.t.
\((p, S) \)-design with \(k \) vectors in \(\mathbb{F}_p^m \)
\(\Rightarrow q \)-query LDCs mapping \(k \) bits to \(p^m \) bits.

\(q(p, S) \) - algebraic niceness of \(S \subseteq \mathbb{F}_p^* \).

Definition: \(S \) is \(q \)-algebraically nice if
\(\exists \) a \(q \)-sparse polynomial \(h(x) \in \mathbb{F}_2[x]/(x^p - 1) \) s.t.
ideal generated by \(\{h(x^\beta) | \beta \in S\} \) is non-trivial.

(One of two equivalent definitions)
[Y’07] Algebraic designs and LDCs

Lemma 2: \(\exists q = q(p, S) \leq p \) s.t.
\((p, S) \)-design with \(k \) vectors in \(\mathbb{F}_p^m \)
\(\Rightarrow q \)-query LDCs mapping \(k \) bits to \(p^m \) bits.

\(q(p, S) \) - algebraic niceness of \(S \subseteq \mathbb{F}_p^* \).

Example: \(p = 127; S = \{1, 2, 4, 8, 16, 32, 64\} \)
\(S \) is 3-algebraically nice
\(m^7 \) long \((p, S) \)-designs exist!

\(\Rightarrow \) 3-query LDC mapping \(k \) bits to \(\exp(k^{1/7}) \) bits
[Y’07] Algebraic designs and LDCs

Lemma 2: \(\exists q = q(p, S) \leq p \) s.t.
(p, S)-design with \(k \) vectors in \(\mathbb{F}^m_p \)
\(\Rightarrow q \)-query LDCs mapping \(k \) bits to \(p^m \) bits.

\(q(p, S) \) - algebraic niceness of \(S \subseteq \mathbb{F}^*_p \).

Lemma 3: \(p = 2^t - 1 \Rightarrow S = \{1, 2, 4, \ldots, 2^{t-1}\} \)
is 3-algebraically nice.

Lemma 4: \(S \) multiplicative subgroup of \(\mathbb{F}_p \)
\(\Rightarrow \exists (p, S) \)-design of length \(\sim m^{|S|} \).

Theorem: \(\exists \) 3-query LDC
mapping \(k \) bits to \(\exp(k^{0.0000001}) \) bits.
Proofs?

- Disclaimer: Proof of Lemma 2, Lemma 3 too long to fit here. (Many context switches, but elementary.)

- Will only attempt to show Lemmas 1 and 4.
Basic designs and LDCs

Given $u_1, \ldots, u_k; v_1, \ldots, v_k$

$$G = \begin{bmatrix} \vdots & \vdots & \vdots \\ \vdots & 1 & \langle u_i, x \rangle \\ \vdots & \vdots & \vdots \\ \end{bmatrix} u_i$$
Basic designs and LDCs

\[
\begin{bmatrix}
\vdots \\
\ldots \\
\vdots \\
\ldots \\
\vdots \\
\ldots \\
\vdots \\
\ldots \\
\end{bmatrix}
\]

message

\[
\begin{array}{c}
\begin{align*}
m_1, \ldots, m_k \\
\text{report parity of} \hspace{1cm} \text{locations}
\end{align*}
\end{array}
\]

\[
y + v_i \\
y + 2v_i \\
\cdots \\
y + (p - 1)v_i
\]

s.t. \(\langle u_i, y \rangle \neq 0 \)
Basic designs and LDCs

ith row
- all ones.

other rows
- $p - 1$ ones.

codeword
Proof of Lemma 4

- Construction of Basic p-designs:
 \[i \leftrightarrow \text{set of size exactly } p - 1 \]
 \[u_i = \text{characteristic vector of set } i. \]
 \[v_i = \text{characteristic vector of complement of set } i. \]
 \[\langle u_i, v_i \rangle = 0; \quad \langle u_i, v_j \rangle = |i \cap j| \in \{1, \ldots, p - 1\} \]

- Construction of (p,S)-designs for S multiplicative:
 Take u_i, v_i as above;
 Use $\tilde{u}_i, \tilde{v}_i = p/|S|$th tensor powers of u_i, v_i.
Conclusions

- Local algorithms in error-detection/correction lead to interesting new questions.

- Non-trivial progress so far.

- Limits largely unknown
 - $O(1)$-query LDCs must have $R(C) = 0$ [Katz-Trevisan]