# Universal Semantic Communication 

## Madhu Sudan

MIT CSAIL

Joint work with Brendan Juba (MIT CSAIL).

An ficatasy setting (SE-J)

010010101010001111001000 Alice



Bob

What should Bob's response be?
If there are further messages, are they reacting to him?
Is there an intelligent Alien (Alice) out there?

## Pioneer"s face plate

## Why did they put this image?

What would you put?
What are the assumptions and implications?


Motivationa Better Computing

- Networked computers use common languages:
- Interaction between computers (getting your computer onto internet).
- Interaction between pieces of software.
- Interaction between software, data and devices.
- Getting two computing environments to "talk" to each other is getting problematic:
- time consuming, unreliable, insecure.
- Can we communicate more like humans do?


## Classical Paracligm for interaction

## Designer

Object 1
Object 2

New paracligna

## Designer

Object 1

Robust interfaces

- Want one interface for all "Object 2"s.
- Can such an interface exist?
- What properties should such an interface exhibit?
- Puts us back in the "Alice and Bob" setting.


## GOal off this talk

- Definitional issues and a definition:
. What is successful communication?
What is intelligence? cooperation?
- Theorem: "If Alice and Bob are intelligent and cooperative, then communication is feasible" (in one setting)
- Proof ideas:
- Suggest:

■ Protocols, Phenomena ...

- Methods for proving/verifying intelligence

What has this to clo with computation?

- In general: Subtle issues related to "human" intelligence/interaction are within scope of computational complexity. E.g.,
- Proofs?
- Easy vs. Hard?
- (Pseudo) Random?
- Secrecy?

Knowledge?

- Trust?
- Privacy?
- This talk: What is "understanding"?

A first attempt at a definition

- Alice and Bob are "universal computers" (aka programming languages)
- Have no idea what the other's language is!
- Can they learn each other's language?
- Good News: Language learning is finite. Can enumerate to find translator.
- Bad News: No third party to give finite string!
- Enumerate? Can't tell right/wrong (*)

Communicarion \& Goals

- Indistinguishability of Right/Wrong: Consequence of "communication without goal".
- Communication (with/without common language) ought to have a "Goal".
- Before we ask how to improve communication, we should ask why we communicate?
"Communication is not an end in itself, but a means to achieving a Goal"


## Part I: A Computational Goal

## Computational Goalfor Bob

- Bob wants to solve hard computational problem: - Decide membership in set S.
- Can Alice help him?
- What kind of sets S? E.g.,
- $S=\{$ set of programs $P$ that are not viruses $\}$.
- $S=\{$ non-spam email $\}$
- $S=\{$ winning configurations in Chess $\}$
$-S=\{(A, B) \mid A$ has a factor less than $B\}$

Review of Complexity Classes

- $P(B P P)$ - Solvable in (randomized) polynomial time (Bob can solve this without Alice's help).
- NP - Problems where solutions can be verified in polynomial time (contains factoring).
- PSPACE - Problems solvable in polynomial space (quite infeasible for Bob to solve on his own).
- Computable - Problems solvable in finite time. (Includes all the above.)
- Uncomputable (Virus detection. Spam filtering.)

Which problems can you solve with (alien) help?

Setup

## Which class

 of sets?
## Alice

## Bob

## $x \in S$ ?

$R \leftarrow \$ \$ \$$

$f\left(x, R, a_{1}, \ldots, a_{k}\right)=1$ ?


Hopefully $x \in S \Leftrightarrow f(\cdots)=1$

## Contrast with J nteractive Proofs

- Similarity: Interaction between Alice and Bob.
- Difference: In IP, Bob does not trust Alice. (In our case Bob does not understand Alice).
- Famed Theorem: IP = PSPACE [LFKN, Shamir].
- Membership in PSPACE solvable S can be proved interactively to a probabilistic Bob.
- Needs a PSPACE-complete prover Alice.


## Intelligence \& Cooperation?

- For Bob to have a non-trivial interaction, Alice must be:
- Intelligent: Capable of deciding if $x$ in $S$.
- Cooperative: Must communicate this to Bob.
- Modelling Alice: Maps "(state of mind, external input)" to "(new state of mind, output)".
- Formally:

Alice is S-helpful
if $\exists$ probabilistic poly time (ppt) Bob $B^{\prime}$ s.t. $\forall$ initial state of mind $\sigma$, $A(\sigma) \leftrightarrow B^{\prime}(x)$ accept w.h.p. iff $x \in S$.

## Successfu】unjversalcommunication

- Bob should be able to talk to any S-helpful Alice and decide S .
- Formally,

Ppt $B$ is $S$-universal if for every $x \in\{0,1\}^{*}$
$A$ is $S$-helpful $\Rightarrow \quad[A \leftrightarrow B(x)]=1$ iff $x \in S$ (whp).
$A$ is not $S$-helpful $\Rightarrow$ Nothing!!
Or should it be ...
$A$ is not $S$-helpful $\Rightarrow[A \leftrightarrow B(x)]=1$ implies $x \in S$.

Main Theorem

-     - If $S$ is PSPACE-complete (aka Chess), then there exists an $S$-universal Bob. (Generalizes to any checkable set S.)
-     - If there exists an $S$-universal Bob then $S$ is in PSPACE.
- In English:
- If $S$ is moderately stronger than what Bob can do on his own, then attempting to solve S leads to non-trivial (useful) conversation.
- If $S$ too strong, then leads to ambiguity.
- Uses IP=PSPACE

Few words about the proof

- Positive result: Enumeration + Interactive Proofs

Guess: Interpreter; $x \in S$ ?


Prover

Alice

Proof works $\Rightarrow x \in S$; Doesnt work $\Rightarrow$ Guess wrong. Alice $S$-helpful $\Rightarrow$ Interpreter exists!

## Proof of Negative Result

- L not in PSPACE implies Bob makes mistakes.
- Suppose Alice answers every question so as to minimize the conversation length.
$\square$ (Reasonable effect of misunderstanding).
- Conversation comes to end quickly.
- Bob has to decide.
- Conversation + Decision simulatable in PSPACE (since Alice's strategy can be computed in PSPACE).
- Bob must be wrong if $L$ is not in PSPACE.
- Warning: Only leads to finitely many mistakes.


## Potentiad Criticisms of Main 「heoren

- This is just rephrasing IP=PSPACE.
- No ... the result proves "misunderstanding is equal to mistrust". Was not a priori clear.
$\square$ Even this is true only in some contexts.


## Potentiad Criticisms of Main 「heorem

- This is just rephrasing IP=PSPACE.
- Bob is too slow: Takes exponential time in length of Alice, even in his own description of her!
- A priori - not clear why he should have been able to decide right/wrong.
- Polynomial time learning not possible in our model of "helpful Alice".
- Better definitions can be explored - future work.


## Potential Criticisns of Main 「heoren

- This is just rephrasing IP=PSPACE.
- Bob is too slow: Takes exponential time in length of Alice, even in his own description of her!
- Alice has to be infinitely/PSPACE powerful ...
- But not as powerful as that Anti-Virus Program!
- Wait for Part II


## Part II: I ntellectual Curiosity

## Sertinga Bob more powerful than Alice

- What should Bob's Goal be?
- Can't use Alice to solve problems that are hard for him.
- Can pose problems and see if she can solve them. E.g., Teacher-student interactions.
- But how does he verify "non-triviality"?
- What is "non-trivial"? Must distinguish ...


Scene 2

## Sertinga Bob more powerful than Alice

- Concretely:
- Bob capable of TIME ( $n^{10}$ ).
- Alice capable of TIME( $n^{3}$ ) or nothing.
- Can Bob distinguish the two settings?
- Answer: Yes, if Translate(Alice,Bob) computable in TIME( $n^{2}$ ).
- Bob poses TIME( $n^{3}$ ) time problems to Alice and enumerates all TIME( $n^{2}$ ) interpreters.
- Moral: Language (translation) should be simpler than problems being discussed.


## Part III: Concluding thoughts

Is this language learning?

- End result promises no language learning: Merely that Bob solves his problem.
- In the process, however, Bob learns Interpreter!
- But this may not be the right Interpreter.
- All this is Good!
- No need to distinguish indistinguishables!


## Goals of Communaication

- Largely unexplored (at least explicitly)!
- Main categories
- Remote Control:
- Laptop wants to print on printer!
- Buy something on Amazon
- Intellectual Curiosity:
$\lrcorner$ Learning/Teaching
- Listening to music, watching movies
- Coming to this talk
- Searching for alien intelligence
- May involve common environment/context.

Extension to generic goals

- Generic (implementation of) Goal: Given by:
- Strategy for Bob.
- Class of Interpreters.
- Boolean function G of
- Private input, randomness
-Interaction with Alice through Interpreter
$\square$ Environment (Altered by actions of Alice)
- Should be
- Verifiable: G should be easily computable.
- Complete: Achievable w. common language (for some Alice, independent of history).
- Non-trivial: Not achievable without Alice.


Verifiable Goal $=($ Strategy, Class of Interpreters, V)

Generjc Goals

- Can define Goal-helpful; Goal-universal; and prove existence of Goal-universal I nterpreter for all Goals.
- Claim: Captures all communication
(unless you plan to accept random strings).
- Modelling natural goals is still interesting. E.g.
- Printer Problem: Bob(x): Alice should say $x$.
- Intellectual Curiosity: Bob: Send me a "theorem" I can't prove, and a "proof".
- Proof of Intelligence (computational power): Bob: given $f, x$; compute $f(x)$.
- Conclusion: (Goals of) Communication can be achieved w/o common language

Role of common language?

- If common language is not needed (as we claim). then why do intelligent beings like it?
- Our belief: To gain efficiency.
- Reduce \# bits of communication
- \# rounds of communication
- Topic for further study:
- What efficiency measure does language optimize?
- Is this difference asymptotically significant?

Further work

- Exponential time learning (enumerating I nterpreters)
What is a reasonable restriction on languages?
- What are other goals of communication?
- What are assumptions needed to make language learning efficient?

Paper (Part I) available from ECCC

## Thank You!

